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This paper decomposes agricultural input factors into labor, land, fertilizer, and

farmmachinery in 31 provinces of China from 1990 to 2020. This paper analyzes

the input factor’s contribution rates to China’s agricultural growth using the

stochastic frontier model. The empirical results indicate that the contribution

rate of input factors in China’s agricultural growth has weakened, with

decreasing contribution rate of labor, an increasing contribution rate of

fertilizer and machinery, and decreasing contribution rate of the land year by

year. The contribution rate of technological progress is increasing, and there is

room for improvement. In addition, technological progress and input factors

alternately lead to the time of policy change in China. The research also shows

that the prerequisite for promoting rural supply-side reform and achieving

sustained agricultural growth is ensuring a stable supply of input factors,

focusing on promoting agricultural technological progress.
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1 Introduction

Agriculture is becoming more integrated into the world food chain and global climate

issues. With technological development, mechanization, increased chemical investment,

specialization, and environmental policy changes, the environment, mechanization, and

lands are also increasingly influencing agriculture sustainability development. Currently,

people have an awareness of promoting sustainable agriculture development. However,

the world faces numerous challenges to meet the dual requirements, fitting the food

production need, reducing environmental pollution, and simultaneously being

sustainable from the agriculture production side, especially for developing countries.

In developing countries, due to the backward machinery, farmers have to produce

through polluting the environment, such as increasing fertilized investment, straw

burning, and disposal of pollution waste, to meet the agriculture production goals.

Mulat et al. (2016) evaluated agriculture production, finding that adopting improved seed,

family labor, agriculture capital, and manure positively and significantly affected
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agriculture production. Ullah et al. (2020), Balaji et al. (2022) and

Bu et al. (2013) suggested that farmers’ adoption of improved

technology is shallow in Pakistan, creating a substantial gap

between potential and actual crop productivity. Thus, many

kinds of literature studies focus on research about how to

improve agriculture’s total production, especially in

developing countries.

As a significant agricultural country among the developing

countries, China applies the technologies and processes to

maintain the environment, and economic production is a

fundamental approach to promoting sustainable agriculture

development globally. As a predominantly agricultural

country, China is an essential economic development

industry. However, China’s agricultural development has not

achieved the expected results in recent years. In 2021, China

imported 164,539,000 tons of grain, an increase of 18% over the

same period last year. Among them, 96.518 million tons of

soybeans were imported, accounting for 58.6% of the total

imports, with an import dependency of 85.5%. As the world’s

largest food importer, China’s agricultural development is facing

a series of problems, such as unreasonable agricultural structure,

weak international competitiveness of agriculture, high external

dependency, and prevalence of crude development methods. In

order to solve the contradiction between sustainable agricultural

development and agricultural production and solving the

contradiction between sustainable agricultural development

and agricultural output, China has proposed to promote the

supply-side structural reform of agriculture and promote

sustainable agricultural development, which has pointed out

the direction for the sustainable development of the

agricultural economy in the future. Therefore, in promoting

sustainable agricultural development, analyzing the

fundamental contributions of various input factors in China’s

sustainable agricultural development is of great practical

significance and policy reference value for optimizing resource

allocation, deepening agricultural reform, and promoting

sustainable development of the global environment.

The current research spotlight on agricultural growth in

China is the evolution of agricultural productivity. Since the

rural reform in 1978, the real growth rate of China’s total

agricultural output has increased from 2.5% to 6.7% from

1949 to 1977 (1978–2020). The output growth is mainly

attributed to the increase in factor inputs and agricultural

productivity (Jitendra, 2022). However, there has been

academic controversy over the trend of agricultural growth in

China since the mid-1990s (Wang et al., 2013), and applying

different productivity models is one of the main reasons for the

controversy. The findings are not yet uniform, which makes it

difficult for policymakers to make accurate judgments and even

design trade-off policy measures.

Based on this controversy, this paper uses data on

agricultural input factors at the provincial level in China from

1990 to 2020 in order to clarify the contribution of each input

factor and productivity in China’s agricultural growth over the

past 30 years and to provide a more convincing academic basis

for policy formulation about the importance of technology on

sustainable development in agriculture.

