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Non-steady-state closed dynamic accumulation chambers are widely used to

measure the respiration of terrestrial ecosystems, thanks to their low cost, low

energy consumption and simple transportability, that allowmeasurements even

in hostile and remote environments. However, the assessment of the accuracy

and precision associated with the measurement system (independently of

possible disturbances due to chamber-soil interactions) is rarely reported.

This information is instead necessary for basic quality control, to compare

data obtained by different devices and regression models and to provide

Confidence Intervals (CIs) on the carbon flux values. This study quantifies

the uncertainty associated with emission flux measurements, with a focus

on very low fluxes. Calibration tests using different accumulation chambers

and CO2 sensors were performed, and fluxes were calculated by means of

different models (parametric, non-parametric and flux models). The results of

this work show that the linear regression model has the best reproducibility

when compared to the other tested models, regardless of the sensor used and

the chamber volumes, while the second order polynomial regression has the

best accuracy. We remark the importance of building a calibration curve in the

range of the expected flux values, with an interval between the lowest and

highest imposed flux that should not exceed two orders of magnitude. To

evaluate the reproducibility of themeasurement, performing replicates for each

imposed flux value is essential. We also show that it is necessary to carefully

identify the best time interval for interpolating the CO2 concentration curve in

order to guarantee reproducibility and accuracy in flux estimates.
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1 Introduction

Carbon dioxide (CO2) uptake by photosynthesis and its

release to the atmosphere by ecosystem respiration are the

two fundamental processes determining the carbon balance of

terrestrial ecosystems. Accurate CO2 flux measurements are thus

a prerequisite for understanding gas exchanges at the soil-

vegetation-air interface and for quantifying the carbon budget.

There are several techniques to measure soil degassing (Lieth

and Ouellette, 1962; Reiners, 1968; Kucera and Kirkham, 1971;

De Jong and Schappert, 1972; Kanemasu, et al., 1974; Luo and

Zhou, 2006). Themost common techniques used for determining

the contribution of soil respiration are based either on the use of

accumulation chambers or on the concentration gradient. The

accumulation chamber method does not require any assumption

about the nature of the soil (Tonani and Miele, 1991).

In particular, the non-steady state Closed Dynamic Chamber

(CDC) method, equipped with InfraRed Gas Analyser (IRGA),

allows to measure the CO2 concentration inside the chamber in

real time (Parkinson, 1981; Norman et al., 1992). The CDC

method is nowdays widely applied thanks to its low cost, low

energy consumption and transportability that allow its use even

in hostile and remote environments (Kutzbach et al., 2007;

Pavelka et al., 2018).

The flux (Ø) under undisturbed conditions is calculated by

means of the following equation (Healy et al., 1996; Kroon et al.,

2008; Levy et al., 2011; Moffat and Brummer, 2017), which is

valid for any gas:

∅ � V

A

dC

dt
( )

t�0
(1)

where V and A are the volume and the base area of the

accumulation chamber respectively, and dC/dt is the time

derivative of the gas concentration evaluated at the starting

time (t = 0). Therefore, the uncertainty of the flux

measurement depends on the uncertainty of each of these

factors (Jassal et al., 2012).

In Eq. 1, the time derivative of the gas concentration has to be

obtained from fitting curves that are either empirical or based on

diffusion theory (Venterea et al., 2015). The latter states that the

increase of the gas concentration in the accumulation chamber

over time should be represented by an exponential function when

the diffusion is in quasi-steady-state condition (Hutchinson and

Mosier, 1981), or by much more complex functions in case of

non-steady-state flux (Livingston et al., 2006). For both

stationary and non-stationary conditions, the models used for

flux calculations based on diffusion theory are: (i) the HMmodel

(Hutchinson and Mosier, 1981); (ii) the HMR model (Pedersen

et al., 2010); (iii) the NDFE (non-steady state diffusive flux

estimator) model (Livingston et al., 2006) and (iv) the CBC

(Chamber Bias Correction) method (Venterea, 2010). The most

used empirical models are: (a) the linear model (Beetz et al., 2013;

Leiber-Sauheitl et al., 2013); (b) the second order polynomial

model (Wagner et al., 1997); (c) the asymptotic model (Levy

et al., 2011) and (d) the intercept method (Kroon et al., 2008).

Levy et al. (2011) stated that the estimate of the flux has a large

variability depending on the model chosen for interpolating the

experimental data. An additional source of uncertainty is the

choice of interpolation interval, identified by the starting and

ending points, from which the derivative of the concentration

curve is computed. The interpolation interval depends on the

model chosen and can lead to important differences in the

determination of the flux value under undisturbed conditions.

The heterogeneity of the gas mixing ratio C in the accumulation

chamber is another important source of uncertainty (Liu and Si,

2009; Hoffmann et al., 2015).

Finally, uncertainties can arise from the estimation of the

volume or the V/A ratio. The volume (V) in the Eq. 1 is the

effective system volume (Ve), which is larger than the chamber

volume Vch (Livingston and Hutchinson, 1995; Drewitt et al.,

2002; Jassal et al., 2012). The Ve accounts for both the total

volume of the measurement system (including the volume of the

chamber, pump, IR measurement cell, connecting tube, and

sample conditioning modules reported in Livingston et al.,

2006) and the bias introduced by the model used for

estimating the derivative. Therefore, it is characteristic of each

instrumental setup and model used to fit the experimental curve,

and it should be determined on a case-by-case basis.

