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High-resolution radar rainfall data have great potential for rainfall predictions up to

6 h ahead (nowcasting); however, conventional extrapolation approaches basedon

in-built physical assumptions yield poor performance at longer lead times (3–6 h),

which limits their operational utility. Moreover, atmospheric factors in radar

estimate errors are often ignored. This study proposed a radar rainfall

nowcasting method that attempts to achieve accurate nowcasting of 6 h using

long short-term memory (LSTM) networks. Atmospheric conditions were

considered to reduce radar estimate errors. To build radar nowcasting models

based on LSTM networks (LSTM-RN), approximately 11 years of radar, gauge

rainfall, and atmospheric data from the UK were obtained. Compared with the

models built onoptical flow (OF-RN) and random forest (RF-RN), LSTM-RNhad the

lowest root-mean-square errors (RMSE), highest correlation coefficients (COR),

and mean bias errors closest to 0. Furthermore, LSTM-RN showed a growing

advantage at longer lead times, with the RMSE decreasing by 17.99% and 7.17%

compared with that of OF-RN and RF-RN, respectively. The results also revealed a

strong relationship between LSTM-RN performance and weather conditions. This

study provides an effective solution for nowcasting radar rainfall at long lead times,

which enhances the forecast value and supports practical utility.
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1 Introduction

Nowcasting is defined as local detailed forecasting at lead

times of 1–6 h using any method, along with a full description of

the current weather (Wang et al., 2017). It is a key instrument for

predicting rapidly changing and severe weather (Sun et al., 2022),

such as heavy rain and violent thunderstorms (Pulkkinen et al.,

2019). It is also critical for small, mountainous, and urban

watersheds, where stream flow responds rapidly to rainfall

(Imhoff et al., 2020). Generally, nowcasting offers benefits to

many sectors of the real world, such as emergency services,

energy management, and flood early warning systems (Wilson

et al., 2010).

Numerical weather prediction (NWP) and radar-based

rainfall prediction (radar nowcasting) are the two main

approaches to nowcasting with different application scales

(Pulkkinen et al., 2019). By feeding current weather

conditions into atmospheric models, NWP models try to

simulate atmospheric behavior and provide rainfall

predictions on a global and mesoscale (Cuo et al., 2011).

However, the predictions offered by NWP systems for short

lead times (0–2 h) are often unsatisfactory because of their

coarse temporal resolution and low update frequency (Imhoff

et al., 2020), along with the difficulties in model spin-up and

data assimilation (Sun, 2005; Pierce et al., 2012; Sun et al.,

2014; Buehner and Jacques, 2020). Consequently, alternative

methods based on radar that provide more timely and

accurate predictions have been widely used. With high

spatial and temporal resolutions, typically 1 km and 5 min,

respectively, radar rainfall products are regarded as having

great potential for short-term rainfall forecasts (Ravuri et al.,

2021). Radar nowcasting is the process of extrapolating

rainfall based on apparent motion that has been analyzed

using the most recent radar images (Wang al., 2017).

Currently, radar extrapolation methods can be classified as

object- or pixel-based (Zahraei et al., 2013). The object-based

methods, as represented by Storm Cell Identification and

Tracking (SCIT) and Thunderstorm Identification,

Tracking, Analysis and Nowcasting (TITAN) proposed by

the US, consider storm events as separate objects thus

performing well in detecting and tracking specific

thunderstorm cells (Dixon and Wiener, 1993; Vila et al.,

2008). The pixel-based methods, on the contrary,

outperform in forecasting convective storms and

precipitation in stratocumulus clouds by using full motion

fields (Grecu and Krajewski, 2000; Berenguer et al., 2011). One

recent progress is the optical flow-based method. It introduces

computer vision techniques to make extrapolation of radar

maps, and displays high flexibility and accuracy (Bowler et al.,

2004).

However, owing to the separated tracking and extrapolation

steps, as well as the in-built non-linear physical assumptions, the

conventional extrapolation approaches have limited success.

They struggle to capture complex rainfalls, and show a

decreasing skill at longer lead times (Golding, 1998; Liguori

and Rico-Ramirez, 2013; Ravuri et al., 2021). In this context,

machine learning methods, especially artificial neural networks

(NNs), have been introduced in nowcasting. Based on self-

adaptive principles that learn from samples and grasp

functional relationships between data, NN has been widely

used to predict, recognize, and classify a wide range of

weather events, and is also one of the most appealing

strategies for nowcasting (Valverde Ramírez et al., 2005;

Hernández et al., 2016). Koizumi (Koizumi, 1999) found that

models built on NN have higher skill scores than other

nowcasting models, when using weather data of 1 year for

training. Apart from the improved prediction accuracy, the

NN trained by Foresti et al. (2019) using 10-year weather

radar data in the Swiss Alps effectively learned and

reproduced growth and decay patterns in the atmosphere,

which is intrinsically challenging to predict. With the

development of computer science, deep learning has risen

drastically and expanded swiftly in many data-rich scientific

disciplines, including nowcasting (Ayzel et al., 2020).

