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Analyzing the forces driving CO2 emissions in cities could provide valuable

information for carbon reduction policies in China. This study uses an improved

production-theoretical decomposition analysis to evaluate the CO2 emissions

of 282 cities in China during 2003–2017. The empirical results show that the

scale, energy intensity, and desirable output productivity effects contributed to

about 15.03%, 3.64%, and 2.3% growths in CO2 emissions on average,

respectively, while the potential CO2 emission and undesirable output

productivity effects were responsible for 5.81% and 5.72% reductions in CO2

emissions. By classifying the sample cities and analyzing them further, it was

found that the potential CO2 emission effect has a stronger inhibitory impact in

resource-based cities. However, the promoting effects of the scale effect is

more obvious in non-resource-based cities. From a spatial distribution

perspective, the potential CO2 emission effect has a more obvious inhibitory

role, and the energy intensity effect is a strong measure for controlling the

growth of CO2 emissions in the eastern region. However, the contribution of

the scale effect to CO2 emissions is more pronounced in the western region. In

addition, we found that the desirable output productivity effects had a

suppressive effect in the eastern region and facilitating effects in the central

and western regions. The undesirable output productivity effect had a

suppressive effect on the growth of CO2 emissions in all three regions, but

the suppressive effects were more pronounced in the eastern region.
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1 Introduction

In recent years, global climate change has become an important issue that has

sustained attention frommany countries around the world (Liu et al., 2019; Awodumi and

Adewuyi, 2020; Beltrami et al., 2021; Rehman et al., 2021). The massive emissions of

carbon dioxide (CO2), one of the greenhouse gases, cause serious global warming. The

International Energy Agency (IEA) reported that CO2 emissions would increase by nearly

5% to 33 billion tons in 2021 and that its main driver is coal demand, which is expected to
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grow by 4.5%, exceeding the 2019 levels and nearing its historical

peak since 2014 (IEA, 2021b). Notably, cities consume two-thirds

of the energy while generating over 70% of the global annual CO2

emissions (IEA, 2021a). Therefore, the urban CO2 emissions

need more attention.

Consequently, it is an effective measure to mitigate global

climate change via research on the forces driving CO2 emission

changes and by formulating targeted policies. Therefore, many

scholars have studied the driving factors of CO2 emissions (Li Y.

et al., 2018; Wang and Zhang, 2021). Over the past few decades,

China has become the largest developing country in the world.

Rapid economic growth usually results in consumption of large

amounts of fossil-based energy, with extremely high CO2

emissions. Nowadays, as the country with the highest CO2

emissions in the world, the Chinese government is

formulating and implementing relevant policies to achieve

“dual carbon” and “sustainable development” plans in

response to global energy conservation and emission

reduction targets. Chinese cities are responsible for about 85%

of the overall CO2 emissions in China (Mi et al., 2016). As a

result, the issue of CO2 emissions from Chinese cities deserves

widespread attention (Shan et al., 2022).

To explore the causes of changes in the CO2 emissions, the

index decomposition analysis (IDA) and structural

decomposition analysis (SDA) are two basic methodologies

used to analyze the factors driving CO2 emissions; these were

first proposed by Ang et al. (1998) and Chang and Lin (1998) to

quantify the potential factors driving changes in terms of

different indicators and to provide valuable information for

decision makers. Essentially, the IDA as an accounting

method can easily capture the impacts of various factors on

energy consumption or changes in CO2 emissions given a

dataset. Moreover, the IDA affords the advantages of low data

requirements while facilitating calculation and data analysis (Ang

and Zhang, 2000; Yang et al., 2021). The IDA generally considers

factors such as CO2 and energy intensities while ignoring the

effects of other factors such as scale and technical efficiency, and

ignoring these factors may skew the results so as to impact policy-

making (Lin and Du, 2014).

SDA is a widely used analytical tool for modeling the

relationship between supply and demand in an economy built

upon the input–output theory (Chang and Lin, 1998; Wang and

Han, 2021). Thus, the research scope of SDA involves the study

of a single economy or multiple economies. De Araújo et al.

(2020) used the SDA to explore changes in the structure and CO2

emissions of the European Union (EU) after accession of new

member states. The SDA has high data requirements and

relatively complex calculations, which are generally applicable

to the analysis of CO2 emissions generated in trade between

countries (Wang Q. et al., 2022).

Zhou and Ang (2008) proposed a new approach of

decomposition analysis based on production theory called the

PDA, which combines a distance function and data envelopment

analysis (DEA) to decompose the changes in the total CO2

emissions. Given a set of input and output data, the

production theory starts with the theoretical definition of

general production technology using the best practice

boundary based on the distance function. Then, the distance

between the entity and best boundary indicates the degree of

production inefficiency, through which the production efficiency

and technology level of the entity can be assessed (Wang H. et al.,

2018).

Based on literature, the PDA shows that low economic

development, energy structure, and energy efficiency are the

factors that contribute to China’s CO2 emissions (Wang et al.,

2015); moreover, high technical efficiency contributes to the

promotion of energy intensity, while capital–energy

substitution has counterproductive effects (Zhou et al., 2022).

From the point of view of production efficiency, improving the

efficiency of energy use and emission technology will contribute

to the emission reduction targets of the Chinese provinces (Wang

H. et al., 2018). Wang et al. (2019) proposed an improved PDA

method based on the non-radial directional distance function

(DDF) and global Malmquist–Luenberger productivity index

called the DDF-PDA; the researchers applied DDF-PDA to

examine CO2 emissions from China’s energy industry and

found that the methodology evaluates the decomposition

efficiency more accurately and alleviates the infeasibility of

linear programming compared to the traditional SDF-PDA.