Flux values are generally affected by both systematic and

random measurement errors (Nay et al., 1994). Laboratory tests

using known gas fluxes have been performed without distinguishing

the variance generated by the measurement procedure from that

related to the soil-instrument system (Reinhart et al., 1992; Nay et al.,

1994; Gao and Yates, 1998; Evans et al., 2001; Butnor and Johnsen,

2004; Pumpanen et al., 2004; Nomura et al., 2019). Despite the

widespread use of the CDC method, the accuracy and precision of

flux measurements associated with the instrumental apparatus,

independent of the interaction with the soil, are rarely reported

(Heinemeyer and McNamara, 2011). However, this information is

necessary to set up standardized quality controls, to perform

statistical comparisons between models and data, and to provide

Confidence Intervals (CIs) on carbon budgets (Savage et al., 2008).

Motivated by this need, here we quantify the uncertainty

of the flux measurements using the CDC technique, with

special attention for the case of very low gas fluxes such as

those met in high-altitude or high-latitude ecosystems. To this

end, calibration tests using different accumulation chambers

and CO2 sensors were performed. These tests have been

designed to: i) set a calibration procedure that allows to

compare measurements performed with different

instrumental settings; ii) identify the most suitable

procedure to account for the effective volume Ve; iii) assess

the variability of the derivative (dC/dt) estimates associated

with the choice of the lower and upper limits of the

interpolation interval (i.e., the interpolation range); iv)

choose the best flux estimation model.
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2 Materials and methods

2.1 Experimental setup

The experimental laboratory tests were performed bymeasuring

CO2 concentration vs. time inside a CDC accumulation chamber

placed on a rubber-covered table (calibration table, CT). At the

center of the CT, the outlet of a 2 mm diameter Rislan tube was

connected to a cylinder by means of two Alicat Scientific® mass flow

controllers (MFC) characterized by different working ranges:

1–10 scc/min (standard cubic centimeters per minute), and

5–1,000 scc/min. Both MFC have accuracy and repeatability

of ±2% of Full Scale (FS). The cylinder contains a standard

certified mixture of 2% v/v of CO2 (balance N2). The

instrumentation setup is shown in Figure 1.

The tests were conducted using two Non-Dispersive

InfraRed (NDIR) gas analyzers having different accuracy and

Root Mean Square (RMS) noise:

i) A gas analyzer, named L in the following, with measurement

range 0–20,000 ppmv, accuracy higher than 1.5%, RMS noise at

370 ppmv less than 1 ppmv (LI-COR 840; LI-COR Inc.);

ii) A gas analyzer, named V in the following, with measurement

range 0–20,000 ppmv, accuracy about 2%, RMS noise at

370 ppmv of 3 ppmv (GMP 343, Vaisala).

The measurements were performed using two cylindrical

accumulation chambers characterized by different volume and

base area:

1) Chamber A, with a volume of 2.770 10–3 m3 and a base area of

30.8 10–3 m2;

2) Chamber B, with a volume of 6.186 10–3 m3 and a base area of

31.7 10–3 m2.

The volume of the recirculating system provided with the

sensor, V and L, was 0.284 10–3 m3 and 0.216 10–3 m3,

respectively. Hence, the total volumes (chamber plus

recirculating system) were: 3.054 10–3, 6.470 10–3, 2.986 10–3,

and 6.402 10–3 m3 for the measurement system V + A, V + B, L +

A and L + B, respectively.

The imposed CO2 fluxes used for the experimental tests were

0.02, 0.1, 0.2, and 1 scc/min. For each combination of flux value,

chamber type and sensor, 10 replicates were performed (for a

total of M = 160 measurements).

The recording of CO2 concentration inside the chamber

started at the placement of the chamber on the CT (Figure 1)

and was stopped after 120 s. The CO2 concentration inside the

chamber was recorded every second, thus providing

120 concentration values for each measurement run. Between

the different measurement runs, the apparatus was purged with

FIGURE 1
Instrumental set-up: 1) a steel/aluminium cylindrical accumulation chamber with known volume and base surface, equipped with a pressure
compensation device tomaintain pressure equilibrium between inside and outside the chamber, and a fanwith a speed of 80 rpm to avoid errors due
to air stratification and to ensure efficient headspace mixing during the measurement; 2) the IRGA analyser for CO2 measurements; 3) a pneumatic
system comprising a membrane pump (2.5 l/min) and pipes to transport the gas from the chamber to the gas detectors and back to the
chamber; 4) mass flow controller (MFC); 5) gas cylinder with known CO2 concentration; 6) a palmtop computer connected to the instrument
through the Bluetooth wireless standard. All these “devices” are connected to each other.
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ambient air in order to clean it from the excess CO2. The

measurement dataset is reported in the Supplementary Material.

2.2 Models

The CO2 fluxes were obtained from the measurements of

CO2 concentration vs. time using the interpolation models

described in the Supplementary Material (SM). We tested: i)

the linear model (Naganawa and Kyuma, 1991); ii) the 2nd order

polynomial model (Wagner et al., 1997); iii) the asymptotic

model (Levy et al., 2011); iv) the intercept model; v) the HM

model (Hutchinson and Mosier, 1981); vi) the Theil-Sen (T-S)

method (Hollander and Wolfe, 1999); vii) the HMR model

(Pedersen et al., 2010). The models (i) to (vi) provide an

estimate of the concentration derivative (dC/dt) at time t = 0

(zt=0), while the outcome of the model (vii) is the direct flux

estimation.