Composed of multiple processing layers, the improved

networks support the exploration of insight and complex

structures of datasets. They overcome the drawbacks of

traditional NNs, such as ineffective training practices and

inability to manage extensive data, thus, becoming popular in

handling complicated issues (Jia et al., 2017; Van et al., 2020). For

example, Agrawal et al. (2019) presented a nowcasting model

based on convolutional NN that, compared with other

commonly used methods, performed favorably. For time-

series problems, Chen et al. (2021) used long short-term

memory (LSTM) networks to build a nowcasting model, and

the results exhibited an evidently reduced prediction error. A

wide variety of fantastic networks have been proposed and have

made significant progress in nowcasting (Shi et al., 2015; Shi

et al., 2017; Tian et al., 2019; Kumar et al., 2020; Luo et al., 2020),

but a critical problem is that lead times in past studies have been

relatively short (usually 0–2 h) (Schmidhuber, 2015; Kang et al.,

2020). In fact, deep learning, particularly LSTM networks with

fantastic memory ability (Gers et al., 2002), have great promise

for achieving longer lead times in nowcasting.

In addition, previous research has focused on upgrading

nowcasting algorithms while disregarding the many errors in

radar rainfall estimates, which could result in numerous

uncertainties. These uncertainties in radar data are carried

over into radar nowcasting and grow with increasing rainfall

rates (Ebert et al., 2004; Liguori et al., 2012). It is well known that

the accuracy of radar rainfall estimates is affected by various

factors, such as spurious echoes (e.g., from the ground, sea, and

aero-planes), attenuation of the radar signal (Krämer et al., 2005;

Villarini and Krajewski, 2009), and beam blockage (Joss and Lee,

1995). Actually, apart from the radar measurement instruments,

weather conditions can also lead to radar estimation errors,
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which have rarely been explored in previous studies (Seo et al.,

1999; Song et al., 2017). Recently, researchers have begun to focus

on this issue. Dai and Han (Dai and Han, 2014) were the first to

incorporate the wind field into the construction of a radar rainfall

uncertainty model, and the proposed model improved the

correlation coefficients of most rainfall events by over 10%.

Yang et al. (2020) considered multiple atmospheric fields to

build a radar rainfall uncertainty adjustment model, and the

results indicated a satisfactory performance of the model under

high relative humidity and wind speed.

Therefore, this study incorporated atmospheric data into radar

rainfall nowcasting with the aim of reducing radar estimate errors

and improving prediction accuracy. A framework for nowcasting

radar rainfall with long lead times of 1–6 h using LSTM networks

was established. To investigate the performance of the proposed

models at different altitudes and weather conditions, models were

built using approximately 11 years of radar, gauge rainfall, and

atmospheric data across the UK. Two other methods, optical flow

(OF) and random forest (RF), were also built to further demonstrate

the strengths of the proposed models.

2 Study area and data

The UK is located on Europe’s western shore, between 49°N and

61°N. Influenced by the west wind and the Atlantic Ocean, the UK

has a cloudy and rainy climate, with an average of 1,000 mm rainfall

every year. Rainfall in the UK is affected by geographic location to

some extent; generally, the further west and the higher the altitude,

the greater the rainfall. Extreme rainfall events are predicted to

become more common as global temperatures rise, and the

increased intensity of rainfall affects the frequency and severity of

surface water floods, particularly in urban areas.

The radar rainfall data used in this study, with a spatial

resolution of 1 km and temporal resolution of 5 min, were

downloaded from the website (https://catalogue.ceda.ac.uk/)

supplied by the UK Met Office. Sufficient data were collected

from 2007 to 2017. The data were subjected to extensive

processing by the NIMROD system for corrections with

regards to several sources of radar errors (Song et al., 2017).

The NIMROD radar rainfall data are one of the best available

sources of rainfall information (Zhu et al., 2014). The 5-min

radar rainfall data were adjusted at a 1-h rate to make it

compatible with the hourly gauge data. Then, the radar

rainfall value of the corresponding gauge was extracted for

modelling at each station.

Gauge rainfall data with resolutions of .2 mm and 1 h from

40 tilting bucket rain gauges between 2007 and 2017 (except for

very few sites) were collected from theMet Office Integrated Data

Archive System Land and Marine Surface Stations dataset.