Research on agricultural productivity estimation in China

currently faces two significant challenges: traditional methods

with fixed production function assumptions fail to capture

changes in input–output relationships over time due to

differences in China’s rural reform policies. Second is the

debate on China’s agricultural productivity growth since the

late 1990s. Some scholars (Pedroni, 2004; Zhang et al., 2004;

Smith et al., 2007; Chivian et al., 2008; Vandebroek et al., 2010;

Wang et al., 2014; Wang et al., 2019) and others assert that

productivity growth rates peaked in the late 1990s, and then

gradually their economic growth points decreased. It follows that

accurate estimation of agricultural productivity is a prerequisite

for measuring the contribution of each factor in agricultural

growth. In the early days, when models were relatively

homogeneous, academic studies on agricultural productivity

in China were more uniform in their findings. With the birth

and application of different productivity models, scholars have

seriously disagreed on China’s agricultural productivity changes

in the last 30 years. Although these studies differ slightly in

selecting samples and variables, the significant difference lies in

the choice of models. Different productivity models directly lead

to different conclusions, and existing studies rely on a particular

model to measure agricultural productivity when choosing a

model. However, the agricultural production process is highly

complex, and it is difficult for a single model to explain the

input–output relationship accurately. Compared with the

current literature (Jim et al., 2006; Chang et al., 2008; Chen

et al., 2013; Dar and Asif, 2018), we are filling the existing

knowledge gaps using 30 years of panel data based on the

stochastic frontier model to analyze agriculture’s total green

factor from a technology perspective.

The main contributions of this paper are as follows: first,

using five classical productivity models and assigning

corresponding weights according to the ability of each model

to explain the data and to make a comprehensive and accurate

estimation of the production function and agricultural

productivity; second, using the growth accounting table to

quantify and analyze the contribution rate of input factors

and technological progress to China’s agricultural sustainable

development during 1990–2020s at the provincial level. Third,

using 30 years of panel data to scientifically analyze the changes

in each factor’s contribution rate to sustainable agricultural

development and provide specific policy suggestions for

promoting agricultural supply-side reform and global energy

economic development. However, this study also has

limitations in accessing data. Our research data only access at

a provincial level, perhaps differing from the empirical results of

the prefecture-level data. The total factor productivity in

agriculture at the prefecture-level could be studied in the future.
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2 Literature

Analysis of the agriculture sustainable production systemwas

introduced during the 1960s, and the research purpose is to

improve production practices and high production. The research

aims to improve production practices and high-yielding modern

crops (Giannetti et al., 2015). Agriculture sustainable production

can reflect economic growth while accounting for the natural

resources and environmental conditions and allowing

comparison across countries (Farrell, 1957; Liu et al., 2012;

Huang et al., 2013; Faridy et al., 2020).

Numerous studies have begun to explore the factors

influencing agriculture productivity. Magazzino et al., 2022

employed the cross-sectional dependency method finding that

CO2 emissions reduce agricultural productivity in ASEAN

countries and renewable energy sources positively contribute

to agricultural productivity. At the same time, technological

innovation has positively influenced BRICS (Brazil, Russia,

India, China, and South Africa) countries to reduce

environmental pollution and boost economic development

(Khan H et al., 2020), and Michler et al. (2020) has proven

that agriculture production significantly relies on those input

factors of income, technology, and infrastructure in India.

Regarding the effects of land and labor inputs on agricultural

production, Khan A et al., 2020 found that increasing labor and

labor resources are connected to agricultural production.

There are also many methods to evaluate agriculture’s

sustainable production system. Total factor productivity (TFP)

is a standard method to assess the sustainability of agricultural

production systems (Guadagni and Fileccia, 2009; Donnell, C.J,

2010). Magazzino et al., 2022 primarily used an artificial neural

network approach to evaluate productivity in the agricultural

sector over the period 2000–2012 for a large set of countries.