FIGURE 2
Schematic diagram of the workflow.
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The HM model, in particular, is based on Eq. 2 (further

details in the SM):

f0 � V

A

1
t1

C1 − C2( )2
2C1 − C2 − C0

Ln
C1 − C0

C2 − C1
[ ]( ) → f0 � V

A
C (2)

where C represents the constant of proportionality between the

flux and the V/A ratio that should be determined empirically, C0

the gas concentration at time t = 0, C1 the gas concentration at

time t1, and C2 the gas concentration at time t2.

2.3 Data processing

The experimental workflow is shown in Figure 2. First, the

different calculation models were compared in the whole 120 s

acquisition interval (Section 3.1), for each of the M =

160 measurements (4 chamber + sensor combinations, four

set fluxes, 10 replicates for each chamber + sensor

combination and imposed flux). Second, the parametric

[i.e., (i–iii)] and non-parametric [i.e, (iv) and (vi)] models,

which may depend on the number of experimental data, were

applied to subsets of measurements with size N, N-1, . . . to N-N/

2, where N = 120 is the total number of CO2 concentration values

acquired during each measurement (Sec. 3.2). These subsets were

built by taking the first, second, third, . . . to N/2–1 acquired data

as a starting point for the interpolation. For each of the M =

160 measurements we obtained 60 subsets of different length, for

a total of 9,600 subsets. Third, for the parametric models (linear,

2nd order polynomial and asymptotic regressions), we also

assessed the variability of the estimated mean derivative of the

CO2 concentration by considering different temporal intervals.

Once we tested the variability obtained by choosing different

starting points, as explained above, the best ending point has

been identified. To this end, we estimated the mean derivative

starting from an interval of 30 s and then adding one second at

each step. This was repeated for each of the M =

160 measurements.

2.4 Statistical criteria

The models were evaluated by the statistical criteria reported

in Table 1. The main statistical parameters (mean, median, 1st

and 3rd quartile, maximum and minimum value) are shown by

means of box-whiskers diagrams. The Interquartile Ranges (IQR)

have been used for comparing the derivatives obtained by the

different models. Median values obtained from the parametric

models were compared using the Two Sample Hypothesis

Testing by Wilcoxon-Mann-Whitney (WMW) (Bain and

Engelhardt, 1992). After verifying normality using QQ-plots,

TABLE 1 Statistical criteria used to evaluate models.

Statistics Equation

1 Adjusted coefficient of determination. p is the number of parameters used for the
regression (i.e. 2 for linear and asymptotic regression, 3 for 2° order polynomial
regression). The coefficient varies from 0 to 1; it has to be maximized

R2
corr � 1 − (N−1)

(N−p)*(1 − R2 ) where

R2 � 1 − SSR∑(ppmvi−ppmv)2 and SSR � ∑ (ppmvi − ̂ppmvi)2

2 Standard error of the estimate. It has to be minimized Syx �
			
SSR
N−p

√
3 Relative standard error of the estimate. It has to be minimized Syx% � SYX

ppmv

4 Akaike information criterion. (n/p) < 40 (Burnham and Anderson, 2002). It has
to be minimized

AIK = N* Ln(SSRN ) +2p N
(N−p−1)

5 Schwartz’s information criterion (Burnham and Anderson, 2002). It has to be
minimized

BIC � N* Ln(SSRN ) + p* ln(N)

6a Tzt=0 for the (dC/dt)t = 0 determined by linear regression, ppmv(t) = a+b*t,
being t time in seconds. Tzt=0 tests the null hypothesis that the slope b of the true or
population regression line (derivate at time = 0) has zero value (Crow et al., 1960).
It has to be maximized

T = b
Sb
; where Sb � SYX

SX*
			
N−1√ and Sx �

						∑(ti−�t)2
N−1

√

6b Tzt=0 for (dC/dt)t = 0 determined by the polynomial model (second order)
ppmv(t) = a+b*t + c*t2, being t time in seconds. Tzt=0 tests the null hypothesis that
the first order coefficient of polynomial regression b of the true or population
polynomial regression (derivative at time = 0) has zero value (Crow et al., 1960). It
has to be maximized

T � b
Sb
where Sb � SYX*

					
N*D1

√
, D1 is the diagonal element of the inverse matrix of the

coefficient matrix of the linear equations system for calculating the coefficients a, b, c of
the polynomial regression

7. QC (De Galan et al., 1985). It has to be minimized
QC � 100*

											∑(ppmvi−p̂pmvi
ppmvi

)2
N−p

√
8. Explained Variance. It has to be minimized exp .V � S2y−S2YX

S2y
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the presence of outliers was identified by means of the Grubbs

test (Grubbs and Beck, 1972; Massart et al., 1997). A t-test (Crow

et al., 1960) was used to investigate whether the observed

differences between the slopes of the calibration curves

provided by the different models were due to random

measurement errors or to systematic effects.

The proportionality between the derivative values and the

imposed fluxes was verified by means of Pearson’s linear

FIGURE 3
Set flux values versus zt=0 for the different measurement setups (chamber+sensor) and for different parametric regression models. The black
dotted line refers to all data; the black solid line is obtained using only the fluxes lower than 1scc/m; the dotted grey line represents the theoretical
derivative. The R2corr values are also reported.

