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Antibiotics used in humans and farmed animals are an essential source of water

and soil contamination. Ampicillin is amicropollutant commonly found inwater,

sludge, food, flora, and fauna. However, the methods used for its detection in

environmental samples are often complicated and expensive. Therefore,

developing more straightforward strategies to detect well-known target

antibiotics is necessary. In this context, enzyme-based detection methods

have been demonstrated to be selective, sensitive, rapid, and relatively

simple. In this study, a fluorescent byproduct from the ampicillin oxidation

using Chloroperoxidase (CPO) enzyme was used as a pointer compound to

determine ampicillin concentration in environmental water samples. We

oxidized 80% ampicillin for 1h, producing a fluorescent compound with m/z

274.2517. A response surfacemethodology (RSM) based on a central composite

design (CCD) was used to evaluate and optimize the effects of hydrogen

peroxide, enzyme concentration, and time as independent variables on the

maximum fluorescence signal as the response function. The methodology

proposes to build a calibration curve that relates the initial concentration of

ampicillin with fluorescence intensity after the reaction with CPO, which helps

detect ampicillin in the concentration range from 0.035 to 40 μM, with a limit of

detection of 0.026 μM. The application of the method to fortified

environmental water samples allowed percentages of recovery from 86 to

140%. The formation of the fluorescent compound was not affected by the

presence of salts commonly found in wastewater; however, it was affected by

other antibiotics. The proposedmethodologywas tested in the context of water

from water bodies, urban, and WWTP effluents.
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Introduction

Antibiotics are the third best-selling medicines worldwide.

Between 2000 and 2010, antibiotic drug consumption increased

by 36% (from 54 billion standard units to 73 billion standard

units); Brazil, Russia, India, China, and South Africa had a

significant increase in this change (van Boeckel et al., 2014;

Senadheera et al., 2020). A total of 50%–75% of antibiotics

consumed worldwide are, used in veterinary medicine and

animal husbandry (Steinfeld et al., 2009) Globally, antibiotic

consumption in livestock reached 63,151 tons in 2010, and an

increase of 67%–200% is projected by 2030 (Ibrahim et al., 2020;

Senadheera et al., 2020) According to a recently reported spatial

modeling study, the global antibiotic consumption rate of

9.8 defined daily doses (DDD) per 1,000 population per day

in 2000, increased by 46% from 9.8% in 2018 (14.3 DDD). The

model incorporated antibiotic usage and consumption data and

used geostatistical modeling techniques to estimate the antibiotic

consumption of 204 countries from 2000 to 2018 (Browne et al.,

2021). Penicillin, macrolides, and fluoroquinolones are the most

commonly used in humans, while tetracyclines, penicillin, and

sulfonamides are the most widely used drugs in animals (Ma

et al., 2021). Drug residues contaminate water, soil, flora, and

fauna because of the low drug absorption both in humans and

animals, the use of animal excreta as fertilizer, the poor final

disposal of expired antibiotics in homes and hospitals, the

WWTP’s low biodegradability, and the high environmental

mobility of antibiotics (Lv et al., 2019; Mejías et al., 2021).

Antibiotic-resistant bacteria are the main consequence of

antibiotic contamination, which is a current health problem

whose prognosis for the future is a worldwide concern (Uddin

et al., 2021; Haenni et al., 2022). Therefore, the proper

detection of antibiotic residues in the environment is a very

active area of current research. Liquid or gas chromatography

coupled with mass detectors is the analysis par excellence due

to its accuracy, precision, versatility, and sensitivity (di Rocco

et al., 2017; Ghosh et al., 2021; Lakew et al., 2022). However,

due to the high cost of analysis, the need for highly trained

personnel, and the costly infrastructure associated with it,

together with a large number of samples to be analyzed, it has

been necessary to develop alternative methods and devices for

their detection (Mehlhorn et al., 2018; Yue et al., 2021;

Gawrońska et al., 2022).

Ampicillin is a micropollutant commonly found in water,

sludge, food, flora, and fauna (Kumar et al., 2019; Peris-Vicente

et al., 2022). In recent years several methods and devices have

been reported for detecting ampicillin in water or food, with

successful results in terms of sensitivity, accuracy, and

application in environmental mixtures (Soledad-Rodríguez

et al., 2017; Sharma et al., 2019; Sta Ana et al., 2021).