For the evaluation of agriculture sustainable production in

China, Glauben et al., 2006 staged China’s rural reform from the

late 1970s to the early 2000s in five phases for China’s agricultural

productivity: 1978–1984, 1985–1989, 1990–1993, 1994–1997,

and late 1998. Zhang et al. (2011) A sixth period, beginning

in 2004, is further added to examine the impact of Chinese

policies on agricultural productivity in a phased manner. The

first period (1978–1984) was a transition from a collective system

to a family-based farming system, with the main component

being the introduction of a family responsibility system that gave

farmers the right to control their production after fulfilling

government procurement quotas, while the second period

(1985–1989) witnessed a two-tier system that included market

and planning factors. The government further liberalized the

pricing and marketing system for agricultural products, allowing

more products to be traded in the market (Fan et al., 2002), such

as cereals and cotton. Lin, 1995 discussed the reforms in prices,

institutions, and markets in the first two periods. He used

traditional production and stochastic frontier functions to

evaluate rural policies and measured the contribution of these

policies to agricultural growth in China. Using provincial panel

data, he found that 47% of the output growth in the first reform

phase is due to the implementation of the household contract

responsibility system. Many kinds of literature studies affirm the

results of the first phase of agricultural reform (McMillan et al.,

1989; Fan et al., 2002; Wen and Shi, 1993; Fan et al., 2004).

However, most scholars believe that Chinese agriculture

productivity growth slowed down significantly in the second

phase after experiencing rapid growth and attribute the

stagnation of agricultural growth to the slowdown of

agricultural productivity growth. For example, according to

Carter and Estrin, 2001, the average annual growth rate of

agricultural productivity in China was 8.1% in the first stage,

while it declined to 2.4% in the second stage. Research on the

second phase of China’s rural reforms has focused on the causes

of the slowdown in productivity growth. Some scholars argue

that the first-phase reforms only boosted productivity growth

and that this dividend must have disappeared over time. Other

scholars argue (Li and Ng, 1995; Huang et al., 1998) that the

government’s policy failure in marketization was the leading

cause of the stagnation of productivity growth in the second

phase.

The current research spotlight further reformed the unified

procurement and marketing system in the third period

(1990–1993). To avoid government failure due to institutional

problems, China replaced the central planning system and

government intervention with influential market forces and

solutions. By the end of 1993, more than 90% of agricultural

products were sold at market-determined prices (Fan et al.,

2002). However, market reformation has not been fully

completed due to fragmentation of regional markets and

isolation of domestic markets (Glauben et al., 2006). In

addition, the acceleration of rural industry has absorbed

agricultural resources such as labor, land, and capital.

However, there is a controversy among academics regarding

the changes in the country’s agricultural growth since the mid-

1990s. Some scholars argue (Pratt et al., 2008; Dekle and

Vandenbroucke, 2010; Wang et al., 2013) that the growth rate

of agricultural productivity in China continued to increase in the

late 1990s and began to slow down by the beginning of the 21st

century. Other scholars (Chen, 2006; Chen et al., 2008; Tong

et al., 2009; Zhou et al., 2013) argue that the growth rate of

agricultural productivity in China slowed down in the late 1990s

but rebounded from the beginning of the 21st century.

In terms of theoretical model analysis of agricultural

productivity, Zulkafli and Kopanos, 2017 counted the main

theoretical models analyzed as the traditional production

function (CPF), stochastic frontier analysis (SFA), and data

envelopment analysis (DEA) used 42, 22, and 15 times,

respectively, them being the three most widely used methods.

Earlier studies (McMillan et al., 1989; Lin, 1992; Buckland et al.,

1997) mainly used CPF to estimate productivity. Recent studies

have more often used SFA (Asif, 2017) and DEA (You and Xiao,
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2022) to decompose total factor productivity (TFP) into

technology and efficiency. CPF is estimated for the average

production function, while the SFA and DEA methods

estimate the production frontier representing the highest

productivity at each stage. The change in the production

frontier over time shows the change in production technology.

SFA and DEA estimate a production frontier representing the

maximum output achievable for a given input. The shift of the

frontier over time shows technological change, and the vertical

distance between a unit’s output and the frontier represents the

technical efficiency of that unit. SFA assumes that the production

frontier follows some functional form, such as a Cobb–Douglas

function, and allows a stochastic term to capture noise. DEA is a

deterministic model that allows the formation of production

functions to be relaxed to avoid rigid functional forms.

In summary, previous literature has a consistent view on

productivity change in the first three periods but with different

views on analyzing theoretical models of productivity. This paper

uses stochastic frontier analysis because agriculture is undoubtedly an

industry full of noise and singular values are inevitably not present, so

SFA should be preferred to DEA (Cristian, 2020). Furthermore, the

traditional non-frontier approach does not consider the technical

non-efficiency factor to be its big drawback. Also, of the literature that

has studied agricultural production in China, most of them have

examined the impact of changes in total factor productivity in

agriculture, such as technological progress and changes in

technical efficiency, on the sustainable development of agriculture

in China. However, the source of economic growth contributes to

factor accumulation in addition to the growth of total factor

productivity.