Tian et al. (2022) demonstrated the effects of efficiency and

technology on the changes in sulfur dioxide (SO2) emissions

from China’s industries during cleaner production and terminal

treatment via the decomposition analysis method of the two-

stage production theory. Nevertheless, using any one method

alone to explore the factors driving CO2 emissions would not

solve some of the complicated problems, so some scholars have

integrated the IDA and PDA to formulate a new combined

decomposition method (Ding et al., 2021; Wang Q. et al., 2022).

Numerous scholars have investigated the sources of urban

CO2 emissions from production, consumption, or income

perspectives (Zhang et al., 2016; Shao et al., 2020) and found

that the emissions from fixed capital formation are dominant in

most cities (Mi et al., 2019); to achieve the goal of reducing CO2

emissions, policy formulation should therefore focus on aspects

such as encouraging low carbon consumption for residents and

controlling capital investments in high-income CO2-emitting

enterprises (Li J. S. et al., 2018). There are some studies on

urban CO2 emissions that have focused mainly on national,

regional, and provincial spatial scales, and many of these

studies are analyzed from sectoral perspective (Li C. et al.,

2022). In the research works on CO2 emissions using city unit

data, possible scenarios for urban emission reductions applicable

to individual cities have been proposed; for example, a scenario

for Kyoto City found that Japan could achieve the national

challenge goal of 80% CO2 reduction by 2050 (Shigeto et al.,

2012). Sun et al. (2020) proposed an urban-industrial symbiosis
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system strategy and conducted feasibility studies on applying this

strategy in the industrial city of Shenyang; they discovered that

implementation of the system allowed the city to recover a

certain amount of energy while reducing CO2 emissions.

Given the circumstances discussed above, the previously

reported studies still have some drawbacks. First, among the

studies on the factors driving urban CO2 emissions, very few have

conducted global and systematic analyses of all cities in China.

Second, the PDA methods have rarely been applied to existing

studies on urban CO2 emissions. However, low carbon emission

reduction targets cannot be achieved without studying the CO2

emissions from cities as they are the basic units of environmental

policy implementations and priority areas for emission

reductions (Fang et al., 2022).

In this study, we examine the specific factors driving the

growth of CO2 emissions in 282 Chinese cities from 2003 to

2017 from an improved production-theoretical decomposition

perspective. Moreover, this study aims to fill the existing research

gaps in the following areas: first, we consider useful insights and

holistic analysis to reveal the specific driving effects behind urban

CO2 emissions that can be used for implementation of CO2

emission mitigation target policies in China. Second, we

overcome the drawbacks of the Shephard production function

in the traditional PDA model and use the improved PDA model

proposed by Wang et al. (2019) to explore the drivers of urban

CO2 emissions. This improved PDA model uses a non-radical

and non-angular production function, which improves the

accuracy of the estimation results and obtains more accurate

drivers of the urban CO2 emission changes, thereby helping the

achievement of urban CO2 emission reduction targets. Third, in

addition to the systematic analysis of the drivers of urban CO2

emission changes as a whole, detailed and rigorous analyses from

two heterogeneous perspectives, namely resource-based and

non-resource-based cities as well as regional spatial

heterogeneity, are considered.

The remainder of this work is organized as follows. Section 2

discusses the methodology and data that support the results and

discussion in Section 3. Section 4 presents the conclusions and

policy implications of this study.

2 Methodology and data

2.1 Non-radial directional distance
function

To describe a production process, we suppose that there are

n (n � 1, 2, ...,N) decision-making units (DMUS), the input matrix

is x � (xt
1, x

t
2, x

t
3, ..., x

t
N), x ∈ RN

+ , the desirable output matrix is

y � (yt
1, y

t
2, y

t
3, ..., y

t
M), y ∈ RM+ , and the undesirable output matrix

is b � (bt1, bt2, bt3, ..., btl), b ∈ RI+, where t (t � 1, 2, ...T). Therefore,
the production technology (T) can be expressed as in Eq. 1:

T � {(x, y, b): x can produce (y, b)}. (1)

Based on Eq. 1, T is defined as environmental production

technology, and each input can generate desirable and

undesirable outputs. As described by Fare et al. (1989), if the

outputs satisfy the assumption of strong disposability, then the

undesirable outputs are identical to the desirable outputs and can

be treated freely. In the production process, along with the

desirable output growth, we need to control the increase in

undesirable outputs. Therefore, this study assumes that the

undesirable outputs are weakly disposable, as shown in (a). In

addition, T must satisfy the null-jointness expressed by (b).

(a) If (x, y, b)ϵT and 0≤ θ ≤ 1, then (x, θy, θb)ϵT;
(b) If (x, y, b)ϵT andb � 0, theny � 0.

As shown above, hypothesis (a) implies that the reduction in

undesirable outputsmust be accompanied by a proportional reduction

in the desirable outputs, and hypothesis (b) implies that the generation

of undesirable outputs is inevitable in the production process.

From the limitations of the Shephard distance function,

traditional PDA measures the efficiency of breakdown of the

elements relatively independently, which causes each

decomposition efficiency using the distance function orientation

to have an obvious difference. Under this circumstance, the

measured efficiency is underestimated, leading to

misunderstanding by the policymakers and the inability to create

scientific and effective carbon reduction policies. The non-radial

DDF can adjust the input and output non-proportional changes to

allow an increase in the desirable outputs while ensuring reduction

of the undesirable outputs, thereby overcoming the defects of the

DEA method in the traditional PDA decomposition process.