However, most reported methods and devices are still

technically complex and, primarily based on nanomaterials or

composites that require specialized production methods, highly

controlled working conditions, or sophisticated equipment (Luo

et al., 2017; Shrivas et al., 2017; Modh et al., 2018; Shu and Tang,

2020).

Therefore, there is a need for alternative and simple strategies

for ampicillin detection, that maintain performance parameters

such as accuracy, precision, and sensitivity to obtain reliable

results that are the basis of an environmental diagnosis.

Nowadays, several studies have focused on methods based on

enzyme activity to analyze the presence of pollutants in the

environment (Ejeian et al., 2018; Pachapur et al., 2019; Sarkar

et al., 2019; Reynoso et al., 2022; Zhai et al., 2022). Given the

nature of enzymes, enzyme-based detection methods are

selective, sensitive, rapid, and relatively simple to apply.

Enzymes have been used to detect organophosphorus

pesticides, phenolic compounds, amine compounds, and

pharmaceuticals. Among the reported enzymes,

Chloroperoxidase (CPO) is a versatile biocatalyst for

multipollutant determination due to its wide substrate

variability (Rebollar-Pérez et al., 2016; Morsi et al., 2020; Lin,

2021). In addition, CPO’s kinetics and reaction mechanism are

known, and its three-dimensional structure is well defined, which

may facilitate the eventual elaboration of detection devices.

In this study, a biocatalytic method was developed for

detecting ampicillin in environmental water samples using

CPO; the procedure was shown to be in the sensitivity range

of other reported techniques, accurate, and potentially applicable

to the analysis of numerous samples over short times.

Materials and methods

Chemicals

Ampicillin, sulfamethoxazole, tetracycline, and

amoxicillin were purchased from Sigma-Aldrich (St. Louis,

MO, United States). Chloroperoxidase (CPO) from

Caldaromyces fumago was purchased from Alltaenzymes

(Edmonton, AB, Canada) with an RZ of 1.4 and specific

activity of 22,000 min−1 for the halogenation of

monochlorodimedone. Buffer salts, potassium chloride, and

hydrogen peroxide were purchased from J.T. Baker

(Phillipsburg, NJ, United States).

Biocatalytic oxidation of ampicillin

Ampicillin was enzymatically oxidized in a reaction

mixture containing 10–50 µM ampicillin, 1 mM H2O2,

20 mM KCl, and 0.1 µM CPO in phosphate buffer pH 3.0,

60 mM. Reaction progress was analyzed by steady-state

fluorescence (Cary Eclipse fluorescence spectrometer from

Varian, equipped with a Xe lamp and Czerny-Turner

0.125 monochromators) with an excitation wavelength of
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330 nm, followed by the light emission of the reaction

products at 450 nm. The assays were completed within 1 h

under the tested conditions.

Optimization of reaction conditions

A central composite design (CCD) with three independent

variables and three levels—enzyme concentration (0.05, 0.075,

and 0.1 µM), reaction time (0.5, 0.75, and 1 h), and H2O2

concentration (0.5, 1.0, and 1.5 mM)— was applied to obtain

the highest fluorescence intensity indicative of the greater

production of byproducts. Five central and six axial points

were included in the design. A total of 35 experiments were

conducted according to the CCD. The experimental results

were analyzed through a response surface methodology

(RSM), using Design-Expert software (trial version

13.0.11.0, United States). The response was related to the

selected variable via a mathematical model, and optimization

was performed to obtain the highest response values.

Optimum values with desirability one were recorded for the

variables.

Identification of enzymatic transformation
products

Aliquots were collected at different time intervals during

the enzymatic oxidation of ampicillin and filtered through

0.2 µm nylon membranes. Then, aliquots were analyzed by

FIGURE 1
(A) Fluorescence emission spectra of a byproduct of an ampicillin biocatalysis by CPO and (B) their appearance kinetics.

TABLE 1 Reaction products of CPO-mediated oxidation of ampicillin observed by LC/DAD/MS.