Atmospheric data, including air pressure, relative humidity,

temperature, wind direction, and wind speed, were obtained

from the same source (Met Office, 2019). The Met Office built

the Meteorological Monitoring System at each station to collect

data at a resolution of 1 min. The data were then aggregated into

hourly data. The Met Office was responsible for ensuring the

quality of the data (Met Office, 2012). Forty gauging stations were

used for modeling, as shown in Figure 1 (the labeled stations KOI

and EGDMwere used as demonstration examples in Section 4.1).

The lowest and highest altitudes of these stations were 4.27 m,

and 246.21 m, respectively. These stations were separated into

three classes depending on altitude for subsequent analysis

(Sections 4.2–4.4).

3 Methodology

3.1 Radar rainfall nowcasting models
based on LSTM networks (LSTM-RN)

The basic architecture of a NN includes the input, output,

and hidden layers. Recurrent NNs (RNNs) are a variant of

traditional NNs that introduce a cyclic structure. Owing to

this structure, the outputs of a given input can be influenced

not only by the current input but also by the residual state left

over from prior calculations (Warner and Misra, 1996). RNNs

are, thus, well-suited in simulating time series and other

dynamical processes that are clearly reliant on history (Le

et al., 2017). LSTM, an improved type of RNN, replaces the

neurons in a regular RNN with an upgraded memory unit; each

LSTM memory unit includes an input gate, output gate, a forget

gate, and memory cells. Compared with RNN, LSTM can solve

complicated, artificial long-time-lag challenges that earlier RNNs

could not (Hochreiter and Schmidhuber, 1997).

The LSTM architecture used in this study consisted of three

layers: an input layer (radar rainfall and atmospheric data at each

time step), a hidden layer, and an output layer (gauge rainfall at a

certain lead time). Figure 2 shows the LSTM architecture used for

modeling at 1-h lead time. Themodels were constructed based on

this architecture according to the following steps:

Step 1: Build the initial model (the selection of hyper-

parameters can be found in Section 4.1).

Step 2: Normalize the data. Perform MinMaxScaler

normalization on the datasets x (input) and h (output). The

MinMaxScaler normalization formula is as follows:

Xijstd � Xij −Xjmin

Xjmax −Xjmin
(1)

Xijscaled � Xijstd × max −min( ) +min (2)

Where Xijscaled and Xij are the data before and after

normalization, respectively, at time i and of variable j, Xijstd is

the temporary standardization result. Xjmin and Xjmax are the

minimum and maximum values, respectively, of variable j; max

andmin are the maximum andminimum values of the interval to

be mapped, which are typically 0 and 1, respectively.
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FIGURE 1
Locations of 40 stations in the UK study area with terrain elevation.

FIGURE 2
Architecture of the LSTM networks used in this study: xt, ht, and Ct are the input, output, and cell state at time step t, respectively; s is the length
of input nodes at a time, while inputting the sequence xt−s to xt−1, the model outputs the predicted rainfall ht (at 1 h lead time); ft: forget gate; it: input
gate; ~Ct: cell update; Ot: output gate.

Frontiers in Environmental Science frontiersin.org04

Zhu et al. 10.3389/fenvs.2022.1054235

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1054235


Step 3: Divide the data. Take normalized datasets x and h

before 2016 as training data and the rest as test data.

Step 4: Organize the data and train the model. The training

data and test data were organized as the architecture illustrated in

Figure 2. The radar rainfall series and corresponding atmospheric

data were used as input nodes, with the gauge rainfall serving as

the target variable. To improve the generalization ability of the

model and avoid overfitting, the organized data were randomly

shuffled. The rainfall predicted by this model was denormalized

before it was used as the final result.

The LSTM-RN models of the 40 stations with 1-h lead time

were generated using the prior process. Similar procedures were

performed to build the LSTM-RN models with lead times

of 2–6 h.

3.2 Radar rainfall nowcasting models
based on RF (RF-RN)

Random forest (Breiman, 2001) is a conceptually simple

machine-learning algorithm that combines the bagging

ensemble learning theory with the random subspace method.

It is made up of numerous decision tree classification modules

and is highly efficient with large datasets. The tree-based machine

learning method displayed high prediction accuracy (Speiser

et al., 2019); therefore, it was adopted in this study to build

comparative models.

The RF-RN models used in this study were constructed as

follows:

Step 1: Randomly select N separate sample datasets from the

training datasets as the training subset of each decision tree (the

selection of N is discussed in Section 4.1).

Step 2: Establish a categorical regression tree for each sample

dataset to generate N decision trees. For each node of the decision

tree, the variable subset was randomly sampled from the original

dataset, and the optimal variable was selected from the subset using

the Gini index minimum criterion for node splitting and branching.

Step 3: Each categorical regression tree grew recursively from

top to bottom, and stopped growing when the minimum size of

the leaf nodes was reached. Subsequently, all the decision trees

were combined into a random forest.

Step 4: The radar rainfall data and atmospheric data from the

test sets were fed into the constructed model, and N decision trees

were used to predict. The regression value was the average of the

predicted outcomes of each decision tree.