According to Zhou et al. (2012), the non-radial distance function

is defined as follows:

�D(x, y, b; g) � sup{ωTβ: ((x, y, b) + g × diag(β))ϵT}, (2)

where g is a clear direction vector given as g � (−gx, gy,−gb),
indicating that the desirable outputs increase and undesirable

outputs decrease. ω � (ωx
m,ω

y
i ,ω

b
j)Tis the standardized weight

matrix related to the number of input–output indicators, and

β � (βxm, βyi , βbj)T ≥ 0 represents the vector scale factor.We obtain
�D(x, y, b;g) from the linear programming approach in Eq. 3,

whose specific programming method is as follows:

�D(x, y, b;g) � maxωx
mβ

x,t
m + ωy

i β
y,t
i + ωb

jβ
b,t
j ,

s.t.∑N
n�1

ztnx
t
mn ≤ xt

m + βx,tm gxm,m � 1, ...,M,

∑N
n�1

ztny
t
in ≥yt

i + βy,ti gyi, i � 1, ..., I,

∑N
n�1

ztnb
t
jn � btj + βb,tj gbj, j � 1, ..., J,

zn ≥ 0, n � 1, ..., N, t � 1, ..., T,
βxm, β

y
i , β

b
j ≥ 0.

(3)
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Although the non-radial DDF overcomes the limitations of

the traditional Shephard distance function, it may cause potential

infeasibilities in the linear programming when measuring the

cross-period DDF (Oh, 2010). Therefore, this study adopts the

global non-radial DDF to overcome this defect, and the linear

programming approach is as shown in Eq. 4:

�D
G(x, y, b;g) � maxωx

mβ
x,G
m + ωy

i β
y,G
i + ωb

jβ
b,G
j ,

s.t.∑T
t�1
∑N
n�1

ztnx
t
mn ≤x

t
m + βx,Gm gxm,m � 1, ...,M,

∑T
t�1
∑N
n�1

ztny
t
in ≥yt

i + βy,Gi gyi, i � 1, ..., I,

∑T
t�1
∑N
n�1

ztnb
t
jn � btj + βb,Gj gbj, j � 1, ..., J,

zn ≥ 0, n � 1, ..., N, t � 1, ..., T,
βxm, β

y
i , β

b
j ≥ 0.

(4)

In the research process, we can adjust the direction vector g

based on the objective. If �D(x, y, b;g) � 0 or �D
G(x, y, b; g) � 0,

then the DMUmeasured is in the efficient frontier g best-practice

direction and there is no efficiency loss. On the contrary, if
�D(x, y, b; g)> 0 or �D

G(x, y, b;g)> 0, then the DMU is

considered to have an efficiency loss along the direction

vector g. According to Zhou et al. (2012), the standardized

weight matrix is set as ω � (0, 1/6, 1/6, 1/3, 1/3).

2.2 Decomposition of CO2 emissions

The traditional PDA method has drawbacks such as

underestimating the classification efficiency and infeasibility of

linear programming, which lead to potential bias or incomplete

decomposition results. In contrast, the DDF-PDA presented

herein alleviates the two problems associated with the

traditional PDA, in addition to identifying the potential

factors driving changes in CO2 emissions more precisely

(Wang et al., 2019).

Here, the input factors are set as the capital input (K), labor

input (L), and energy input (E); the desirable output is the gross

regional product (Y) and the undesirable output is the CO2

emission (C). According to Kim and Kim (2012) and Wang et al.

(2019), we decompose the CO2 emissions in Chinese cities into

an extended Kaya identity, as shown in Eq. 5.

Cs
n � [Cs

n

Es
n

][Es
n

Ys
n

][Ys
n] s ∈ {T, T + 1} . (5)

Combining the non-radial DDF, we rewrite the extended

Kaya identity in Eq. 5 as Eq. 6 to decompose the CO2 emission

changes.

Cs
n � ⎡⎢⎣Cs

n(1 − �D
G

n,C(·s))
Es
n(1 − �D

G

n,E(·s))
⎤⎥⎦ × ⎡⎢⎣Es

n(1 − �D
G

n,E(·s))
Ys

n(1 + �D
G

n,Y(·s))
⎤⎥⎦ × [Ys

n]

× ⎡⎢⎣ 1

(1 − �D
G

n,C(·s))
⎤⎥⎦ × [(1 + �D

G

n,Y(·s))]. (6)

In Eq. 6, we replace the elements �D
G
n,C(Ks, Ls, Es, Ys, Cs; �gs),

�D
G
n,Y(Ks, Ls, Es, Ys, Cs; �gs), and �D

G
n,E(Ks, Ls, Es, Ys, Cs; �gs) with

�D
G
n,C(·s), �D

G
n,E(·s), and �D

G
n,Y(·s), respectively. The same

replacement is used in the following decomposition.

Specifically, we decompose the CO2 emissions between time

periods T and T+1 in Eq. 7.

RT,T+1
tot � CT+1

n

CT
n

� ⎡⎢⎣CT+1
n (1 − �D

G

n,C(·T+1))/ET+1
n (1 − �D

G

n,E(·T+1))
CT

n (1 − �D
G

n,C(·T))/ET
n (1 − �D

G

n,E(·T))
⎤⎥⎦

× ⎡⎢⎣ET+1
n (1 − �D

G

n,E(·T+1))/YT+1
n (1 + �D

G

n,Y(·T+1))
ET
n (1 − �D

G

n,E(·T))/YT
n (1 + �D

G

n,Y(·T+1))
⎤⎥⎦

× [YT+1
n

YT
n

] × ⎡⎢⎣ (1 − �D
G

n,C(·T))
(1 − �D

G

n,C(·T+1))
⎤⎥⎦ × ⎡⎢⎣(1 + �D

G

n,Y(·T+1))
(1 + �D

G

n,Y(·T))
⎤⎥⎦

� RT,T+1
PCFC × RT,T+1

PEIC × RT,T+1
SCA × RT,T+1

(GMLPIC)−1 × RT,T+1
(GMLPIY)−1 .