Proposed molecular formula Observed m/z Calculated m/z Error (ppm) References

C14H31NO 230.2462 230.2478 6.95 this study

C14H31N3O2 274.2517 274.2495 −8.02 this study

C14H31N3O3 290.2425 290.2444 6.55 this study

C16H25N3O3S 340.1723 340.1696 −7.94 this study

C16H29Cl2N3O4 398.1590 398.1614 6.03 this study

C32H41N6O9S2 717.2354 717.2371 2.37 Li et al. (2014)
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chromatography using an LC/DAD/MS instrument

(Chromatograph Series 1,260 from Agilent Technologies,

Santa Clara, CA, United States) to determine ampicillin

concentration over time and to observe the byproducts

formed. Separation was performed on an Agilent Eclipse

Plus C18 column (4.6 × 100 mm, 3.5 µm). The mobile

phases consisted of water (A) and acetonitrile (B), both

with 0.1% (v/v) formic acid. The following elution program

was employed: 90%A for the first 2 min; changed linearly to

40% (2–12 min); then, again, 90% A from 12 to 12.5 min.

Finally, the column was re-equilibrated for 2.5 min with these

initial conditions for a total run time of 15 min. The detection

by DAD was at 215 and 330 nm. For the mass detector (ESI-Q-

TOF-MS 6520 detector, Agilent), ESI source parameters were

as follows: positive and negative ionization mode, fragmentor

voltage: 175 V, capillary voltage: 3,500 V, gas temperature:

350°C, N2 flow: 11 L min−1, nebulizer pressure: 60 psi.

Chromatographic fractions were collected according to

the chromatographic peaks’ retention time, and analyzed by

fluorescence spectrometry to identify products with an

emission spectrum equivalent to that observed in the

biocatalytic oxidation step.

TABLE 2 Central Composite Design for ampicillin oxidation by CPO.

Time h CPO µM [H2O2] mM Fluorescence intensity 450 nm

0.5 0.05 0.5 34.59

1.0 0.05 0.5 82.83

0.5 0.10 0.5 28.99

1.0 0.10 0.5 45.43

0.5 0.05 1.5 98.26

1.0 0.05 1.5 137.01

0.5 0.10 1.5 97.23

1.0 0.10 1.5 106.93

0.5 0.05 0.5 34.24

1.0 0.05 0.5 74.79

0.5 0.10 0.5 33.34

1.0 0.10 0.5 50.26

0.5 0.05 1.5 91.10

1.0 0.05 1.5 140.18

0.5 0.10 1.5 101.65

1.0 0.10 1.5 104.95

0.5 0.05 0.5 45.13

1.0 0.05 0.5 84.60

0.5 0.10 0.5 32.84

1.0 0.10 0.5 56.40

0.5 0.05 1.5 95.94

1.0 0.05 1.5 145.67

0.5 0.10 1.5 89.97

1.0 0.10 1.5 111.14

0.75 0.075 1.0 66.93

0.75 0.075 1.0 60.79

0.75 0.075 1.0 76.29

0.75 0.075 1.0 76.23

0.75 0.075 1.0 71.68

0.375 0.075 1.0 66.11

1.125 0.075 1.0 95.84

0.75 0.0375 1.0 87.30

0.75 0.1125 1.0 43.99

0.75 0.075 0.25 18.98

0.75 0.075 1.75 83.89
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Selectivity tests in the presence of
interfering compounds

To identify possible individual chemical interferents, the

method was tested in the presence of several salts at the

maximum concentrations found in the environmental water

samples (KH2PO4 [0.029 g L−1], NaH2PO4 [0.029 g L−1],

NaNO3 [0.81 g L−1], NH4NO3 [0.081 g L−1] and CaCl2
[0.195 g L−1]. On the other hand, the assay was also performed

in the presence of amoxicillin, tetracycline, sulfamethoxazole,

and their mixture with a 30 µM concentration for each. The

ampicillin oxidation assay was performed as described in the

previous section using 30 µM ampicillin.

Assays on environmental samples

Three different ampicillin-enriched water samples were

tested to evaluate possible environmental interferences of the

sample matrix on ampicillin detection. First, a detection assay

was performed on five samples of water spiked with 5 and

10 µM ampicillin. Samples from the treatment plant’s

secondary effluent, lagoon water, drinking water,

groundwater, and river water were used. The samples had

previously been filtered through nylon membranes of 0.45 µm

and stored at 4°C until use. The determined parameters in

water samples are summarized in Supplementary Table S1.

The enzymatic assay was performed as described in the

previous section.