3.3 Radar rainfall nowcasting models
based on OF (OF-RN)

In the field of computer vision, OF is typically considered as a

collection of techniques to infer velocity patterns or fields from a

series of image frames (Liu et al., 2015; Woo and Wong, 2017). For

rainfall prediction, Ayzel et al. (2019) developed a set of tracking

models based on two OF formulations, Sparse (Lucas and Kanade,

1981) and Dense (Kroeger et al., 2016), as well as two extrapolation

techniques. The OF models built were an open benchmark for radar

nowcasting. In this study, we used the dense model, which utilized a

dense inverse search (DIS) algorithm to construct a continuous

displacement field from two consecutive radar images. The DIS, a

global OF algorithm proposed by Kroeger et al. (2016), can explicitly

estimate the velocity of each image pixel based on the analysis of two

continuous radar images.

This study used the “rainymotion” codebase, provided by

Ayzel et al., to build the second type of comparative models,

which is available at the following link: https://github.com/

hydrogo/rainymotion.

3.4 Experimental design and evaluation
indicators

Figure 3 shows the experimental flowchart. The data

division and model construction processes have been

described above, and the following paragraphs describe the

three analysis parts.

First, the accuracy of the LSTM-RN models at different lead

times and altitudes was investigated to better understand the

performance pattern and further explore the causes of the

difference in accuracy. The lead times ranged from 1 h to 6 h,

as described in Section 3.1. Owing to the large number of gauges,

it was impossible to obtain the exact performance of each model;

however, roughly averaging the error indicator results of all

models would miss the underlying causes of the models’

varied performance. Thus, we divided the stations into three

classes based on their altitude (Figure 2) and compared the

performance of the models at different altitude classes. Models

with altitudes <75 m, >75 m and <150 m, and >150 m
and <250 m were classified as low, medium, and high

altitudes, respectively. Similar studies have also divided the

gauge stations into three altitude classes (Milewski et al.,

2015). The thresholds in this study were determined based on

the characteristics of the data. With such thresholds, the number

of data points in each class was approximately the same, and the

differences between classes were enlarged as much as possible.

The corresponding results are presented in Section 4.2.

Second, we constructed two types of comparative models, the

RF-RN and OF-RN models, and ran identical rainfall nowcasting

experiments. Four rainfall events were chosen to visually evaluate the

prediction abilities of themodels, and error indices were calculated to

quantitatively assess the performance of themodels from1 to 6 h lead

times. The corresponding results are presented in Section 4.3.

Finally, to investigate the relationship between the LSTM-RN

model performance and diverse weather conditions, the test sets

were divided into five classes depending on the rainfall rate (R)

and relative humidity (H): classes A1–A5: R = (0, .2] (.2, .4] (.4,
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.8] (.8, 1.6], and R > 1.6 mm/h by rainfall rate; classes B1–B5: H =

[0,80) [80,85) [85,90) [90,95), and H > 95% by relative humidity.

The corresponding results are presented in Section 4.4.

Three error indices, namely, root-mean-square error

(RMSE), mean bias error (MBE), and correlation coefficient

(COR), were selected to evaluate the models. The RMSE,

MBE, and COR were defined as follows:

RMSE �
������������∑N

i�1 yi − xi( )2
N

√
(3)

MBE � ∑N
i�1 yi − xi( )

N
(4)

COR � ∑N
i�1 xi − �x( ) yi − �y( )�����������∑N

i�1 xi − �x( )2
√ �����������∑N

i�1 yi − �y( )2√ (5)

where yi and xi are the rainfall at time i predicted by the model and

obtained from the rain gauge, respectively; �y and �x are the average

rainfall of the series predicted by the model and obtained from the

rain gauge, respectively; and N is the length of the rainfall series.

The RMSE is the square root of the average of squared errors and

is often used to measure the differences between the predicted or

simulated values and the true values. This metric was chosen to

quantify the accuracy of the prediction results, and a lower RMSE

suggested a better match to the true value. The MBE assesses the

average overestimation or underestimation of accumulated rainfall,

with a perfect score of 0. This index was selected to investigate the

deviation direction and extent of the model’s prediction, that is, the

model’s tendency to underestimate or overestimate rainfall. TheCOR

provides correlation information between the predicted or simulated

values and the true values, which can indicate the model’s ability to

capture the subsequent rain-fall trends in this study. COR ranges

from –1 to 1, with a higher COR indicating better recognition.

Moreover, to eliminate the effect of magnitude, we used relative

bias to explore the bias at different rainfall rates as follows:

σR � ∑N
i�1

yi − xi( )
yi

(6)

where yi and xi are the rainfall at time i predicted by the model

and obtained from the rain gauge, respectively; and N is the

length of the rainfall series.

