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Detrended fluctuation analysis (DFA) can quantify long-range correlation (LRC)

and fractal scaling behavior of signal. We compared the results of variant DFA

methods by varying the order of the polynomial and found that the order of

6 was relatively better than the others when both the accuracy and

computational cost were taken into account. An alternative DFA method is

proposed to quantify the LRC exponent by using best-fit polynomial algorithm

in each segment instead of the polynomial of the same order in all of segments.

In this study, the best-fit polynomial algorithm with the maximum order of 6 is

used to fit the local trend in each segment to detrend the trend of a time series,

and then the revised DFA is used to quantify the LRC in the time series. A series

of numerical studies demonstrate that the best-fit DFA performs better than

regular DFA, especially for the time series with scaling exponent smaller than

0.5. This may be attributed to the improvement of the fitted trend at the end of

each segment. The estimation results of variant DFA methods reach stable

when the time series length is greater than 1,000.
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Introduction

In various systems in nature, a broad variety of signals present complex behaviour that can

exhibit long-term persistence, such as DNA sequences, human gait, and weather records

(Chianca et al., 2005). Long-term persistence is also commonly referred to as long-range

correlation (LRC), which implies that there is non-negligible dependence between the present

and all points in the past (Timothy et al., 2017). Many climatic observations show LRC (Jiang

et al., 2015), whichmeans past climate has a long-term effect on the future evolutionary trend of

the climate system (Bartos and Jánosi, 2006). Quantifying the LRC is crucial for understanding

the dynamics of the systems. If a time series is characterized by LRC, then its autocorrelation

function decays by a power law, as C(n) ~ n−α, where n is the lag time and C(n) is the

autocorrelation (Kantelhardt et al., 2001). Scaling exponent can be used to quantitatively

describe the strength of LRC of a time series, which can be estimated by various methods, such

as fluctuation analysis (FA), detrended fluctuation analysis (DFA) and rescaled range (R/S)

analysis (Hurst, 1951; Peng et al., 1992; Peng et al., 1994).
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Most signals from complex physical and biological systems are

nonstationary and are embedded in various trends, which leads to

difficulties in quantifying the LRCs of the signals. R/S and power

spectral analysis can only be used for stationary time series. DFA

shows an advantage over the conventional methods. DFA can

systematically eliminate nonstationary trends by changing the

order of polynomial fitting, and avoids the spurious detection

of apparent self-similarities which may be an artefact of extrinsic

trends (Kantelhardt et al., 2002). DFA has been widely applied in

climate research, such as quantifying the LRC of climate systems

(Zhao et al., 2017), evaluating the dynamic characteristics of

climate system models (Blender and Fraedrich, 2003), and

further the performance of climate system model. Zhao et al.

(2021) investigated the LRC characteristics of global air

temperature of 8 models from CMIP5, and indicated that four

models perform better than the others over most regions of the

global ocean. However, the nonlinear filtering properties involved

with detrending in the DFAmethodmay induce instabilities in the

scaling exponent estimation (Kiyono and Tsujimoto, 2016).

Many studies managed to improve the DFA method by

introducing different detrending techniques, such as the centered

moving average (CMA) method (Ramirez et al., 2005), the modified

detrended fluctuation analysis (MDFA) (Kiyono et al., 2005),

detrended moving average (DMA) method (Arianos and

Carbone, 2007), and orthogonal detrended fluctuation analysis

(Govindan, 2020). Different methods show various advantages

and limitations (Chen et al., 2005; He et al., 2011). DFA analysis

based on empirical mode decomposition (EMD) performs better

than the classic DFA when the time series is strongly anticorrelated

(Qian et al., 2011). CMA performance is slightly superior to DFA

(Shao et al., 2012). DMA method performs better than DFA for

signals with scaling exponent between 0.2 and 0.8, while DFA

performs better when the scaling exponent exceeding 0.8 (Xu

et al., 2005). Numerical analysis shows traditional DFA still has

advantages in some situations (Grech andMazur, 2005; Bashan et al.,

2008).