Results and discussion

Ampicillin biocatalysis with
chloroperoxidase

CPO was able to oxidize 70% of the ampicillin in the first

20 min. After that, the reaction rate slowed, reaching 80%

conversion in 1 h. Compared to other CPO substrates, the

oxidation of ampicillin was lower; for example, the oxidation

of tetracycline and sulfamethoxazole reached 70% conversion

in 4 min (García-Zamora et al., 2018). Fitting the reaction

kinetics to a pseudo-first order equation yielded a reaction rate

constant of 0.103 min−1 (Supplementary Figure S1); which is

similar to that reported for the oxidation of the flame

retardant tetrabromobisphenol by CPO (García-Zamora

et al., 2019). In addition, some of the oxidation rate or

conversion is within the range of physicochemical

oxidation, although physicochemical methods have a

characteristic that can lead to the mineralization of the

compound (Frontistis et al., 2018; Silva et al., 2019;

Montoya-Rodríguez et al., 2020).

Ampicillin and its enzymatic oxidation products showed

similar electronic absorption spectra (and, in addition, low

FIGURE 2
(A) Contour plot and (B) response surface plot of the interaction among CPO concentration and time reaction at 1.7 mM H2O2 in relation to
fluorescence intensity of ampicillin byproduct.
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light absorption, Supplementary Figure S2); in contrast, the

oxidized products exhibit fluorescence, which allows

differentiation from the basal one, which has negligible

fluorescence at the excitation wavelength (Figure 1). The

emission spectrum presents a maximum at 460 nm. After

2 h of the biocatalytic process, fluorescent byproducts were

observed. Given the reaction conditions and the mechanism

reported for CPO, the reaction products are likely to be

chlorinated derivatives of ampicillin, although non-

chlorinated compounds of lower molecular weight could

also be produced in subsequent chemical reactions (García-

Zamora et al., 2018; Wang K. et al., 2019; Undiano et al., 2021).

Through HPLC-MS, the mass of some oxidation products was

observed, and their molecular formula was proposed with a

difference of mass/charge Δm/z ≤ 8.02 ppm (Table 1). As can

be seen, most oxidation products have a higher molecular

mass than ampicillin, which is not surprising because the

peroxidase oxidation mechanism follows a free radical

mechanism, which can lead to polymerization of some

reaction products (Ortiz de Montellano, 2010; Dunford,

2016). The product responsible for fluorescence was

identified with m/z 274.2517 and the formula C14H31N3O2,

suggesting a fragmentation of the ampicillin molecule upon

oxidation. The oxidation kinetics of ampicillin coincides with

the appearance of the fluorescent product, which was

monitored by mass spectrometry, and fluorescence

(Supplementary Figure S3 and Figure 1), which suggests

that it is the first oxidation product from the enzymatic

reaction. None of the other reaction products identified

showed fluorescence under the tested conditions. Hence, it

was considered as a pointer compound to indirectly

determine the concentration of ampicillin, measuring the

fluorescence of samples after the enzymatic reaction, as

will be described later.

FIGURE 3
Calibration curves and LOD for the detection of ampicillin based on the fluorescence intensity of a byproduct of the biocatalytic degradation of
ampicillin by CPO in different environmental water matrices.
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Optimization of the detectionmethod by a
fluorescent byproduct of biocatalysis

The detection method proposed in this study is based on the

formation of a fluorescent byproduct of the oxidation reaction of

ampicillin with CPO. The fluorescence response can be

influenced by many experimental parameters that should be

optimized to obtain the best performance. CCD was selected

because it is a design that includes linear, quadratic, and

interaction terms and allows for greater level numbers without

performing experiments using every combination of factor levels.

The enzyme concentration, reaction time, and hydrogen

peroxide concentration were optimized among catalytic

factors. These three parameters are significant factors in

biocatalysis with CPO (Rebollar-Pérez et al., 2016). Since the

fluorescent product is one among several, it is crucial to

TABLE 3 Limit of detection of several methods for ampicillin detection.