Frontiers in Environmental Science frontiersin.org06

Baneschi et al. 10.3389/fenvs.2022.1048948

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1048948


correlation coefficient (R) to test the null hypothesis R = 0 (equal-

tail test) at 0.05 significance level. When R was significantly

different from 0, the linear regression between the derivative

(dependent variable) and the imposed flux (independent

variable) was constructed using the least squares method. The

lack of fit of the regression curve was tested by analyzing the

residues with ANOVA and evaluating the ratio F between the

lack of fit and the pure error (F-test, Draper and Smith, 1981).

The lowest detectable signal (YL), the LOD (Limit Of Detection)

and LOQ (Limit Of Quantification) of the system used for flux

measurement were determined using the method reported by

Massart et al. (1997) and Meier and Zünd (2000).

Data processing was performed by the software

STATISTICA 10©.

3 Results

3.1 Model comparison

3.1.1 Parametric models
The parametric models provided different values of the

median and interquartile range for zt=0 (Supplementary Table

S1). For the linear and asymptotic models, the interquartile

intervals were equivalent, whatever statistical criteria were

used for fitting model parameters (Table 1). For the

polynomial model, in contrast, the interquartile intervals

varied greatly with the adopted criterion. Regardless of the

type of sensor, accumulation chamber and statistical criterion

used, the estimated zt=0 was in general lower than the

imposed flux value for all parametric models

(Supplementary Figures S1A, B; S2). The two sensors, even

if coupled to the same chamber, produced significant

differences in the zt=0 values.

Figure 3 shows the zt=0 values versus the imposed fluxes for

the different measurement systems. The calibration curves

obtained for the same measurement system showed different

slopes, depending on the model used for estimating the

derivative. The correlation coefficients of the calibration

curves, excluding outliers, revealed that all linear correlations

between the estimated derivatives and the imposed fluxes were

significantly different from 0 (according to Pearson’s linear

correlation coefficient).

A t-test was used to investigate whether the observed

differences between the slopes of the calibration curves

provided by the three different parametric models were due to

random measurement errors or to systematic effects. The t-test

results for fluxes lower than 1 scc/min are reported in Table 2.

Statistically significant differences between the slopes estimated

using the linear, second order polynomial, and asymptotic

models are shown in bold. No significant differences (t-test,

0.05 significance level) were detected using the A chamber

and the V sensor.

Analysis of variance (ANOVA) was then applied to test

whether the parametric models used to construct the

calibration curves were affected by lack of fit. The results of

the ANOVA on all data, excluding outliers and the highest flux

(1 scc/min), are reported in Table 3. When we used all the

imposed fluxes, the linear relationship between flux and

derivative estimated using the asymptotic model always

showed a lack of fit (Lof) for all systems. In contrast, the

ANOVA indicated that, using fluxes <1 scc/min, the

calibration curves for the L + B and V + A systems showed

no Lof whatever method was used, whereas for the V + B system

they showed a Lof for all three models. When the calibration

curves were constructed using only fluxes lower than 1 scc/min,

the intercept was not significantly different from 0 (at

0.05 significance level) only for the L + B system using the

linear model, and for the V + B system using all fitting models.

Table 3 shows that the V sensor always had higher

detection limits than the L sensor, for the same

accumulation chamber. The A chamber always showed a

higher detection limit than the B chamber. In general, the

detection limit was lower when using the value of zt=0
obtained from linear regression. The YL, LOD and LOQ

limits obtained by calibration curve including fluxes lower

than 1 scc/min were smaller than those calculated by

calibration curve with all imposed fluxes. The detection

limits obtained with linear and asymptotic regression were

comparable and lower than those obtained by polynomial

regression.

Finally, in order to estimate the difference between Vch

and Ve and how this difference depends on the parametric

model and/or on the chosen criterion, we compared the

volumes obtained after removing the outliers by the median

values of zt=0 calculated for each of the 10 measurements for a

TABLE 2 The t-test results to verify the null hypothesis H0: the differences between the slopes of the calibration curves are equal to 0. Flux < 1scc/min. Bold
values denote statistically significant ones.

t-test V + A L + A L + B V + B

Linear—2° order polynomial regression −0.75 −0.26 9.21 3.28

Linear—asymptotic regression 1.86 0.66 8.13 1.76

2° order polynomial - asymptotic regression 0.44 6.59 0.23 −0.20
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given flux. The asymptotic regression provided the highest Ve

median values, whatever the statistical criterion used. The

different behavior of sensor V compared to sensor L must be

noted, especially when the zt=0 values were estimated using the

2nd order polynomial regression (see Supplementary

Table S2).

3.1.2 Non-parametric models
In many cases, zt=0 values statistically compatible with zero

were obtained using the intercept model, especially for low fluxes

and the V sensor. Consequently, the linear relationship between

the logarithm of the derivative and time (see SM Eq. 2) cannot

be used.

The T-S model applied to zt=0 provided results that were

comparable with those obtained by linear regression, using R2
corr

as a statistical criterion (Figure 4). However, deviations were

detected in case of high fluxes using the V + A system, for

which the derivative values obtained by linear regression were

larger than those obtained using the T-S method. Figure 5 shows

that the correlation between the derivatives and the imposed fluxes,

either including or excluding 1 scc/min fluxes, was always larger

than zero, regardless of the instrument used. For fluxes lower than

1scc/min, the R2
corr values were always larger than 0.977 for the L +

A, L + B and V + B systems, and R2
corr � 0.94 for the V + A system.