(7)

According to Eq. 7, the CO2 emission changes in Chinese

cities can be decomposed into five effects. On the right-hand

side of Eq. 7, the first component is the CO2 emission effect

(RT,T+1
PCFC), which accounts for the potential CO2 emission

changes in the Chinese cities. The second component

represents the effects of potential energy intensity changes

and is defined as the energy intensity effect (RT,T+1
PEIC ). The third

component represents the scale effect (RT,T+1
SCA ), which reflects

the contributions of economic activities to CO2 emission

changes in the Chinese cities. The fourth component

(RT,T+1
(GMLPIC)−1 ) and fifth component (RT,T+1

(GMLPIY)−1 ) are defined

as the undesirable and desirable output productivity effects,

respectively, based on the global Malmquist–Luenberger

(GML) productivity index. Specifically, the values of

RT,T+1
(GMLPIC)−1 and RT,T+1

(GMLPIY)−1 are the reciprocals of the

undesirable and desirable output productivity indexes based

on the GML productivity index, respectively. For all the values

of each effect in Eq. 7, the effect plays a negative role in

decreasing CO2 emissions in the Chinese cities if its value is

greater than unity. On the contrary, if the value of each effect

is less than unity, it will contribute to a decrease in the CO2

emissions.

Based on Oh (2010), we can further decompose the desirable

and undesirable output productivity effects in Eq. 7 into Eq. 8 and

Eq. 9, respectively.
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RT,T+1
(GMLPIC)−1 �

(1 − �D
G

n,C(·T))
(1 − �D

G

n,C(·T+1))
� ⎡⎢⎣ (1 − �D

T

n,C(·T))
(1 − �D

T+1
n,C (·T+1))

⎤⎥⎦ × ⎡⎢⎣ (1 − �D
G

n,C(·T))/(1 − �D
T

n,C(·T))
(1 − �D

G

n,C(·T+1))/(1 − �D
T+1
n,C (·T+1))

⎤⎥⎦

� [TET
n,C

TET+1
n,C

] × [BPGT
n,C

BPGT+1
n,C

]
� RT,T+1

(ECC)−1 × RT,T+1
(BPCC)−1

(8)

RT,T+1
(GMLPIY)−1 �

(1 + �D
G

n,Y(·T))
(1 + �D

G

n,Y(·T+1))
� ⎡⎢⎣ (1 + �D

T

n,Y(·T))
(1 + �D

T+1
n,Y (·T+1))

⎤⎥⎦ × ⎡⎢⎣ (1 + �D
G

n,Y(·T))/(1 + �D
T

n,Y(·T))
(1 + �D

G

n,Y(·T+1))/(1 + �D
T+1
n,Y (·T+1))

⎤⎥⎦

� [TET
n,Y

TET+1
n,Y

] × [BPGT
n,Y

BPGT+1
n,Y

]
� RT,T+1

(ECY)−1 × RT,T+1
(BPCY)−1

(9)
In Eqs. 8, 9, the respective desirable and undesirable output

productivity effects are decomposed into two components each.

On the right-hand sides of Eqs. 8, 9, the first components

represent the technical efficiency change effects (RT,T+1
(ECC)−1 and

RT,T+1
(ECY)−1 ), which account for the reciprocals of the efficiency

changes. The range of technical efficiency values is from 0 to 1.

The higher the value, the higher is the technical efficiency.

Specifically, if RT,T+1
(ECC)−1 > 1 or RT,T+1

(ECY)−1 > 1, it means that the

technical efficiency is negative for controlling the CO2

emissions. On the contrary, if RT,T+1
(ECC)−1 < 1 or RT,T+1

(ECY)−1 < 1, it
reflects that the technical efficiency is better for reducing CO2

emissions.

The second components of the right-hand sides of Eqs.

8, 9 capture the effects of the best-practice gap changes on

CO2 emissions (RT,T+1
(BPCC)−1 and RT,T+1

(BPCY)−1 ). Meanwhile,

RT,T+1
(BPCC)−1 and RT,T+1

(BPCY)−1 also represent the reciprocals of

these best-practice gap changes, whose values range from

0 to 1. The best-practice gap is a proxy of the distance that

shows how close the contemporary and global technology

frontiers are under the direction vectors (Oh, 2010). Under

this consideration, RT,T+1
(BPCC)−1 > 1 or RT,T+1

(BPCY)−1 > 1 indicates a

technical regress, which negatively controls CO2 emissions.

On the contrary, RT,T+1
(BPCC)−1 < 1 or RT,T+1

(BPCY)−1 < 1 reflects

technical progress that is better for reducing CO2

emissions.

Combing Eqs. 8, 9, the final decomposition of the CO2

emissions in Chinese cities is expressed as in Eq. 10.

RT,T+1
tot � CT+1

n

CT
n

� RT,T+1
PCFC × RT,T+1

PEIC × RT,T+1
SCA × RT,T+1

(ECC)−1 × RT,T+1
(BPCC)−1︸��������︷︷��������︸

RT,T+1
(GMLPIC)−1

× RT,T+1
(ECY)−1 × RT,T+1

(BPCY)−1︸��������︷︷��������︸
RT,T+1
(GMLPIY)−1

. (10)

2.3 Data

In this study, 282 prefecture-level cities in China from

2003 to 2017 were selected as the research samples. The data

on capital input is measured using the total investment in

fixed assets. Labor input is measured by the number of

employees at the end of a year. Energy input is represented

by the electricity consumption data of urban districts (Yuan

et al., 2020). The GDP and CO2 emissions of the cities are

selected as the desirable and undesirable outputs, respectively.

The CO2 emission data were retrieved from Chen et al. (2020).

Specifically, the Defense Meteorological Satellite Program/

Operational Linescan System (DMSP/OLS) and National

Polar-Orbiting Partnership/Visible Infrared Imaging

Radiometer Suite (NPP/VIIRS) were used together to

calculate the energy-related CO2 emissions from 282 cities

in China for 2003 to 2017. They are included in the model as

the undesirable outputs in this work (Chen et al., 2020). The

socioeconomic and environmental data were mainly retrieved

from the China City Statistical Yearbook. The indicators and

descriptive statistics of the input and output variables are

shown in Table 1.