N° Analysis method LOD
(µM)

Linear
range
(µM)

Matrix References

1 Fluorescence method based on the fluorescence of a biocatalytic
oxidation product

0.035 0.75–40 Wastewater, groundwater, river,
lagoon and urban water samples

this study

2 CDs-based fluorescent probe for turn-on selectively by iron ions (Fe3+) 0.700 0–60 River water, tap water, and mineral
water

Fu et al. (2020)

3 Chemiluminescence reaction using cupric oxide
nanoparticles–luminol–H2O2

0.261 0.4–4.0 Pharmaceutical preparations Iranifam et al.
(2014)

4 Competitive fluorescent lateral flow immunoassay based on labeled
functional nucleic acids

2.6 × 10–6 2.8 ×
10–5–5.7 × 10–4

Hospital wastewater samples Lin et al. (2020)

5 Direct-flow surface plasmon resonance immunosensor on gold plate 1.000 2.5–30,000 Milk, river water and spring surface
water samples

Tomassetti et al.
(2017)

6 Electrochemical aptasensor based on a MoS2/polypyrrole
nanocomposites cast on a screen-printed electrode

2.8 × 10–7 1.4 ×
10–7–7.1 × 10–7

River water samples Hamami et al.
(2021)

7 Electrochemical aptasensor based on endonuclease DpnII activity 3.2 × 10–5 1 × 10–4–0.1 Milk and drinking water samples Wang et al. (2019)

8 Electrochemical aptasensor based on entropy-driven DNA walking
machine

9.6 × 10–7 1 × 10–6–1 × 10–3 Drinking water samples Zhang et al.
(2020)

9 Electrochemical aptasensor based on MB-modified aptamer probe on
gold electrodes

1.0000 5–5,000 Human serum, saliva and milk
samples

Yu and Lai, (2018)

10 Electrochemical aptasensor based on the CDs-In2O3-In2S3
nanocomposites

1.2 × 10–7 2.8 × 10–6–0.859 Lake water samples Yan et al. (2021)

11 Electrochemical aptasensor modified with MB on gold electrodes 0.0330 0.1–1,000 Pharmaceutical preparations Xiang et al. (2021)

12 Electrochemical surface plasmon resonance aptasensor on gold chips 1.000 2.5–1,000 Pharmaceutical preparations and
river water samples

Blidar et al. (2019)

13 Flow injection chemiluminescence based on luminol–periodate reaction 0.014 0.020–1.0 Pharmaceutical preparations Li et al. (2003)

14 Fluorescent aptasensor based on functionalized AuNPs using a
fluorescently labelled aptamer

0.0260 0.1–100 Urine Simmons et al.
(2020)

15 Fluorescent-colorimetric aptasensor using functionalized AuNPs by 5′-
fluorescein amidite-modified aptamers

0.0143 1.4310 × 10-
3–0.1431

Milk sample Song et al. (2012)

16 Nanostructured electrochemical aptasensor of MOF and
terephthalonitrile-based COF.

6.2 × 10–10 2.8 × 10–9 -
5.7 × 10–3

Serum, river water and milk samples Liu et al. (2019)

17 Photochemical aptasensor a self-powered using a CdS/Eu-MOF
nanocomposites

9.3 × 10–5 1 × 10–4–0.2 Milk and lake water samples Gao et al. (2019)

18 Photoelectrochemical aptasensor based on N-GQDs and AsBiS2
sensitized with Zn/Co oxides

2.5 × 10–7 5.0 × 10–7–0.01 Tap water and lake water samples Yan et al. (2020)

19 POP-based electrochemical aptasensor by the coupled polymerization
of 1, 3, 6, 8-Tetraphenylpyrene and α, α′-dibromo-p-xylene

3.8 × 10–9 2.8 × 10–3–0.014 Human serum, milk and river water
samples

Yuan et al. (2021)

20 Probe displacement electrochemical aptasensor based on a thiolated and
MB-modified aptamers

3 × 10–5 0.2–15000 Urine, saliva, milk and aquifer water
samples

Yu et al. (2018)

21 Spectrophotometric determination based on the carboxylic acid groups
present in AMP by a mixture of KIO3 and KI.

0.247 0.715–7.155 Pharmaceutical preparations Manirul Haque,
(2021)

22 Spectrophotometric determination with sulfanilic acid by oxidative
coupling reaction

0.688 143.1–858.6 Pharmaceutical preparations Darweesh et al.
(2020)

AuNPs: Gold nanoparticles, CDs: Carbon dots, COF: covalent organic frameworks, MB: methylene blue, MOF: metal organic frameworks, N-GQDs: Nitrogen-doped graphene quantum

dots.
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determine the right amount of enzyme and reaction time for its

maximum production; moreover, the amount of peroxide must

be optimized to prevent the enzyme from becoming inactive and

generating less product. Table 2 presents the results of the applied

CCD. As can be seen, signal intensities vary from 28.9 to 145 AU.