In this study, the traditional DFA and its modification were used

to estimate the scaling exponents of LRC of time series produced by

FFM. DFA methods are described and then the results of DFA with

different polynomial order are presented. Next, the results of regular

DFA and the alternative method are systematically compared. And

then, the influence of time series length on the calculated results is

investigated. In the end, the main conclusion of this study and a brief

discussion are presented.

Methods

Detrended fluctuation analysis

DFA can be used to estimate the strength of the LRC in a

time series (Peng et al., 1994; Hu et al., 2001). DFA is

performed using the following steps:

(1) The anomalies of a time series {x(i), i = 1, 2, . . ., N} are first

calculated, and then gradually accumulate to form a new

time series {Y(i), i = 1, 2, . . ., N}.

(2) The profile Y(i) is separated into non-overlapping segments

with equal length τ. Considering statistical reliability, τ varies
from 10 to N/4 (Kantelhardt et al., 2002) with the interval of

1 in this study.

(3) In each segment, the polynomial trend of order p is

calculated and then eliminated from the segment to

obtain the fluctuation time series. When p = 2, a 2nd-

order polynomial function is used to fit the profile (DFA-

2). DFA-6 uses a 6nd-order polynomial function. DFA-2

is used the most frequently among different DFA-n

methods.

(4) The variance of all the fluctuation time series is averaged

to obtain the mean variance fluctuation function Fp(τ). If
there is a power law relationship between Fp(τ) and

τ, then

Fp(τ) ~ τα (1)

here, α is the scaling exponent. If α = 0.5, the time series is a

random sequence without long-term persistence. If 0.5<α<1.0,
the time series has long-term persistence. If 0<α<0.5, an anti-

correlation exists in the time series.

Best-fit polynomial

We propose to use best-fit polynomial in step (3). In each

non-overlapping segment, the trend of the time series is

calculated by best-fit polynomial functions with the

maximum order varying from 2 to k. Then the best-fit

degree of a polynomial fit is selected by minimizing the

chi-square method. However, there is a problem in

determining the value of k. We performed two

independent sets of tests to show the effect of polynomial

order on the DFA results. In each group, 2000 time series

with length of 20,000 were generated by Fourier-filtering

method (Peng et al., 1991). The actual scaling exponents are

0.3 and 0.8, respectively. The box charts of the scaling

exponents calculated by different DFA-n are shown in

Figure 1.

For both group tests, the range of calculated scaling

exponents decreases with polynomial order (Figures

1A,B). The minimum value of DFA-n results for time

series of 0.3 increased apparently while the maximum

value basically unchanged (Figure 1A). The median value

of DFA-n results also showed an increasing trend with the

order of polynomial functions in Figure 1A. In Figure 1B, the

maximum value of DFA-n results decreased while the

minimum value increased. Thus, the median value of

DFA-n results varied little with order for time series with
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scaling exponents of 0.8. The median value error is more

apparent for signals of 0.3 than those of 0.8 with the increase

of n-order. In general, the range and median value of DFA-n

results vary little for order varying from 6 to 8. Considering

computational cost, the maximum order of the best-fit

polynomial can be set to 6, and the minimum order is set

to 1. DFA based on best-fit polynomial with the maximum

order of 6 is described as DFA-BEST6 in this study.

Results

Comparison of DFA-2, DFA-6 and DFA-
BEST6

The LRC exponents calculated by DFA-2, DFA-6 and DFA-

BEST6 were compared in Figure 2. The actual scaling exponent of

time series varies from 0.3 to 0.9 with an increment of 0.1 from

FIGURE 1
The box chart for DFA-n tests and the actual scaling exponents of the time series is 0.3 (A) and 0.8 (B).

FIGURE 2
The box chart for results of DFA-2, DFA-6 and DFA-BEST6 methods for 10,000 time series.
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test 1 to test 7. The 10,000 time series generated by the FFM

method is used in each test. The sample size is 20,000 in each time

series. The box chart shows the median, maximum, minimum

and interquartile value of the estimated exponents for

10,000 time series (Figure 2). Results of DFA-2, DFA-6, and

DFA-BEST6 can all characterize the LRC reliably. The range of

scaling exponents calculated by the three DFAmethods increases

with the actual value. The range of the DFA-2 results are greater

than those from DFA-6 and DFA-BEST6. The range of scaling

exponents obtained by DFA-BEST6 is the smallest among the

three methods. Themedian values of DFA-2 and DFA-6 are close

to the actual values when the scaling exponent is greater than 0.5,

while larger than the actual values when it is smaller than 0.5. For

DFA-BEST6, the computed scaling exponents are close to the

actual values in all tests, especially when the actual value is

smaller than 0.5.