4 Results and discussion

4.1 Selection of hyper-parameters of the
LSTM-RN and RF-RN models

The performance of the LSTM-RN models is significantly

influenced by the hyper-parameters selection, such as data

division, the number of hidden layer nodes, and epochs. We

used identical hyperparameters (excluding epochs) for all 240 LSTM-

FIGURE 3
Schematic diagram of the experimental design.

TABLE 1 Hyper-parameters of the LSTM-RN models.

Hyper-parameter Value

Training data division 80%/20%

Hidden nodes 9

Initial learning rate 0.01

Loss function Mean square error

Batch size 256

Timesteps 7

Epochs 100–150
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RN models (40 stations with 6 different lead times) in this study, as

listed in Table 1. After training, it was assumed that this setting was

appropriate for almost all the models.

As described in Section 3.1, the data were divided into

training and testing sets. Furthermore, a reasonable 20% of

the training set was treated as a validation set, which was used

to optimize the network parameters during the training

process. The number of hidden layer nodes was a key

hyperparameter; if it was small, the data characteristics

could not be fully retrieved and if it was large, the

network’s complexity would increase and eventually

overfit. Based on the empirical formula proposed by Xia

et al. (2005), nine hidden layer nodes were determined;

overfitting or underfitting phenomena were not apparent.

The initial learning rate was set to .01, and it gradually

decayed during the training process. The batch size

determined the frequency with which the weights of the

network were updated. It was set to 256 owing to the large

amount of data used in this study.

The mean-square error (MSE) was used as the loss of the

LSTM-RN models, which decreased with increasing epochs,

and the epochs where both validation loss and training loss

converged was used as the final epochs. Figure 4 shows the

training progress of two randomly selected models, station

KOI and EGDM. After training, all the LSTM-RN models in

this study converged when the epochs were between 100 and

150. Timesteps was the lengths of the input nodes at a time

(Figure 2). The RMSEs of the training sets of all the LSTM-

RN models at different time steps were averaged, and the

results are shown in Figure 5. In this study, the timesteps of

all models were determined to be seven according to the

results, while considering the correlation between rainfall

periods.

Error backpropagation algorithms were used to update the

parameters of the networks during training. These included

stochastic gradient descent (Graves and Schmidhuber, 2005),

adaptive gradient (AdaGrad), root mean square prop (RMSProp)

(Duchi et al., 2011), and adaptive moment estimation (Adam).

The Adam optimization algorithm is an effective gradient-based

stochastic optimization method. It combines the advantages of

the AdaGrad and RMSProp algorithms to calculate adaptive

learning rates for different parameters while using less storage

space. It outperformed other stochastic optimization methods in

practical applications (Kingma and Ba, 2014); hence, it was used

in this study.

For the RF-RN models, the critical parameters were Ntree

and Mtry. Ntree represents the number of decision trees (N in

Section 3.2). A larger number of decision trees will develop more

accurate results, but require more memory. Mtry, the number of

input features per leaf node, was usually set to 1/3 of the total

number of variables. In our RF-RN models, Ntree was set to 400,

according to the out-of-bag error (Figure 6), and Mtry was set to

FIGURE 4
Training progress of the LSTM-RN models at stations KOI and EGDM.

FIGURE 5
Average RMSE of the training sets of all LSTM-RN models at
different timesteps.
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2. The out-of-bag error served as an indicator of the

generalization error, and was used to determine the

parameters of an RF model.

4.2 Model performance at different lead
times and altitudes

As rain gauges vary in geographical location, the ability of the

LSTM-RN models may be influenced by a variety of

environmental conditions. As described in Section 3.4, the

RMSE, MBE, and COR of LSTM-RN at different altitudes

were calculated. In addition, because the LSTM-RN models

have long memory ability and are suitable for multi-step-

ahead prediction, three metrics of the models at lead times of

1–6 h were also calculated.

Table 2 shows the RMSE, MBE, and COR of the test sets of

the models at different altitudes. It is evident that the RMSE

of the low-altitude models was lower than that of the

medium- and high-altitude models, possibly because

rainfall in low-altitude areas is usually small, so even if the

model fails to predict accurately, the results would not

significantly deviate from the actual value. However, in

medium- and high-altitude areas, where heavy rainfall

occurs frequently, the predicted results could deviate more

from the real values when the model fails to predict

accurately, leading to a high RMSE.

The MBE of the models was positive at low altitude, zero at

middle altitude, and negative at high altitude. It demonstrated

that the models showed a tendency to overestimate rainfall at low

altitude while underestimating it at high altitude, with the highest

variation at high altitude.

The COR of the models between the predicted values and the

true values was slightly smaller at low and medium altitudes

compared with that at high altitude. The results indicated that the

models could perform better when recognizing heavy rainfall

trends.