TABLE 1 Indicators and descriptive statistics of the input and output variables.

Variable Unit Obs. Mean Std. Min. Max.

Y 100 million yuan 4,230 942.1308 2,228.1732 5.4359 30,630

C Million tons 4,230 25.0467 23.1680 1.5293 230.7117

K 100 million yuan 4,230 543.0737 1,050.5622 0.0302 17,050

L Thousand people 4,230 141.3436 189.3698 14.0800 2,809.3999

E 104 kilowatt hour 4,230 821,758.8418 1,392,327.1416 2,248 15,267,716
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3 Results and discussion

3.1 Results of CO2 emission
decomposition

To better understand how the factors shape the changes in

CO2 emissions in Chinese cities, Figure 1 shows the results of the

decomposed components from 2003 to 2017. According to our

estimations, the RT,T+1
SCA represented the most significant

component of CO2 emission change at the city level, with an

average value of 1.1503, indicating that the RT,T+1
SCA accounts for

15.03% of the CO2 emission growth rate. Specifically, RT,T+1
SCA

boosted CO2 emissions across the entire study period, especially

from 2003 to 2011. This indicated that the economic activities in

Chinese cities led to increased CO2 emissions, which echoed

previous research (Zhao et al., 2020a; Zhao et al., 2020b).

Meanwhile, RT,T+1
PEIC measures the potential energy intensity

changes on CO2 emission changes, and it was the second most

important component of CO2 emission changes in Chinese cities,

with an average value of 1.0364. As shown in Figure 1, the impact

of RT,T+1
PEIC on the decrease in CO2 emissions was negative for most

of the study period. Furthermore, RT,T+1
PEIC fluctuated around unity

for most of the study period except 2006–2007. This suggests that

the economic development of the Chinese cities still relies on

fossil-based energy and that the energy structure needs to be

optimized to reduce CO2 emissions (Wang et al., 2021).

Conversely, RT,T+1
PCFC is the force that drives the reduction in

CO2 emissions in Chinese cities, with an average value of 0.9419.

However, the value of RT,T+1
PCFC was greater than unity during

2007–2009 and 2011–2012. In the other periods, the value of

RT,T+1
PCFC was lower than unity, especially in 2016–2017. A possible

reason for this is the improvement in the energy mix of the

Chinese cities and relatively high energy consumption efficiency

during the production process. Moreover, to meet the global

climate goals, cities in China need to realize successful transition

to low-carbon energy systems, which indicates that the

proportion of non-fossil fuels will increase in the energy

systems (Li K. et al., 2022).

RT,T+1
(GMLPIC)−1 is an important component of the CO2 emission

change in Chinese cities, with an average value of 0.9428. In other

words, RT,T+1
(GMLPIC)−1 curbed the growth of CO2 emissions by

approximately 5.72% in Chinese cities. From a time-series

perspective, RT,T+1
(GMLPIC)−1 values in four study periods played

positive roles in the CO2 emissions shown in Figure 1.

Among the RT,T+1
(GMLPIC)−1 values that led to decreased CO2

emissions, RT,T+1
(ECC)−1 and RT,T+1

(BPCC)−1 contributed to the growth of

CO2 emissions in the cities by 5.72% and −6.82%, respectively.

Therefore, technological progress has contributed to the

reduction of CO2 emissions, but technical efficiency should

still be improved so as to promote the realization of China’s

emission reduction targets more effectively (Pan et al., 2022).

The impact of RT,T+1
(GMLPIY)−1 on the reduced growth of CO2

emissions was negative, with an average value of 1.0230. In other

words, RT,T+1
(GMLPIY)−1 accounted for a CO2 emission growth of

about 2.3% in Chinese cities. The results in Figure 1 show that

RT,T+1
(ECY)−1 accounts for the CO2 emissions of

approximately −0.48% from Chinese cities, which indicates

improvement in the technical efficiency during the process. In

FIGURE 1
Changes in the CO2 emission decomposition components.
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addition, RT,T+1
(BPCY)−1 was a positive factor for R

T,T+1
(GMLPIY)−1 , with an

average value of 1.0911, and the values of RT,T+1
(BPCY)−1 that were

greater than unity corresponded to technical regression.

As presented in Figure 2, the observation period can be

divided into five stages, including the beginning years

(2003–2005), the 11th five-year period (2006–2010), the 12th

five-year period (2011–2015), the recent years (2016–2017), and

the entire study period (2003–2017). We note that the differences

in the contributions of the components to CO2 emissions change

among these five stages. The changing trends with respect to

RT,T+1
PCFC negatively contributed to a decrease in CO2 emission

growth for all the study stages, with only slight gaps between the

beginning years, 11th five-year period, and 12th five-year period.

Moreover, there was a significant decrease in RT,T+1
PCFC, which

indicated that RT,T+1
PCFC was the dominant contributor to

reductions in CO2 emissions in recent years (2016–2017).

Simultaneously, the RT,T+1
PEIC continued to promote CO2

emission growths in all study stages, except for the recent

FIGURE 2
Contributions of different components to CO2 emissions in five stages.

FIGURE 3
Decomposed components of the CO2 emission changes in resource-based and non-resource-based cities.
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years. Moreover, this promotion effect showed an upward trend,

and the contribution peaked to 39.92% in the 11th five-year

period.