The results of the ANOVA analysis (Table 4) indicated that the

L + A and L + B systems had no lack of fit, while the V + B system

had lack of fit whatever flux range was considered, and the V + A

system had no lack of fit only for the range of fluxes that include

1 scc/min. All the regression lines that were not affected by lack of fit

had the intercept compatible with 0 (at 0.05 significance level).

Table 4 shows that the limit values YL, LOD and LOQ for the L + B

TABLE 3 Lowest detectable signal (YL), limit of detection (LOD), and limit of quantification (LOQ), values for the three types of regression and for different
instrument combinations. Lof = Lack of fit.

All fluxes Fluxes <1 scc/min

YL (ppmv/s) LOD (scc/min) LOQ (scc/min) YL (ppmv/s) LOD (scc/min) LOQ (scc/min)

L + B System

Linear regression Lof Lof Lof 0.043 0.0018 0.0030

2° order polynomial regression 0.046 0.017 0.031 0.016 0.005 0.010

Asymptotic regression Lof Lof Lof 0.0025 0.0011 0.0021

L + A System

Linear regression Lof Lof Lof 0.042 0.0082 0.016

2° order polynomial regression Lof Lof Lof 0.053 0.0095 0.018

Asymptotic regression Lof Lof Lof Lof Lof Lof

V + B System

Linear regression 0.035 0.0074 0.015 Lof Lof Lof

2° order polynomial regression 0.12 0.027 0.053 Lof Lof Lof

Asymptotic regression Lof Lof Lof Lof Lof Lof

V + A System

Linear regression 0.012 0.021 0.040 0.073 0.014 0.027

2° order polynomial regression 1.02 0.18 0.36 0.45 0.085 0.16

Asymptotic regression Lof Lof Lof 0.070 0.014 0.028

FIGURE 4
Binary diagrams comparing the zt=0 by the T-S method and
those obtained by linear regression (maximizing R2corr). Point
types correspond to different set fluxes. All replicates obtained for
each set flux value and all measurement setup combinations
(chamber+sensor) were used.
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system are lower for flux values below 1 scc/min with respect to the

ones obtained for higher flux values.

The difference between Vch and Ve was evaluated also in

this case. The median values of the effective volumes based on

the experimental derivatives, calculated using the T-S method,

were comparable with those determined using the parametric

models and they were all higher than Vch (Supplementary

Table S2).

FIGURE 5
Set fluxes values versus zt=0 calculated with the TSmethod for the different measurement setups systems (chamber+sensor). The black dotted
line refers to all data; the black solid line is obtained using only the fluxes lower than 1scc/m; the dotted grey line represents the theoretical derivative.
The R2corr values are also reported.

TABLE 4 YL, LOD, and LOQ values for the different types of measurement system calculated using TS model.

All fluxes Fluxes <1 scc/min

YL (ppmv/s) LOD (scc/min) LOQ (scc/min) YL (ppmv/s) LOD (scc/min) LOQ (scc/min)

L + B System 0.47 0.18 0.35 0.017 0.007 0.014

L + A System 0.042 0.007 0.013 0.041 0.009 0.017

V + B System Lof Lof Lof Lof Lof Lof

V + A System Lof Lof Lof 0.082 0.014 0.028
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3.1.3 Flux models
In the HMmodel, the value of the constant of proportionality

between the flux and the V/A ratio, C, was obtained by

considering the median of all values in the subsets, and it can

be directly compared to the value of the derivative obtained by

the parametric models. The value of C showed significant

variation (using the WMW test) in all systems for all the

different imposed flux values (T median values of the

FIGURE 6
Set fluxes values versus term C calculated with the HM models (Eq. S3) for the different measurement setups (chamber+sensor). The black
dotted line refers to all data; the black solid line is obtained using only the fluxes lower than 1scc/m; the dotted grey line represents the theoretical
derivative. The R2corr values are also reported.

TABLE 5 YL, LOD, and LOQ values for the different types of measurement system calculated by HM model.

All fluxes Fluxes <1 scc/min

YL (ppmv/s) LOD (scc/m) LOQ (scc/m) YL (ppmv/s) LOD (scc/m) LOQ (scc/m)

L + B System Lof Lof Lof 0.064 0.016 0.03

L + A System Lof Lof Lof 0.098 0.016 0.03

V + B System 0.23 0.051 0.10 0.19 0.032 0.06

V + A System 0.46 0.18 0.27 0.35 0.13 0.26
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Supplementary Table S2). In general, the median values of C were

comparable with the zt=0 medians estimated using the 2nd order

polynomial and linear regression models, but the interquartile

intervals of the C values were significantly larger than the values

of the derivatives calculated using the parametric models. The

correlation R2
corr between flux values and the C terms are shown

in Figure 6. The values of R2
corr are all significantly different from

zero, so it was correct to build calibration straight lines using the

least squares technique.

The ANOVA analysis results (Table 5) indicated that the

calibration curves calculated using all fluxes showed lack of fit

for the L + A and L + B systems; this was not the case when

considering only fluxes <1 scc/min. The intercepts of the calibration

curves were significantly different from zero for the L + A, L + B and

V + A systems, but not for the V + B system. As illustrated in

Table 5, the L + A and L + B systems had the same LOQ. Also, Ve is

larger than Vch for both chambers (Supplementary Table S2).