3 Theoretical framework and data
description

3.1 Theoretical framework

Global food insecurity and global hunger are hindering

economic development, health, and wellbeing globally, especially

in Asia. Hence, it is essential to explore the factors that contribute to

agriculture production. Compared with current literatures, we

address the agriculture machine, and comparing with other

nature resource including labor, workforce, and fertilizer (Dorinet

et al., 2021). The theoretical framework is shown in Figure 1.

Agriculture machinery accounts for agriculture productivity in

agricultural economies. Guadagni (2007) investigated the agriculture

machinery factors at agricultural productivity and found that a

significant deficit in agricultural machinery is hindering sector

productivity at 45 percent, which means machine input has

contributed to the productivity. Steenwyk et al., 2022 suggested

that additional machine-based work inputs have contributed to

the growth in land and labor productivities, as they have enabled

farmers to control more physical work, enabling more irrigation and

agrochemical applications. Moreover, aging of the rural population

and mobility of younger workforce cause reduced workforce inputs.

However, workforce is always considered an essential input factor for

contribution to agriculture productivity. Baldoni et al., 2021

constructed a theoretical model to investigate the influence of

immigrant workforce on agriculture productivity through micro-

level data in Italian. However, comparing with mechanical input

factors, labor productivity increased, leading to an increase in real

wages, which was an incentive to replace labor with mechanical input

(Paolo, 2020).

Numerous nature resource inputs including land and

fertilizer lead to agricultural productivity development,

although producing a link to massive environmental pollution

(Khan H et al., 2020).

3.2 Data description and statistics

The main data used in this paper are the agricultural input and

output data of 31 provinces, autonomous regions, and municipalities

directly under the central government inmainlandChina from 1990 to

2020. The reasonwe evaluate agricultural production at provincial level

is because all indicators at the provincial level are the most complete

data, which can ensure the scientific and comprehensive nature of the

results in this paper.

In the actual measurement process, we take the early data of

Hainan Province and Chongqing City from the Statistical

Yearbook of New China in the Six Decades and the Chinese

Statistical Yearbook and the Chinese Rural Statistical Yearbook

in previous years. This paper is based on the agricultural input

and output variables according to Chivian et al., 2008; Jim et al.,

2006; Chang et al., 2008 and Xia and Xu, 2020. The agricultural

output variable is calculated as the total output value of

agriculture, forestry, animal husbandry, and fishery at

constant prices in 1990. The agricultural input factors used

are the ones with the most studied productivity at home and

abroad: labor, land, fertilizer, and agricultural machinery, among

which labor input is calculated as the number of people employed

in rural agriculture, forestry, animal husbandry, and fishery; land

input is calculated as the total sown area of crops; fertilizer input

is calculated as the discounted amount of agricultural fertilizer

FIGURE 1
Theoretical framework.
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application; and agricultural machinery input is calculated as the

total power of agricultural machinery . Because of the large

amount of data for 30 years, we describe the mean values of

variables according to one group of 10 years in Table 1.

3.3 Cointegration test

Pedroni (2004) residual cointegration test results are given in

Table 2. This finding indicates that the variables have a long-run

connection at a 1% level, with a long-run effect on agricultural

productivity. Also, the results also indicate that a cointegration

relation is non-negligible, the long-run association of the

variables is confirmed, and the results for cointegration tests

further lead us to analyze the long-run impact of input factors on

agricultural productivity.

4 Empirical model

This section first introduces the development of the stochastic

frontier model, uses the model to analyze input–output

relationships, and finally uses growth accounting tables to

quantify the contribution of input factors to agricultural growth.