The RMSE, MBE, and COR of the test sets of the LSTM-RN

models at different lead times are listed in Table 4. The results

revealed that the RMSE increased as the lead time extended, from

.72 at 1-h lead time to .77 at 6-h lead time, an increase of 6.94%.

The COR decayed with increasing lead time, from .68 at 1-h lead

time to .36 at 6-h lead time, a decrease of 47.06%. In general, the

performance of the designed models was satisfying, with a slight

decay at long lead times.

4.3 Comparison of the three radar rainfall
nowcasting models

To assess the performance of the LSTM-RN models, we

constructed RF-RN and OF-RN models for comparison. The

LSTM-RN and RF-RN models were constructed using radar,

gauge rainfall, and atmospheric data, whereas the OF-RNmodels

used only radar rainfall. Four rainfall events were selected from

the test sets to visually present the predictive ability of the three

types of models at 1-h lead time. To ensure the spatial diversity of

the selected events, four randomly selected rainfall events at four

stations with large altitude differences were included (see

Table 3). The four events almost covered all seasons, with

accumulated rainfall ranging from 22.4 mm to 60.4 mm.

Figure 7 depicts the gauge rainfall and the predicted results

using the three types of models for the four rainfall events.

FIGURE 6
The out-of-bag error of the RF-RN models at stations KOI and EGDM.

TABLE 2 RMSE, MBE, and COR of the LSTM-RNmodels at different altitudes.

Classes RMSE (mm) MBE (mm) COR

Low-altitude 0.66 0.02 0.47

Medium-altitude 0.78 0.00 0.48

High-altitude 0.79 -0.05 0.57
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Generally, the LSTM-RN models exhibited the best performance

compared to the other two models. This was supported by the

fact that the LSTM-RN models were able to predict rainfall more

accurately at both high and low rainfall rates as well as precisely

capture rainfall trends. The performance of the RF-RN model

was the second best. They tended to underestimate rainfall at

FIGURE 7
The gauge rainfall and the predicted results using three types of models of four rainfall events.

TABLE 3 Durations and accumulated rainfall of selected storm events.

Event ID Station height (m) Start time End time Duration (h) Accumulated rainfall (mm)

1 11.04 2017-08-22 15:00:00 2017-08-23 07:00:00 16 60.4

2 64.67 2017-02-22 05:00:00 2017-02-23 03:00:00 22 31.0

3 120.72 2017-06-27 14:00:00 2017-06-28 14:00:00 24 22.4

4 133.09 2017-12-10 01:00:00 2017-12-10 17:00:00 16 31.6

TABLE 4 RMSE, MBE, and COR of three types of models at different lead times.

Lead time (h) RMSE (mm) MBE (mm) COR

OF-RN RF-RN LSTM-RN OF-RN RF-RN LSTM-RN OF-RN RF-RN LSTM-RN

1 0.84 0.77 0.72 0.10 0.10 −0.01 0.33 0.63 0.68

2 0.88 0.78 0.73 0.07 0.09 −0.02 0.37 0.58 0.59

3 0.90 0.80 0.75 0.07 0.09 0.00 0.36 0.51 0.52

4 0.91 0.81 0.76 0.06 0.11 −0.01 0.35 0.46 0.47

5 0.94 0.83 0.77 0.06 0.11 −0.03 0.34 0.39 0.40

6 0.96 0.84 0.77 0.06 0.12 0.01 0.32 0.34 0.36
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high rainfall rates and overestimate rainfall at low rainfall rates

(Figure 7C). However, they could recognize the rainfall trends to

some extent. The OF-RN models performed the worst, deviating

severely from the gauge rainfall, and sometimes even failing to

capture the rainfall trends (Figure 7B).

To quantitatively evaluate the prediction performance of the

different models, the RMSE, MBE, and COR were calculated at

different lead times for the three types of models. Models were

categorized into three classes based on altitude, similar to the

classification in Section 4.2. Thus, we can compare the

performances of the three types of models more easily.

Figure 8 shows the RMSE, MBE, and COR of the three types

of models at different lead times and altitudes. In terms of RMSE,

it can be seen that the LSTM-RN models performed the best at

any lead time and altitude, followed by the RF-RN and OF-RN.

As the lead time increased, the RMSE of all models increased,

among which the LSTM-RN grew the slowest, followed by RF-

RN, while OF-RN grew rapidly. As the altitude increased, the

RMSEs of all models also increased, but the LSTM-RN had the

smallest gain, while the OF-RN had the largest gain. The results

demonstrate that although the accuracy of the models decayed

with increasing lead time and altitude, the LSTM-RN models

consistently outperformed the others. This may be attributed to

the strong memory and excellent learning abilities of LSTM

networks, which allow the LSTM-RN to adapted better to

changing conditions. The RF-RN models also performed

well, with RF being a popular machine-learning method.