Compared with the other decomposition components, RT,T+1
SCA

contributed to CO2 emission growths in all five study periods

shown in Figure 2. From the beginning to the 12th five-year

period, RT,T+1
SCA experienced a decreasing trend from an average

value of 1.1983 to 1.0936. On the contrary, there was an upward

trend from the 12th five-year period to the entire study period,

increasing from an average value of 1.0936 to 1.1449. The growth

caused by RT,T+1
(GMLPIC)−1 in these five stages was negative for the last

four stages after being positive from 2003 to 2005. During the last

four stages, there were significant fluctuations, especially in the

12th five-year period, which positively contributed to decreased

growth of CO2 emissions in Chinese cities. Among RT,T+1
(GMLPIC)−1 ,

RT,T+1
(ECC)−1 and RT,T+1

(BPCC)−1 showed their own fluctuation

characteristics, as shown in Figure 2. Meanwhile, RT,T+1
(ECC)−1was

the main obstacle preventing a decrease in the growth of CO2

emissions from the average value.

During the first two stages, the values of RT,T+1
(GMLPIY)−1 were

consistently less than unity, which indicated that RT,T+1
(GMLPIY)−1

suppressed CO2 growth in Chinese cities. However, these

inhibitory effects were converted to facilitatory effects in the

later stages of study due to the values of RT,T+1
(GMLPIY)−1 being

consistently greater than unity. Meanwhile, among

RT,T+1
(GMLPIY)−1 , RT,T+1

(BPCY)−1was the main obstacle preventing a

decrease in the growth of CO2 emissions from the average

value, which was inconsistent with the effect of RT,T+1
(GMLPIC)−1

on the change in CO2 emissions in Chinese cities.

Compared with other research periods, some decomposition

effects played better roles in controlling the urban CO2 emissions

in China during the 11th and 12th five-year periods, as shown in

Figure 2, e.g., RT,T+1
(GMLPIY)−1 and RT,T+1

(GMLPIC)−1 . Furthermore, this

phenomenon is closely related to China’s policies and measures.

The Chinese government attaches great importance to energy

conservation and emission reduction. In the 11th five-year plan

period, the Chinese government proposed binding targets of 20%

reduction in energy consumption per unit of GDP and 10%

decrease in the total emissions of major pollutants. To achieve

these goals, China has made efforts to adjust its industrial

structure, promote technological progress, and strengthen

regulation. In the 12th Five Year Plan period, the Chinese

government added some new binding targets and called for

the comprehensive use of adjusting its industrial and energy

structures, saving energy and improving energy efficiency, as well

as other means of promoting energy conservation and emission

reduction.

3.2 City classification based on different
criteria

3.2.1 Heterogeneity analysis in resource-based
and non-resource-based cities

In 2013, the Chinese government issued China’s

Sustainable Development Plan for Resource-Based Cities

(2013–2020), which indicates that the development of

resource-based cities is dependent on resource-intensive

industries. In this condition, low carbon and energy

transition are challenges for the resource-based cities.

Owing to the heterogeneity of economic development and

landscape in Chinese cities, we classified the cities as resource-

based and non-resource-based cities to compare the

decomposition components of the CO2 emission changes

and find specifically targeted policy suggestions for these

two types of cities. Figure 3 shows the classification results

for the resource-based and non-resource-based cities; Figure 4

shows the classification results of the two types of cities for the

different study periods according to the average values of the

decomposed components.

FIGURE 4
Decomposition effects of CO2 emissions in resource-based and non-resource-based cities for different periods.
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Comparing the decomposition components of CO2 emission

changes between the resource-based and non-resource-based

cities, we found that the driving forces of the differences were

generally in the same direction for both types of cities in China

(Figure 3). In particular, RT,T+1
PEIC , RT,T+1

SCA , and RT,T+1
(GMLPIY)−1

contributed to increase in CO2 emissions in both the

resource- and non-resource-based cities as a whole. Moreover,

as further decomposition terms of RT,T+1
(GMLPIC)−1 and RT,T+1

(GMLPIY)−1 ,
RT,T+1
(ECC)−1 and RT,T+1

(BPCY)−1 showed trends of promoting increase in

CO2 emissions in both city types because their calculated average

values were greater than unity. On the contrary, the other

decomposition components generally accounted for reductions

in CO2 emissions, representing the inhibitory effects on the

growth of CO2 emissions.

Further, although the directions of action are roughly similar,

different decomposition effects have different impacts on the

types of cities. As shown in Figure 3, RT,T+1
PCFC inhibited CO2

emissions, and this inhibition effect is more significant in the

resource-based cities although the difference is not very large.

Potential carbon emission reductions in the non-resource-based

cities are higher. In terms of changes in RT,T+1
PEIC , there is little

difference between the two city types, although the value for the

resource-based cities is slightly larger than that of the non-

resource-based cities. This is closely related to the country’s

emphasis on low-carbon development of resource-based cities.

Given the heterogeneity between the resource-based and

non-resource-based cities, RT,T+1
SCA promoted CO2 emissions in

both types of cities but was more pronounced in the non-

resource-based cities. RT,T+1
(GMLPIC)−1 suppressed CO2 emissions

in both types of cities. Moreover, this inhibitory effect was

more obvious in the non-resource-based cities. Through the

calculated results, it was found that the strong inhibitory

effects of RT,T+1
(GMLPIC)−1 on CO2 emissions in non-resource-

based cities was due to technological progress. Meanwhile, the

promotion effects of RT,T+1
(GMLPIY)−1 on CO2 emission increase was

higher in the non-resource-based cities than in the resource-

based cities. The value of RT,T+1
(ECY)−1 was greater than unity in the

non-resource-based cities, indicating that the technical efficiency

reduced. However, in resource-based cities, the value of RT,T+1
(ECY)−1

was less than unity, which indicated that the technical efficiency

improved. The value of RT,T+1
(BPCY)−1 was greater than unity in both

types of cities, implying that there is technological regression in

both city types.