4.1 Stochastic frontier model

According to Kumbhakar and Lovell (2000) and Battese and

Coelli (1992), the stochastic frontier model is composed of a

deterministic production frontier function plus a symmetric

random error variable. Based on this, the stochastic frontier

model set in this paper is as follows:

yit � f xit t( ); β[ ] × exp vit − ρit( ). (1)
ρit � ρi × γit � ρi × exp −γ × t − T( )[ ]. (2)

Eq. 1 is the general form of the stochastic frontier production

function, where yit is the output of the province i at time t and

f(x) denotes the deterministic frontier output component of the

stochastic frontier production function. xit(t) is the input of

province i at time t with respect to factorX. β is the parameter to

be estimated for the deterministic frontier function, and vit is the

random error term that obeys independent identical distribution;

ρit is the technical inefficiency index.

Equation 2 is based on a time-varying technical

inefficiency index model adopted from the study of Battese

and Coelli (1992). Eq. 2 defines the technical inefficiency

index of the province i at time t. ρi is defined as the

product of the average technical inefficiency index of the

province i and an exponential function ρi × γit. This index

is indexed by the rate of change of the technical inefficiency

index from time T to time t, where γ is the rate of change of the

technical efficiency index and γ> 0 is the rate of change of the
technical efficiency index, which is positive, which means

technical efficiency is increasing at a decreasing rate, where

γ< 0 denotes the rate of change of the technical efficiency

index, which is negative, implying the technical efficiency is

decreasing at an increasing rate. ρi represents the average

technical inefficiency index of province i. We assume

TABLE 1 Variable statistics (mean).

Year Farm machinery input
(watts)

Workforce (10,000 people) Land input (million
hectares)

Fertilizer input (million
tons)

1990 28707.7 38914 154266 2590.3

2000 52573.6 36043 156300 53820.3

2010 9278.05 27931 158579 60347.7

2020 105622.1 19445 167487 69160.5

Data source: China Statistical Yearbook 1990–2020.

TABLE 2 Pedroni residual cointegration test results.

Model Statistic Weight statistic Group statistic

Panel v 0.7991*** 0.0371 —

Panel rho 0.2112 0.5427 1.3542***

Panel pp −0.3771*** -0.2177*** -0.3245**

Panel ADF 1.9275*** 2.0112*** 1.8772***

Notes: Trend assumption: deterministic intercept and trend. ***p < 0.01, **p < 0.05, and *p < 0.10.
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ρi ~ iidN+(ρ, σ2ρ) is the term that obeys normal distribution

with non-negative truncated independent identical

distribution. The results of the estimation of Eq. 2 are

shown as follows:

yit
′ � f xit t( ); β′[ ] × exp vit − ρit

′( ). (3)
ρit � ρi × γit � ρi × exp −γ × t − T( )[ ]. (4)

Brandt et al. (2020) chose a transcendental logarithmic

stochastic frontier production function form to develop an

empirical model including four factors: land (D), fertilizer (R),

labor (L), and farm machinery (P), with the empirical model

given as follows:

lnyit � β0 + βd lnDit + βR lnRit + βL lnLit + βp ln (5).

4.2 Growth accounting table

After estimating the production function, the contribution of

the household joint production responsibility system to China’s

agricultural growth is calculated by constructing a growth

accounting table. This paper uses this growth accounting table

to study the changes of the contribution of input factors and

productivity to China’s agricultural growth in different periods.

The contribution of agricultural growth can be divided into three

categories: input factors, productivity, and residuals, and only

input factors and productivity are calculated in this paper

because they are the most significant. The contribution of

input factors can be subdivided into the contribution of each

individual input factor, which is the product of the coefficient of

the corresponding input factor and the change in the number of

input factors, and the contribution of productivity, which is the

inter-period change in productivity.

5 Empirical results

For the stochastic frontier production function model in Eq

5, R software is used for estimation. In this paper, the estimation

is first carried out according to Eq 5, and the variables that do not

pass the significance test are eliminated according to the

magnitude of the t-test value, and then the remaining

variables are re-estimated to ensure the correctness of the

model form and the accuracy of the estimation results, and

the final stochastic frontier production function estimation

results are obtained as shown in Table 2. According to the

results given in Table 3, the LR value reaches 292.871,

indicating that the model has strong explanatory power. For

the technical inefficiency function, the total variance estimated by

the stochastic frontier production function is 0.1687, and the

variance of technical inefficiency accounts for 0.8937 of the total

variances, and it passes the significance test at 1% of the

significance level, indicating that technical inefficiency is

TABLE 3 Estimation results of stochastic frontier production function.