These experimental results were fitted to a second-order

polynomial equation, resulting in the following mathematical

expression:

Intensity � 16.38 − 91.84 × time + 494.62 × CPO

+ 57.12 × H2O2 − 1165.06 × time × CPO

+ 157.05 × time2 (1)
The results of the analysis of variance (ANOVA) of the model

are shown in Supplementary Table S2. The model and every

term, including interaction time*CPO were statistically

significant at the 5% level. Furthermore, the coefficient of

determination (R2) obtained was 0.96, indicating that the

equation adequately represents the relationship between

fluorescence intensity and the independent variables.

It was possible to build contour graphs using this model.

Figure 2 shows the response surface plot of the significant

interaction found in the model. As can be seen, to achieve

higher intensity values, it is necessary to increase the time and

apply low enzyme concentrations. This last result would seem

contradictory given that higher enzyme concentrations increase

the transformation of ampicillin. However, a high concentration

of the enzyme can trigger a subsequent modification of the

fluorescent compound based on the detection at 450 nm,

which decreases the fluorescence signal.

Response optimization was performed to determine the

values of each independent variable that produced maximum

fluorescence. Overall desirability is an objective function ranging

from 0 (if the optimal values are outside the selected ranges) to 1

(if the goal for the response is reached). Then, optimal values

with desirability 1 were 1.1 h, 0.043 µM CPO, and 1.7 mMH2O2,

resulting in the model’s theoretical intensity of 167.87 AU. A

confirmatory experiment was performed with the predicted

optimum conditions, and the experimental fluorescence

intensity obtained was 163.788 ± 2.18 AU, validating the

fluorescent compound’s production equation to detect

ampicillin.

A calibration curve was then generated by applying these

conditions at different concentrations of ampicillin (Figure 3,

DI water). As can be seen, there is a good fit of the data to a

straight line, with a correlation coefficient of 0.99; the line

equation, helpful in determining LOD and LOQ is found in

Figure 3. The obtained LOD and LOQ of the ampicillin

concentration were 0.035 µM and 0.12 µM respectively, and

the linear range was from 0.75 to 40 µM. These values are

among the best obtained by methods based on a chemical

transformation of ampicillin, as shown in Table 3 (analysis

methods: 3, 13, 21, and 22); when compared to methods based

on nanomaterials, the results are below that performance

(analysis methods: 6, 10, 16, and 17 from Table 3).

However, the simplicity of the technique confers certain

implementation advantages; even so, the LOD value

obtained here compares with others produced with more

sophisticated methods and devices, such as those based on

aptamers (analysis methods: 9, 11, 12, 14, and 15 from

Table 3).

The biocatalytic method is simple and does not require

extensive training; however, as signal intensity depends on the

initial ampicillin concentration, an additional amplification

procedure is necessary to improve sensitivity.

Selectivity in the formation of the pointer
compound

The selectivity of the assay was tested by determining the

catalytic activity effect of CPO caused by salts and other

antibiotics (Table 4) and, as a consequence, the formation

of the pointer compound. All the salts tested showed less than

10% interference in the ampicillin assay, using the highest salt

concentrations found in the environmental samples (see next

section). However, in the presence of other antibiotics,

catalytic activity was significantly affected because they are

also substrates of the enzyme, and CPO could catalyze at the

same time as the oxidation of more than one of them, affecting

the transformation rate of ampicillin. It has been previously

reported that CPO can transform sulfamethoxazole and

tetracycline; the conversion of these two antibiotics by CPO

was carried out in 4 min under similar conditions, so they are

better substrates than ampicillin (García-Zamora et al., 2018).

A similar result was reported for determining

organophosphorus pesticides by CPO in the presence of

some compounds (Rebollar-Pérez et al., 2016). Increasing

the reaction time or amount of enzyme did not improve

TABLE 4 Interferents for the biocatalytic method for ampicillin
detection.