The HMR model gives directly the flux values by using the

concentration values at time t, c(t), which depends on f, k and Ø0

(see SM Eq. 4). These parameters were computed using a non-

linear system of equations and their convergence values varied

greatly with the initial tentative solutions, especially in the case of

low fluxes. This large variability indicates that this method is not

robust for our purposes.

3.2 Influence of the interpolation time
range

First, we consider the lower limit, that is quite critical.

Figure 7 and Supplementary Figure S3 show examples of how

the derivative value changes as a function of the chosen lower

limit of the estimation time range, keeping the upper limit at

120 s. By using the 2nd order polynomial regression, the value of

the derivative varied greatly with the variation of the lower limit,

while this issue did not emerge using the linear regression.

The T-S model will not be discussed here, as it is independent

of the choice of the lower interpolation limit.

For the HM model, derivative estimates varied greatly with

the value of the lower limit. Figure 8 reports the maximum and

minimum values, the median and the interquartile interval of all

FIGURE 7
Trend of the zt=0 calculated using linear (left) and 2° order polynomial (right) regressions as a function of the choice of the left limit (best
approximating t=0). The value of R2corr is also reported, as well as the identified starting points and the measured CO2 concentration versus time.

FIGURE 8
Calculation of zt=0 for each subset obtained by using the HM
method and changing the upper limit of the interpolation interval.
Themedian, interquartile, minimum andmaximum values for each
replicate and for a given set flux are reported. The X-axis
shows, for each subset, the value of the left limit (approximating
t=0) that characterizes the subset. The blue line represents the
theoretical derivative.
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the estimates for each selected range, obtained by varying the

time t0 (lower limit) and therefore C0. It should be noticed that

when t0 was between 13 and 25 s after the start of measurements,

the values of the median of the C term were close to the

theoretical derivative. Hence, considering all results, we

obtained different estimates and there was no definite

statistical criterion for the choice of the optimal lower limit of

the interpolation range.

A further point concerns the value of the upper limit to the

interpolation range, using the same lower limit. Here we

consider: a) An upper limit for which the value of R2
corr is

maximum, and b) an upper limit coincident with the final

experimental acquisition time (Supplementary Table S3). The

comparison showed that for the L + A system there were no

significant differences between the results for all types of

regression used. For the L + B system, there were no

significant differences using the linear regression, while using

the 2nd order polynomial regression the derivative estimates

obtained using the final acquisition time as upper limit were

always larger than those obtained using the upper time limit that

maximizes R2
corr. For the V + A system, the mean values of the

derivatives estimated with the linear and asymptotic regression

were comparable for flux values larger than 0.02 scc/min. When

using the 2nd order polynomial regression with flux values <1 scc/
min, the derivatives estimated by maximizing R2

corr were always

lower than those obtained using the upper limit equal to the final

acquisition time. For the V + B system, the two estimation

procedures led to different results only in the case of fluxes of

0.02 scc/min, regardless of the type of regression used. In several

cases, however, the value of the standard deviation on the

estimated derivative can be so large that it is not possible to

discard the null hypothesis that the mean values are equal (at

0.05 significance level).

4 Discussion

4.1 Measurement reproducibility

The reproducibility of the zt=0 values varied depending on

the interpolation model adopted and the measurement

system used.

The 2nd order polynomial regression showed the most

marked variability of zt=0 values, while the asymptotic or

linear regressions displayed smaller variability. For each

measurement system, the largest variability in the estimates

of the derivatives was observed for the highest values of the

imposed flux, at 1 scc/min. Comparing the various

instrumental setups, the main differences in the

Interquartile Range were observed for fluxes of 0.02 scc/

min. The results obtained by using different statistical

criteria, as reported in Table 1, indicate that the variations

of the median values of the derivative estimated using the 2nd

order polynomial regression were larger than those obtained

by the asymptotic and linear regression. For the linear

regression, the percentage of IQR with respect to the

median value was close to 10% when using the V sensor

and an imposed flux of 0.02 scc/min; in all the other cases

it was always less than 5%, with values for the L sensor lower

than those for the V sensor. Using the 2nd order polynomial

regression for data acquired with the V sensor led to variations

that can be larger than 100% when the flux is 0.02 scc/min. For

higher fluxes, the variations remained larger than 30% (the

largest variations always occurred when using chamber A).

The L and V sensors showed different behaviour also using

non-parametric models (T-S model) and the flux model

(HM). In general, the IQR of the derivatives estimated

using the HM model were larger than those determined by

linear regression. The derivatives estimated on data acquired

with the V sensor were more variable than those obtained

when using the L sensor. This can be attributed to the different

RMS of the two sensors.

The volume of the accumulation chamber played a relevant

role in determining the reproducibility of the measurements. The

reproducibility of the derivative calculation, and consequently of

the flux value, is evaluated through 10 replicates of the same

measure. Supplementary Table S3 shows that the chamber with

smaller volume is characterized by standard deviation and IQR

values of the derivative that are higher than those obtained for the

chamber with larger volume, considering the same sensor and the

same model for derivative calculation.