Parameter Value T Parameter Value T

β0 8.1636*** 5.8793 βtD — —

βD 1.1985*** 3.7129 βtR 0.0182** 12.319

βR - - βtL −0.0091** 5.197

βL 0.046* 3.742 βtP 0.0267** 4.821

Total variance 0.1687* 1.745

βp 0.2932*** 2.7166 Percentage 0.8937*** 18.576

βDo −0.4127*** –4.2035 P 0.1687*** 5.281

βRR — — Η 0.0312*** 7.521

βLL −0.4011*** –3.1475 LR 282.871

βpp 0.0019*** 5.7443 Cons 37

βTT 0.0271** 2.791 Time 30

βDL 0.316*** 3.477 Obs 1080

βRL — — 0.454

βRp - - Average efficiency

Time −0.042** 2.192

Note: "***"and "*"indicate significance at 1% and 10% significance levels, respectively, and -indicates that the variable is excluded.
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important in explaining output differences. The mean value of

technical inefficiency, 0.1687, is significant at 1% significance

level, indicating that technical inefficiency does exist, while the

magnitude of change in technical efficiency, η of 0.0312, indicates

that technical efficiency increases at a decreasing rate over time.

Overall, the technical inefficiency function is set correctly.

For the deterministic frontier output component, all

parameter estimates pass the significance test at the 1%

significance level. For land elasticity of 1.745, it indicates that

for our agriculture, land still has an irreplaceable role and has an

extremely strong contribution to promote agricultural output.

However, the estimated value βD0 is -0.4127, indicating that

despite the significant effect of land, the superimposed inputs can

have a depressing effect on agricultural output. While the land

factor can contribute to agricultural growth, over-inputs can be

counterproductive. For βLL, the estimated value of

-0.4011 indicates that the superimposed inputs of labor in

China not only contribute to agricultural growth but also

suppress agricultural output, while the elasticities of fertilizer

and farm machinery are 0.0182 and 0.0267, respectively,

indicating that fertilizer and farm machinery, especially farm

machinery, have a positive contribution to output. βDL the

estimated value of 0.316, indicates that the mixed input of

land and labor can effectively promote the growth of

agricultural output, indicating that the single factor input has

a limited role in promoting agricultural output, and increasing

multi-factor input according to a certain proportion can improve

agricultural output, and the rational allocation of factors has an

important role in agricultural growth. From the estimated results

containing time variables, the time estimate of -0.042 implies that

neutral technological progress does not have a positive impact on

agricultural production, but from βtt, the estimated value of

0.0271, the superimposed effect of neutral technological progress

over time is somewhat beneficial to increase agricultural output.

The capital output elasticity of change over time βtl (the

estimated value) is equal to 0.0267, which indicates that after

a certain period, agricultural machinery remains an

indispensable and necessary factor for agricultural production,

that is, the output elasticity of labor over time βtL estimated value

is -0.0091, indicating that with time, the labor factor input no

longer contributes to agricultural output, i.e., there is a labor-

saving technological progress.

As shown in Figure 2, the agricultural technology growth rate

in China has been consistently maintained at around 3.47%

during 1990–2020, when the analysis stops in 2020. On one

hand, the highest agricultural technology growth occurred in

1999, 2005, and 2019, with a growth rate of 4.1%, and relatively

high growth rates of 3.85% in 2009, 2012, and 2017. On the other

hand, the lowest values appeared in 2011, with a growth rate of

2.63% in 2018 and 2020, in addition to four other years (1994,

2000, 2001, and 2007), with growth rates below 3%. The analysis

of the contribution of agricultural economic growth comes from

two aspects: input factors and productivity. The contribution of

input factors can be subdivided into four agricultural

contributions of labor, land, fertilizer, and farm machinery;

the contribution of productivity can be subdivided into two

contributions of technology and efficiency.