To facilitate presentation, Figure 4 shows the decomposition

effects of the CO2 emissions in resource-based and non-resource-

based cities for the different periods. As seen in Figure 4, during

2003–2005, RT,T+1
PCFC showed a restraining effect on CO2 emissions

in both types of cities. On the contrary, during the 11th five-year

period, the restraining effects of non-resource-based cities turned

to a small promoting effect. However, during the 12th five-year

period, resource-based cities showed promotion effects and non-

resource-based cities exhibited inhibitory effects, with the degree

of change being not very significant. The change directions of

RT,T+1
PEIC in the resource-based and non-resource-based cities are

the same for each period, and the impact on CO2 emissions is

greater in resource-based cities, which shows that the resource-

based cities need more measures such as industrial transfer and

technology updates to realize sustainable development of the city.

The promoting effects of RT,T+1
SCA were more obvious in the

resource-based cities during 2003–2005 and was significantly

flat during the 11th five-year period; it became more obvious in

the 12th five-year period for the average level in the non-

resource-based cities.

During 2003–2005, RT,T+1
(GMLPIC)−1 played a promoting role in

both types of cities, and the effects were more obvious in the

resource-based cities. In the other time periods, it played a

suppressive role. Specifically, during the 12th five-year period,

the inhibitory effects of the non-resource-based cities were

more significant. The value of RT,T+1
(ECC)−1 was greater than unity

in the non-resource-based cities in all study periods. On the

contrary, during the 11th five-year period, technical efficiency

improved in the resource-based cities, and no obvious

improvements in technical efficiency were observed in the

other periods. Furthermore, except for technological

regression during the 11th five-year period, RT,T+1
(BPCC)−1 has

showed technological progress in both resource-based and

non-resource-based cities for the other time periods.

RT,T+1
(GMLPIY)−1 presented an inhibitory effect on CO2 emissions

during 2003–2005 and 2006–2010 but showed a promoting

effect during the 12th five-year plan period, with the

promotion of resource-based cities being more obvious.

The value of RT,T+1
(ECY)−1 was greater than unity in the

resource-based cities, reducing technical efficiency and

promoting CO2 emissions. On the contrary, in the non-

resource-based cities, there is room for CO2 emission

reduction. However, the value of RT,T+1
(BPCY)−1 was greater than

unity in both types of cities at different periods, indicating

technological regression and promotion of CO2 emissions.

3.2.2 Heterogeneity analysis of regional
differences in the driving effects of CO2 emission
changes

From a spatial distribution perspective, we can compare the

regional differences in the driving effects of CO2 emission

changes. Figure 5 illustrates the driving effects of CO2

emission changes and provides insights into the

decomposition trends in the study periods in the eastern,

central, and western regions. In general, the volatility of

RT,T+1
PCFC is relatively large. This trend in the three regions

revealed a diversification of the decomposition components

driving reductions in CO2 emissions, with inhibition at the

beginning, then promotion, and finally inhibition again.

Specifically, this fluctuation is the largest in the eastern region,

and the inhibition effect is more obvious. In the eastern region,

RT,T+1
PCFC has been shown to suppress CO2 emissions for most of the

years compared to the other two regions. Specifically, in
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2016–2017, RT,T+1
PCFC inhibited growth in CO2 emissions in eastern

cities, accounting for 0.5140 of the decline in CO2 emissions on

average. Cities in the eastern region are dominated by developed

cities such as Beijing and Shanghai. The development of the

digital economy and high-tech industries reduces the possibility

of potential increase in the CO2 emissions in the future (Wang

et al., 2020a). This implies that the effect of RT,T+1
PCFC on suppressing

the increase in CO2 emission is stronger than those in other

regions.

Overall, RT,T+1
PEIC at the regional level showed a stable and

upward trend from 2003 to 2017. In the process, changes in the

eastern region are larger than those in the other regions, and

RT,T+1
PEIC is the core force driving the changes in CO2 emissions; it is

greater than unity for most years, showing a promotional effect

FIGURE 5
Driving effects of CO2 emission changes in three regions during the period of 2003–2017: (A) RT ,T+1

PCFC ; (B) R
T ,T+1
PEIC ; (C) RT ,T+1

SCA ; (D) RT ,T+1
(GMLPIC)−1 ; (E)

RT ,T+1
(GMLPIY)−1 .
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during 2011–2012. In contrast, the central and western regions

showed more years with inhibitory effects. Moreover, RT,T+1
PEIC

showed a trend of promoting growth of CO2 emissions in the

central and western regions, indicating that RT,T+1
PEIC should be a

powerful factor controlling the increase in CO2 emissions from

each region. Although China has always advocated achieving

carbon peak and carbon neutralization through energy

transformation, it is difficult to control CO2 emissions by

improving the energy structure because of the large energy

consumption. This implies that reducing the energy intensity

by improving the energy structure and energy efficiency can

achieve CO2 emission reductions in the long term, which

confirms the findings of Wang et al. (2020b).

It is worth mentioning that RT,T+1
SCA plays a role in

promoting growth of CO2 emissions in all years, but this

role fluctuates greatly for different regions. The RT,T+1
SCA mainly

measures the impact of local economic activities on the

growth of CO2 emissions. According to Figure 5C, the

fluctuation of RT,T+1
SCA is largest in the western region,

followed by the central region, and finally the eastern

region. This is closely related to the differences in the

speed of economic development in the three regions.

Although the development of eastern China is better than

that of the central and western regions, owing to China’s

recent advocacy of a regional integration strategy through

coordinated regional development, the development of the

central and western regions is faster than that of the eastern

region, which makes the RT,T+1
SCA promotion of CO2 emissions

more obvious. However, from this, we also note that in the

early stages of economic development, we should implement a

high-quality development strategy to control the increase in

CO2 emissions effectively.