The reproducibility of the measurements obtained by

using two different sensors and accumulation chamber

volumes can be estimated by the number of measurements

to be taken in order to have the same 95% confidence interval

for the mean value of the flux. For the case of zt = 0 estimated

by linear regression and fluxes of 0.02 scc/min, 178 repetitions

were necessary for the V + B system to obtain the same

confidence interval as that obtained with 10 replicates

using the L + B system. For the V + A system, it would

take 70 repetitions to have the same confidence interval

obtained from 10 measurements using the L + A system.

Considering the L + A system and asymptotic regression, a

similar number of replicates was needed to have the same 95%

confidence interval obtained with 10 replicates and linear

regression, whereas using 2nd order polynomial regression

about 100 replicates were required.

Comparing the T-S method with linear regression for the

same instrumental setup, the number of replicates needed to

obtain the same confidence interval was found to be similar;

whereas in the case of the HM method it was generally necessary

to have a number of measurements from 2 to 10 times larger than

the amount needed for the linear method.

In light of these results, linear regression shows the lowest

variability compared to all other methods, regardless of the

sensor used and the chamber volume.

Frontiers in Environmental Science frontiersin.org12

Baneschi et al. 10.3389/fenvs.2022.1048948

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1048948


4.2 Bias

The measurements carried out with the four measurement

setups confirmed that the gas fluxes determined using Eq. 1 and

the volume of the accumulation chamber Vch were systematically

lower than the imposed ones. Literature studies, carried out for

soils with different porosity, showed an underestimation of the

fluxes ranging from 12 to 30% (Nay et al., 1994; Evans et al., 2001;

Pumpanen et al., 2004). Butnor and Johnsen (2004) found an

underestimation <5% for CO2 fluxes in soils with low porosity

and diffusivity, but underestimations of 10%–15% for sands and

up to 25% for gravel. In all such works, the zt=0 calculation was

made using linear regression and R2 as a statistical criterion. In

particular, our experimentation confirms what was found in

experiments conducted under controlled conditions with

known diffusive fluxes generated by appropriately designed

calibration systems, that reproduce the interaction between

the instrument and a well characterized porous medium. As

detailed in this paragraph, the influence of using the chamber

volume (Vch) in the Eq. 1 produced differences between the

calculated gas fluxes and the imposed ones.

The median percentage differences between the estimated

and imposed flux, using linear regression, ranged between 3%

and 20%, with the highest values in case of low fluxes. Using the

asymptotic regression, the estimated fluxes were larger than the

imposed ones, with a percentage difference varying between

12 and 54%. In the case of 2nd order polynomial regression

and fluxes of 0.02 scc/min, the imposed flux values were

overestimated by 200%, about 100%, 2%, and 12% using the

V + B, V + A, L + B and L + A systems respectively. For fluxes

larger than 0.02 scc/min, the estimated fluxes were lower than the

imposed ones, except in the case of the V + A system, where an

overestimation of about 3% was obtained. However, in about

70% of the cases, the flux values calculated by the 2nd order

polynomial regression were higher than those determined by

linear regression and in general closer to the imposed flux values.

The difference between estimated and imposed fluxes may

also be caused by the uncertainties in the effective volume of the

system. Even if the total system volume is used for the calculation

of the theoretical derivative, a flux underestimation of about 10%

remains in the 75% of cases. Therefore, it is necessary to

introduce an additional volume correction coefficient in order

to have a close correspondence between the imposed and

measured fluxes. The use of Ve for the flux calculation has

been proposed by several authors (Goulden and Crill, 1997;

Drewitt et al., 2002; Jassal et al., 2012), who determined its

value by calibrating the system with a single flux value.

However, the experimental relation between flux and

estimated derivative is not a simple proportionality, as

expected from Eq. 1. The effective volume strongly depends

on the model used to calculate the zt=0 values, and it summarizes

the corrections generated by all deviations from the ideal

behavior of the measurement system, such as the absence of

proper mixing, presence of leaks, gas absorption on the walls of

the chamber and the other volumes etc., including the accuracy of

the sensor. Therefore, the best way to circumvent the problem of

instrumental bias correction is to build an experimental

calibration curve between imposed fluxes and estimated

derivatives for each setup (chamber + sensor), once an

interpolation model has been selected.

4.3 Calibration curve

A linear calibration curve is the fitting line obtained from

reporting the estimate of zt = 0 versus the corresponding imposed

flux (see Figure 3). The measured flux, in this way, is estimated

via the equation of the fitting line in the range of the imposed

flux. Considering the calibration curves built with an imposed

CO2 flux from 0.02 to 1 scc/min, the differences between the

theoretical value of the concentration derivative and the value

estimated for 0.02 scc/min are between +30% and +50%

(percentage with respect to the median value), with positive

(negative) values representing estimated values larger (lower)

than theoretical values of the flux. When the calibration curve is

built on flux values up to 0.2 scc/min, the difference between the

estimated derivative and the theoretical one is −2% for V +

A, −8% for L + A and +13% for the L + B systems. Therefore, the

linear calibration curve built on the whole range of imposed

fluxes, in which the highest value is two orders of magnitude

larger than the lowest one, is not suitable for reconstructing the

derivative value for low fluxes.

The minimum flux value that can be safely estimated using a

given instrument must be quantitatively determined. Some

authors (Nickerson, 2016; Courtois et al., 2019) used the

minimum detectable flux (MDF) method, which estimates this

limit from the number of moles contained in the accumulation

chamber. On the other hand, a calibration curve allows one to

calculate the LOD directly from the derivative data and from the

measured flux values. The LOD, determined by the calibration

curve, has the advantage to account for all the uncertainties of the

measurement and not only those due to the RMS noise value of

the instrument.