Table 4 is an accounting table of China’s agricultural growth,

which gives the changes of China’s agricultural growth and the

contribution and contribution rate of each factor to the growth

during 1991–2020, and this paper will use 5 years as a unit to

make an in-depth analysis of the total factor growth rate of

China’s agriculture. As shown in Table 4, the growth rates during

1991–1995, 2016–2020, and 2011–2015 are all stable at around

4%, with an average annual growth rate of 10.2% during

1996–2000, while the average annual growth rate decreases to

3.3% during 2006–2010. As for input factors, they provided 1.3%

and 1.6% growth rate for agriculture in 1991–1995 and

1996–2000, respectively, and contributed 28% and 16% to

agricultural growth, among which fertilizer and farm

machinery contributed more and labor and land contributed

less. The contribution of fertilizer and agricultural machinery

remained high, together providing 1% of the growth rate for

agriculture, accounting for more than 20% of the total growth of

FIGURE 2
Agricultural technology growth rate.
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4.7%, but the reduction in the amount of agricultural labor and

land constrained agricultural growth, with both providing -0.5%

and -0.3% of the growth rate for agriculture, respectively,

basically offsetting the contribution of fertilizer and

agricultural machinery. During the period 2006–2010, China

increased the use of agricultural land, and the growth provided by

land to agriculture increased from -0.4% in the previous period to

0.3%, and with the trend of other input factors remaining

unchanged, the growth provided by input factors combined to

agriculture in this period recovered to 0.9%, with a contribution

rate of 26%. During 2011–2015, input factors combined to

provide 0.8% growth to agriculture, with a contribution rate

of 16%. The growth rate of land, fertilizer, and farmmachinery all

slowed down compared to the previous period, but the shrinkage

of labor force slowed down, thus curbing further decline in the

overall contribution of input factors. In terms of each input

factor, the contribution of labor to agricultural growth is basically

negative, especially from 2001 to 2010, when the shrinkage of

TABLE 4 Contribution of China’s agricultural growth (%).

Variable Contribution Contribution rate Contribution Contribution rate Contribution

Input factors 1.7 29 1.8 18 0.4

Labor −0.2 -4 0.2 2 −0.5

Land 0.1 2 0.2 2 −0.4

Fertilizer 1.0 21 0.7 6 0.5

Contribution Contribution Contribution Contribution Contribution

Rates rates rates

Input factors 6 1.0 26 0.8 16

Labor −11 −0.5 −15 -0.1 −3

Land −6 0.3 6 0.1 2

Fertilizer 11 0.5 15 0.3 7

Contribution Contribution Contribution Contribution Contribution

rates Rates

Agricultural 0.4 9 0.9 6 0.5

Machinery

Production 4.3 91 6.0 59 4.7

Technology 3.3 70 3.4 33 3.3

Efficiency 1.0 21 2.6 25 1.4

Agricultural 4.7 100 10.0 100 4.7

growth rate

Contribution rates Contribution Contribution rates Contribution Contribution rates

Agricultural 11 0.6 18 0.3 7

machinery

Production 100 3.9 118 4.4 105

Technology 70 3.4 103 3.3 79

Efficiency 30 0.6 18 1.1 92

Agricultural 100 3.3 100 4.2 100

growth rate
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agricultural labor significantly slowed down the growth of

Chinese agriculture; land changed little, experiencing a decline

from 2001 to 2005, but the decline was curbed after 2006 and

basically recovered to the 2000 levels; fertilizer and farm

machinery have been significant and stable contributors to

agricultural growth but have decreased in the period just past

2016–2020.

Over the past 27 years, China’s agricultural growth has been

largely dependent on productivity gains. In the 1980s, the

contribution of input factors and productivity to agricultural

growth was roughly 50 percent. However, in the 1990s, this ratio

dropped to 25%, 75%, and the contribution of productivity to

agricultural growth strengthened. As we enter the 21st century,

the contribution of input factors to agricultural growth is

negligible and productivity has become more important.

Hanson (2020) found that the contribution of input factors to

agricultural growth has gradually decreased after 1979, which is

consistent with the findings of this paper. In terms of input

factors, this paper finds that the contribution of land and labor is

relatively low, while the contribution of fertilizer and farm

machinery is relatively high, which is consistent with the

findings of Steinbock (2019). However, compared to the

aforementioned literature, this paper uses stochastic frontier

analysis to control for the effects of uncertainties (e.g.,

weather) on agricultural growth, ensuring the robustness of

the results.