The OF-RN models, however, showed large errors,

especially at longer lead times, owing to a lack of learning

ability and reliance solely on the correlation between adjacent

frames in the image sequence.

In terms of MBE, it can be seen that LSTM-RN models

generally fluctuated around 0 at low and medium altitudes and

were <0 at high altitudes. For the other two models, the MBE

values were >0 at all altitudes. In other words, the RF-RN and

OF-RN models tended to overestimate rainfall compared to

LSTM-RN. In general, the LSTM-RN with the minimum

deviation performed the best, implying that it rarely

FIGURE 8
Comparison of RMSE, MBE, and COR of three types of models at different lead times and altitudes.
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overestimated or underestimated rainfall, or the accumulated

overestimation and underestimation were virtually equal.

The CORs of the OF-RN were maintained at a low level

between .31 and .33, while those of the LSTM-RN and RF-RN

decayed with increasing lead time, from ~.70 to .30. There was no

significant difference between the LSTM-RN and RF-RN, except

at the 1-h lead time, where the LSTM-RN performed slightly

better. In general, both the RF-RN and LSTM-RN performed well

at short lead times (1–2 h) with CORs ranging from ~.50 to .70,

and at long lead times (3–6 h) with CORs between ~.30 and .50.

OF-RN was underperforming, with consistently low CORs.

To further compare the performances of the three types ofmodels,

we averaged the three metrics for all stations. The RMSE, MBE, and

COR of the three types of models at different lead times are listed in

Table 4. In terms of RMSE, compared with the OF-RN, the LSTM-RN

decreased by 14.15%, 16.72%, 16.45%, 16.98%, 18.80%, and 19.73% at

lead times of 1 h–6 h, respectively. Generally, the LSTM-RN decreased

by 15.43% at short lead times (1–2 h) and by 17.99% at long lead times

(3–6 h). Similarly, compared with that of RF-RN, the RMSE of LSTM-

RNdecreased by 6.52%, 6.60%, 6.73%, 6.80%, 7.22%, and 7.96% at lead

times of 1–6 h, respectively. The RMSE of the LSTM-RN decreased by

6.56% at short lead times (1–2 h) and by 7.17% at long lead times

(3–6 h). In other words, although the prediction accuracy of the three

types of models decreased as lead time increased, the LSTM-RN with

FIGURE 9
RMSE, relative bias (MBE), and COR of three classes of models at different rainfall rate and relative humidity, respectively.

TABLE 5 Comparison of RMSE, relative bias, and COR among the five
rainfall rate classes (A1–A5).

Classes RMSE (mm) Relative bias COR

A1 0.42 74.66 0.40

A2 0.31 −5.06 0.41

A3 0.35 −31.52 0.42

A4 0.70 −50.51 0.51

A5 2.05 −45.48 0.66

TABLE 6 Comparison of RMSE, MBE, and COR among the five relative
humidity classes (B1–B5).

Classes RMSE (mm) MBE (mm) COR

B1 0.38 0.22 0.40

B2 0.44 0.17 0.46

B3 0.55 0.09 0.53

B4 0.72 −0.03 0.63

B5 0.85 −0.16 0.69
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strong learning and memory ability performed best, with the lowest

RMSEs at any given lead time, and a growing advantage at longer lead

times.

In terms of COR, compared with the OF-RN, the LSTM-RN

increased by 106.99%, 60.41%, 47.21%, 32.62%, 17.15%, and

12.72% at lead times of 1 h–6 h, respectively, with an average

of 46.18%. Similarly, compared with the RF-RN, the LSTM-RN

increased by 7.04%, .98%, 3.20%, 3.06%, 3.48%, and 4.80% at lead

times of 1 h–6 h, respectively, with an average of 3.76%. In

general, the OF-RN did not perform satisfactorily in capturing

the rainfall trends, and both the RF-RN and LSTM-RN

performed well, with the LSTM-RN showing a slight advantage.

4.4 Relationship between the model
performance and weather conditions

In Section 4.2, the performance of the LSTM-RN model at

different lead times and altitudes was discussed, and it was

apparent that model performance displayed regular patterns at

different altitudes. Since altitude is highly relevant to weather

conditions, this study investigated the relationship between

LSTM-RN models and weather conditions. Through pre-

experiments, we discovered that the model performance was

related to rainfall rates and relative humidity; therefore, we

focused on these two factors to further evaluate the model

performance under various weather conditions.

As described in Section 3.4, the test sets were divided into five

classes based on rainfall rate, and three metrics (RMSE, relative

bias, and COR) were calculated. Similar to the division in Section

4.2, the models were divided into three classes based on altitude,

and the metrics were averaged for each class of models.