4.4 Choice of interpolation time range

The determination of the optimal range where to estimate the

derivative value is often an operator-dependent decision, as in

most cases the concentration derivative is not constant in time. It

is not straightforward to identify the most appropriate lower

temporal limit for the interpolation of the CO2 concentration

curve, especially when the goal is to estimate the gas flux in

undisturbed (natural) conditions. Typically, field measurements

show that the CO2 concentration has an initial “dead band”

(Acosta et al., 2018) that depends on the experimental conditions.
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In practice, the acquired dataset is composed of two segments:

the first is a disturbed phase corresponding to the initial

placement of the chamber (Davidson et al., 2002; Alm et al.,

2007) and the second represents the increase in concentration

due to the natural gas flux. The starting point of the second phase

should be identified, searching for a break-point between the two

regimes. A commonly accepted idea is to define an initial “dead

band” of about 20 s (Brændholt et al., 2017).

Even taking different lower limits of the interpolation

range, the derivative values obtained using the linear

regression or the polynomial regression were similar

(Figure 7 Supplementary Figure S3). However, the values

obtained from the polynomial regression were always larger

than the imposed flux value and those calculated using the

linear regression were always lower. The results obtained

using the polynomial regression showed a larger variability

than those obtained using linear regression, for any values of

the imposed flux.

The procedure for the choice of the interpolation time range

adopted in this paper is similar to that used by Hoffman et al.

(2015), where the break point corresponds to the lower temporal

limit for which the least squares linear regression gives the

highest value of R2
corr. The difference between the values of

the derivatives estimated using the linear or the 2nd order

polynomial regression is smaller than the difference between

the highest and the lowest derivative estimates obtained by

considering different lower limits to the interpolation range.

The derivatives estimated using the 2nd order polynomial

regression are higher and therefore closer to the theoretical

value and more accurate than those estimated by linear

regression.

These results suggest that, at least for the flux values

considered here, the choice should be between the linear

regression, which has a larger bias but less dispersion, and the

2nd order polynomial regression, which has a smaller bias but a

larger dispersion of estimated values.

The HM method provided large measurement-to-

measurement variability of the derivative estimates.

Derivatives estimated using the T-S method on datasets

without “dead band” had less variability than those estimated

from the entire set of CO2 concentration measurements. In these

cases, the values obtained were close to those estimated using the

linear regression and the variability of the derivative values

decreased.

The choice of the upper limit of the interpolation time

interval was found to be less critical than the choice of the

lower limit. By varying the upper limit between 60 s and 120 s,

the derivative estimates did not change significantly in the

case of linear or asymptotic regression (Supplementary Figure

S3). On the other hand, the variability of the derivative

estimate could be stronger when considering an upper limit

that is less than 60 s, especially in the case of 2nd order

polynomial regression.

5 Conclusion

The laboratory tests discussed in this work showed that

calibration of the measurement apparatus before field surveys

is mandatory to reduce the uncertainty of CO2 flux estimates

obtained by a non-steady-state closed dynamic chamber.

The calibration curve allows: 1) To estimate the LOD and

LOQ; 2) to quantify the correction coefficient that summarizes

the corrections associated with all the deviations from the

ideal behavior of the measurement system (absence of proper

mixing, presence of leaks, gas absorption on the walls of the

chamber, effective volume, etc.), including sensor accuracy

and the bias due to the models used for derivative or flux

estimate.

Hence, laboratory calibration becomes an essential part of the

CO2 flux survey procedure and the optimal calibration curve

should take into account the range of fluxes expected in the field.

This is crucial in case of low to very low fluxes (i.e., <1 scc/min,

typical of natural soil/ecosystem emissions for example in high

mountains or in the Arctic tundra). An important outcome is

also that the range of flux values to be used for building the

calibration curve should be lower than two orders of magnitude.

Replicates of the measurements for the same imposed fluxes are

also necessary to test and evaluate the reproducibility of the

measurements.

The results reported here also indicated that the best

procedure to identify detectable data is calculating the LOQ

by the calibration curve. Unreliable data that have to be reported

as < LOQ.

Results obtained by means of statistical simulation underlined

that the lower limit for the interpolation of the concentration curve

should be determined before the flux calculation, using the least

squares linear regression that gives the highest value of R2
corr. The

choice of the upper limit is less critical than the choice of the lower

limit; we found that when varying the upper limit between 60 s and

120 s, the derivative estimates do not change significantly for fluxes

larger than 0.02 scc/min when using both the linear and asymptotic

regression methods.

Even though the best fitting model should be selected using

R2
corr values, as suggested by Silva et al. (2015), our results

underlined that the reproducibility of derivatives estimated by

linear regression is larger than that determined by all other

models, regardless of the imposed flux, sensor and

accumulation chamber type. Therefore, in order to reduce the

variability of derivative estimates due to instrumental noise, we

suggest using linear regression. The bias introduced by the use of

this model can be corrected using a calibration curve.

This work confirms the importance of obtaining a reliable

calibration curve for diffuse degassing measurements.

Further studies aimed at the definition of shared standard

protocols would allow for a direct data comparison even in

case of datasets obtained using different instrumental

configurations.
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