5.1 Robustness checks

Considering the empirical results scientifically, it is essential

to use the robustness test through the alternative regression

method; therefore, we used the AMG (augmented mean

group) estimator (Pesaran, 2008; Bu et al., 2013; Balaji et al.,

2022) and CCEMG (common correlated effects estimation) to

perform the panel estimates as in table 5. Those results show that

fertilizer and farm machinery have a significant and stable

influence on agricultural growth at a 1% level. At the same

time, the labor factor input no longer contributes to agricultural

output. The robustness results show consistence with stochastic

frontier results (Table 2). In general, stochastic frontier analysis

results and robustness results both consist with Hanson (2020)

that the contribution of land and labor is relatively low while the

contribution of fertilizer and farm machinery is relatively high.

6 Conclusion policy
recommendations

This paper establishes a stochastic frontier production

function model to decompose the total factor productivity

growth in agriculture and empirically analyzes the overall

trend of total factor productivity growth in agriculture based

on the panel data of 31 provinces in China from 1990 to 2020,

using the frontier production function for estimation. Compared

with current literature, Magazzino et al., 2022 suggested that

natural resource plays an essential role in agriculture’s total factor

productivity. We have proven that technology factor inputs play

themain role in total factor productivity in agriculture, compared

to labor and land input factors.

The main research findings are as follows: first, the total

factor productivity growth of agriculture shows an increasing

trend from 1990 to 2020, China’s agricultural total factor

productivity growth has undergone two stages of change and

has steadily increased in recent years, relying on the

improvement of agricultural total factor productivity can

increase the total agricultural output value by 1.571% per

year, and the extent of the role is still strengthening and has

become the driving force of agricultural economic growth. It has

become a source of economic growth in agriculture. Compared

with total factor input factors in all sectors, total factor

productivity in agriculture gradually plays an important role

in driving economic growth.

Second, China’s agricultural total factor productivity growth

exhibits obvious stage-specific characteristics, with the highest

growth rate in 2003–2004 and the lowest in 2008–2009. By stages,

agricultural TFP growth is the fastest in 2016–2020 compared

with the 2010–2015 period, and all three stages of agricultural

TFP growth are driven by technological progress. In response to

these key findings, the following implications should be

proposed: first, to promote the continuous improvement of

agricultural production efficiency. The average efficiency of

agricultural production in China is less than 50%, and there is

great potential to stimulate sustainable agricultural growth by

improving production efficiency with the same level of

technology. There is a need to improve agricultural

production management, optimize the cropping structure,

improve the quality of agricultural products, and innovate

TABLE 5 Robustness test.

Variable AMG model CCEMG model

Labor −0.211*** −0.0372***

(0.003) (0.0027)

Land −0.045*** −0.037***

(0.0027) (0.0021)

Fertilizer 0.021* 0.017*

(0.011) (0.009)

Agricultural machinery 0.147*** 0.165***

(0.000) (0.000)

CONSTANT 2.457*** 2.271***

Notes: Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, and *p < 0.10.
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marketing methods. Therefore, the government should establish

channels of agricultural business management exchange between

inefficient and efficient regions and encourage the optimization

of existing agricultural management models and methods. At the

same time, it should reasonably introduce high-yielding crops

according to local climate and planting conditions, improve the

quality and brand influence of agricultural products, and increase

their added value. The digital economy is used as an effective tool

to balance the contradiction between the pursuit of agricultural

production and environmental sustainability.

Finally, increase sustained investment in agricultural

research and technology in current literature. The rate of

technological progress has remained stable over the past

27 years. However, the contribution of technological progress

to China’s agricultural growth is gradually increasing in the

context of the overall slowdown in agricultural growth. Due to

the long return cycle of scientific research investment, although

the investment in scientific research and technology for

agriculture cannot significantly improve the contribution of

science and technology to agricultural growth in the short

term, the growth potential of input factors is limited in the

long term. The production efficiency is significantly improved in

the short term, with little room for further improvement in the

long term. Therefore, the policy implies that continuously

increasing investment in agricultural research and technology,

focusing on human capital investment, and encouraging

agricultural technology research and development are

important ways to achieve sustainable agricultural development.

In future research, we wish to investigate other factors,

including digital technology contributing to agriculture

production through machine learning. Furthermore, we

intend to analyze the intermediate effects of policy

efficiency on agriculture productivity to extend our

discussion. The original value of this paper is to use the

stochastic frontier model to investigate the influence factors

on agriculture productivity through long panel data and

emphasize the importance of technology applied in China’s

agricultural growth in the future.
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