Figure 9A shows the RMSE, relative bias, and COR of the

three classes of models at different rainfall rates. The blue, yellow,

and orange lines represent the low-altitude, medium-altitude,

and the high-altitude models, respectively. It can be clearly

observed that the curves are highly similar in terms of

altitude. The RMSE generally increased as the rainfall rate

increased, from ~.40 to 2.00. We noted that the smallest

rainfall rate (A1) did not correspond to the lowest RMSE, that

is, light rain was more difficult to predict accurately than

moderate rain (A2–A3). Furthermore, the relative bias of light

rain (A1) was more pronounced than that of heavy rain (A5–A6).

In addition, COR increased as the rainfall rate increased, which is

consistent with the explanation in Section 4.2.

As the atmospheric factors are complicated, this study

selected temperature, relative humidity, and wind speed for

pre-experiments and discovered that relative humidity showed

an obvious correlation with the model performance. Figure 9B

shows the RMSE, MBE, and COR of the three classes of models at

different relative humidities. As relative humidity increased, the

RMSE increased from ~.40 to .80, the MBE decreased from

~.20 to –.20, and the COR increased from ~.40 to .70. The results

demonstrated that the models showed low RMSEs at low relative

humidity, low bias at medium relative humidity, and high CORs

at high relative humidity.

As the results show a similar tendency in terms of altitude

(Figure 9), error metrics were averaged at different rainfall rate

and relative humidity classes, excluding the altitude (Tables 5, 6).

The results revealed that the RMSE improved by 388.10% from

A1 to A5 and by 123.68% from B1 to B5. COR improved by 65%

from A1 to A5 and by 72.50% from B1 to B5. In general, the

models showed a higher accuracy under light rain and low

relative humidity, lower uncertainty under moderate rain and

medium relative humidity, and better recognition of rainfall

trends under heavy rain and high relative humidity.

Although the proposed LSTM-RN models achieved reasonable

performance, the prediction at stations still has limitations. In future

work, meteorological forecast fields, such as the European Centre for

Medium-Range Weather Forecasts (ECMWF), the global forecast

system from China T639, and the National Centers for

Environmental Prediction (NCEP) Global Forecast System (GFS),

will be employed to investigate regional predictions (Li et al., 2021).

Using these data for radar nowcasting could produce more accurate

and practical results over precipitation areas.

5 Conclusion

In this study, we constructed radar rainfall nowcasting models

using LSTM networks, with radar rainfall data as input and rain

gauge data as ground references. To correct radar estimate errors

and improve the nowcasting ability under various weather

conditions, atmospheric data were also used as input. The

40 scattered stations used for modeling roughly represented the

various environments of the study area. Approximately 11 years of

data from the stations were employed as training and test sets to

confirm its adequacy. After adjusting the hyperparameters, we

determined the optimal settings for all stations. The performance

of the LSTM-RN was evaluated at various lead times and altitudes

and was compared with that of the OF-RN and RF-RN. We also

investigated the relationship between the performance of the LSTM-

RN and weather conditions. The results are summarized as follows:

(1) The performance of LSTM-RN displayed regular patterns at

different altitudes. The RMSEs of the models at high altitudes

were generally higher than those at low altitudes; however, the

CORs were also generally higher at high altitudes. Moreover,

models at high altitudes tended to underestimate rainfall, while

models at low altitudes tended to overestimate rainfall, with the

highest variation at high altitudes.

(2) Compared with OF-RN and RF-RN, LSTM-RN

demonstrated the highest accuracy in nowcasting, with the

lowest RMSEs and MBEs closest to 0 at any lead time.

Furthermore, the LSTM-RN had a growing advantage in

longer lead times, with the RMSE decreasing by 15.43% and
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6.56% at short lead times (1–2 h) and by 17.99% and 7.17% at

long lead times (3–6 h). In addition, the LSTM-RN significantly

outperformed the others in recognizing rainfall trends, with the

highest CORs at any given lead time. On average, the COR of the

LSTM-RN increased by 46.18% and 3.76%, compared with that

of the OF-RN and RF-RN, respectively.

(3) A strong relationship between the performance of the LSTM-

RN and weather conditions was observed. The models

showed a higher accuracy under light rain and low

relative humidity, lower uncertainty under moderate rain

and medium relative humidity, and better recognition of

rainfall trends under heavy rain and high relative humidity.

This study proposes a reliable and effective solution to

nowcast radar rainfall at long lead times using an advanced

deep learning technique, as well as considering the

atmospheric impact on radar data. The results demonstrate

that the designed models outperform traditional methods in

prediction ability and are valuable for long lead-time

nowcasting. However, owing to data limitations and the

computational expenses for model training, this study can

only realize nowcasting on stations. In future work, we intend

to collect gauge data from more stations to achieve regional

nowcasting.
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