Furthermore, RT,T+1
(GMLPIC)−1 shows a decreasing trend in

fluctuation, which means that the growth of CO2 emissions is

inhibited by RT,T+1
(GMLPIC)−1 in all three regions. Thus, the increase in

CO2 emissions can be effectively controlled by promoting the

increase of total factor productivity of the CO2 emissions through

technological progress and efficiency improvements. In short,

RT,T+1
(GMLPIC)−1 decreased significantly in the eastern region. This

tells us that although the eastern region has higher CO2

emissions, it also has the greatest potential to control these

emissions. In contrast, although the CO2 emission

productivity indexes of cities in the central and western

regions show growing trends, these are not obvious.

According to the decomposition of CO2 emission growth, the

inhibitory effect of RT,T+1
(GMLPIC)−1 in the central and western regions

is around the average value of unity, so it is possible to promote

growth of CO2 emissions at any time. This indicates that the

existing total factor productivity of CO2 emissions cannot

effectively restrain the growth of CO2 emissions, while placing

higher requirements for the improvements in CO2 emission

technology and efficiency in the central and western regions

(Wang S. et al., 2018; Wang S. et al., 2022).

Moreover, RT,T+1
(GMLPIY)−1 shows a slow upward trend in

volatility. Specifically, RT,T+1
(GMLPIY)−1 is expressed as the inverse

of the desirable output productivity, showing a trend of

promoting growth of CO2 emissions, which means that the

desirable output productivity showed a decreasing trend. The

trend of lower desirable output productivity among the three

regions is more pronounced in the central and western regions, as

shown in Figure 5E. Fortunately, the impact of RT,T+1
(GMLPIY)−1 on

CO2 emissions has more years of suppression, which means that

the increase in CO2 emissions can be effectively restrained

through improvement of the desirable output productivity.

From the perspective of the differences between the eastern,

central, and western regions, RT,T+1
(GMLPIY)−1 showed more years of

inhibiting CO2 emissions in the eastern region, followed by the

central and western regions. RT,T+1
(GMLPIY)−1 in the central and

western regions tends to increase the CO2 emissions.

Therefore, the desirable output productivities of the central

and western regions still need to be improved to avoid higher

CO2 emission increases from economic growth.

4 Conclusion and policy implications

This study applied an improved PDA method that

combines the non-radial DDF and GML productivity index

with the traditional PDA framework to decompose the CO2

emissions of 282 Chinese cities from 2003 to 2017. Moreover,

this study also classified these 282 cities into groups based on

different criteria to analyze and decompose the results in

greater depth. Based on the empirical results, the conclusions

are drawn as follows:

First, the decomposition results of CO2 emission growth

show that the scale effect was the most significant contributor in

Chinese cities. Simultaneously, the energy intensity and desirable

output productivity effects played important roles in increasing

CO2 emissions. With respect to the internal factors of the

desirable output productivity effect, the desirable output

technical efficiency change effect reduced CO2 emissions

significantly, while the desirable output best practice gap

change increased CO2 emissions with significant fluctuations.

On the contrary, potential CO2 emission changes and

undesirable output productivity effects were the dominant

contributors to CO2 emission reductions in Chinese cities.

Among the undesirable output productivity effects, the

undesirable output technical efficiency change effect negatively

affected CO2 emission reduction, while the undesirable output

best practice gap change reduced CO2 emissions in Chinese

cities.

Second, this study classified 282 Chinese cities based on two

criteria as resource-based and non-resource-based cities as well

as the differences in the urban spatial location distribution. Based

on the resource-based and non-resource-based cities, we found

that although the different CO2 emission decomposition effects
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in the two types of cities were consistent with the overall direction

of action, the degrees of action were different. Specifically, the

potential CO2 emission effects could greatly restrain the growth

of CO2 emissions in resource-based cities. However, the

promotional scale effect was more obvious in the non-

resource-based cities. The progress of CO2 emission

technology in the non-resource-based cities caused the

undesirable output productivity effect to greatly inhibit the

increase in CO2 emissions. Although the desirable output

efficiency of the resource-based cities improved, the desirable

output production efficiency had negative effects on reducing

CO2 emissions owing to the outdated technologies.

Third, given the difference in the urban spatial location

distribution, this study divided the cities into eastern, central,

and western regions. The potential CO2 emission effects was

more obvious in the eastern region. The energy intensity effect

was a powerful measure to control the increase in CO2 emissions

in all regions, especially the eastern region. The promotional scale

effect on CO2 emissions showed significant fluctuations for each

region. Compared with the other two regions, the promotional

effect of the western region was more obvious. Undesirable

output productivity had the effect of inhibiting the increase in

CO2 emissions in the three regions, but this was more obvious in

the eastern region. The desirable output productivity had a

restraining effect in the eastern region but had promotional

effects in the central and western regions.

Based on the above conclusions, we offer the following policy

recommendations. First, economic development leads to

emergence of the scale effect, which is the main factor for the

increase in CO2 emissions. To control the increase in CO2

emissions in Chinese cities, the government could further

strengthen technological innovations, focus on energy

structure optimization, promote clean energy production, and

reduce the dependence of economic growth on traditional fossil-

based energy sources, thereby reducing CO2 emissions. In

addition, the Chinese government could significantly control

the use of fossil fuels and widely promote electrification to

improve energy efficiency. Second, to control the increase in

CO2 emissions effectively, resource-based cities could pay more

attention to improvements in technology. For instance,

accelerate the transition from a single-energy-led economy to

a diversified and integrated economy as well as promote urban

repair and ecological restoration. Moreover, the Chinese

government can control CO2 emissions by upgrading the

industries, such as integration of manufacturing with

information technology, service industry, culture, and tourism.

Third, we note that the development of China’s eastern, central,

and western regions is uneven; hence, the government could

appropriately implement a differential system when formulating

emission reduction policies, e.g., assigning the provinces with low

total CO2 emissions and low intensities the task of reducing CO2

emission intensities at the lowest level, while turning to the

western region when approving carbon market quotas.
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