Compound Fluorescence
intensity (450 nm)

Interference (%)

None 42.44 ± 0.02 0.00

KH2PO4 43.59 ± 1.39 2.71

NaH2PO4 39.63 ± 2.12 6.62

NaNO3 45.95 ± 0.81 8.25

NH4NO3 40.90 ± 0.17 3.63

CaCl2 42.48 ± 3.34 0.08

Amoxicillin 33.52 ± 0.69 13.36

Sulfamethoxazole 28.07 ± 0.63 27.44

Tetracycline 27.92 ± 3.85 27.83

Antibiotic mixture 21.86 ± 0.93 43.48
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the reaction toward ampicillin oxidation. However, the

pointer compound was still produced after a specific time,

and the detection was not affected by the presence of other

antibiotics. Neither sulfamethoxazole and tetracycline nor

their reaction products present fluorescence under these

conditions.

Analysis of environmental spiked water
samples

The assay was applied to several environmental water

samples to test the proposed assay’s applicability.

Supplementary Table S1 shows the physicochemical

characterization of water samples collected from different

sites. The BOD5 values for water samples from the WWTP

and the lagoon indicate that the water is contaminated; given

the COD values, all water samples are heavily polluted. The

vast difference in values between BOD5 and COD is due to the

presence of non-biodegradable substances.

The recovery percentage was used to describe the

method’s analytical performance and the assay’s precision.

Recovery refers to the amount of analyte measured as a

percentage of the amount of analyte initially added to a

sample of the appropriate matrix, which contains no

detectable level of the analyte or a detectable level. As seen

in Table 5, the proposed method adequately predicts the

concentration of ampicillin at 10 µM in the different water

matrices, and the recovery percent ranges from 86 to 107%.

However, interfering effects were observed at a lower-range

concentration (5 µM ampicillin) with a recovery of 14,474%

and a variation of 7%–23%. The method’s accuracy and

precision depend on interferents simultaneously present in

the matrix, which may have a summative or synergistic effect.

To consider this effect, it is advisable to prepare the calibration

curve in the environmental matrix in which the analysis will

be performed. Figure 3 shows the calibration curves in each

environmental matrix used; as can be seen, the fit presents an

adequate coefficient of determination, and LOD and LOQ

vary slightly, except in the lagoon water matrix, where we can

see an effect on fluorescence intensity.

Conclusion

The detection of ampicillin in aquatic environmental

matrices is relevant given its occurrence in water bodies,

urban, and WWTP effluents. The biocatalytic reaction of

ampicillin with the CPO enzyme reached around 80%

conversion in 1 h, producing a fluorescent compound

useful for detecting ampicillin in water samples. The RSM-

CCD method optimized enzyme concentration, hydrogen

peroxide concentration, and reaction time for fluorescent

product formation. The method’s sensitivity allowed

ampicillin detection and quantification at the micromolar

level (LOD and LOQ of 0.035–0.12 μM, respectively).

Enzyme activity was not affected by the presence of salts

commonly found in wastewater; however, it was affected by

other antibiotics that are even better substrates than

ampicillin. Optimizing biocatalysis conditions achieved

86%–140% recovery of spiked ampicillin from different

environmental water samples.

Using a straightforward methodology, it was possible to

determine ampicillin in different environmental water

samples. Detection f compounds of environmental interest

using enzymatic methods have a potential application given

the mild reaction conditions and simple implementation

steps; these methods are also fast and selective. However,

there is a need to improve the sensitivity at nanomolar or

picomolar levels; this could be achieved by pre-treating the

TABLE 5 Analysis of ampicillin in spiked environmental water samples by the proposed biocatalytic method.

Water sample Ampicillin added (µM) Ampicillin found (µM) Recovery (%) Coefficient variation (%)

Groundwater 5 6.58 131.58 23.99

10 9.64 96.42 5.08

Urban 5 5.57 111.43 8.44

10 10.29 102.94 2.94

River 5 3.71 74.14 13.30

10 10.89 108.94 1.29

WWTP 5 4.31 86.27 7.40

10 8.64 86.38 2.85

Lagoon 5 7.22 144.36 19.83

10 9.93 99.30 0.14

Groundwater 10 9.64 96.42 5.08
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sample to concentrate it thousands of times or amplifying the

enzymatic reaction’s response signal.
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