Further comparison of the results from DFA-6 and DFA-

BEST6 were shown in histograms (Figures 3A,B). The scaling

exponents from DFA-BEST6 varied from 0.26 to 0.36, while the

results from DFA-6 varied from 0.27 to 0.37. The percentage of

scaling exponents from 0.29 to 0.32 calculated by DFA-BEST6 is

82.9%, while that calculated by DFA-6 is 70.5%. Results of DFA-

BEST6 centred around 0.31 while those of DFA-6 centred around

0.32 (Figure 3A). For time series of 0.9, distributions of the results

of DFA-6 and DFA-BEST6 are consistent and concentrated

around the actual value, which shows better performance than

the time series of 0.3 (Figure 3B). The percentage of scaling

exponents between 0.86 and 0.92 from DFA-BEST6 is 83%, and

that from DFA-6 is 82.6%. In general, the results of DFA-BEST6

are more concentrated around the actual value than DFA-6,

which indicates better performance.

Traditional DFA and the alternative methods presented

above all can successfully detect LRCs in signals well. DFA-

BEST6 shows better performance than the other two methods

statistically. In Figure 4 we show an example of a time series

produced by FFM with a scaling exponent of 0.7. The result of

DFA-BEST6 is equal to the actual value. However, the scaling

exponent calculated by DFA-2 and DFA-6 are both 0.74, which is

larger than the actual value. Both DFA-2 and DFA-6 have larger

values of the root mean square fluctuation functions than DFA-

BEST6, which indicates the variance of the results of DFA-BEST6

is smaller than those of DFA-2 and DFA-6.

The 20,000 samples of time series used in Figure 4 are shown

in Figure 5A, showing the stochastic character. In Figure 5B, the

estimated trend Ys(i) (red lines) in DFA-2 shows discontinuous

jumps at the end points of each window. For DFA-6, the

estimated trend Ys(i) also shows discontinuous jumps at the

end of each window (Figure 5C). However, the deviation of fitted

trend from the cumulative anomaly in Figure 5C is smaller than

that in Figure 5B. In contrast, the estimated trend in DFA-BEST6

shows continuous behaviour (Figure 5D). The deviation of fitted

trend from the cumulative anomaly in DFA-BEST6 is the

smallest among the three methods, which is consistent with

the results in Figure 4.

Influence of time series length

For time series with scaling exponent of 0.3, the scaling

exponents calculated by DFA-2, DFA-6, and DFA-BEST6 are

stable when the time series length approaches 1,000 (Figure 6A).

The variance range of results of DFA-6 is smaller than those of DFA-

2 and DFA-BEST6 when the time series length is greater than 1,000,

and vice versa. For the time series of 0.9, the effect of the data length is

less pronounced compared to the time series of 0.3. The calculated

scaling exponents are stable when the time series reaches 500

(Figure 6B). The performance of DFA-BEST6 is better than those

of DFA-2 and DFA-6 as the length of the time series increases.

FIGURE 3
The histograms of scaling exponents simulated by DFA-6 and DFA-BEST6 for time series with actual scaling exponents of 0.3 (A) and 0.9 (B),
respectively.
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FIGURE 4
Fluctuation Function F(τ) from the DFA-2, DFA-6, and DFA-BEST6 for time series with scaling exponent of 0.7. The black squares denote the
results of DFA-2, blue circles denote DFA-6, and red triangles denote DFA-BEST6.

FIGURE 5
(A) time series with the length of 20,000, and the profiles Y(s) (black lines) and the fitted profiles Ys(i) (red lines) calculated by (B)DFA-2, (C)DFA-
6, and (D) DFA-BEST6 method. The box size s = 200.
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To quantify the degree of bias in the median exponents

estimated fromDFA-2, DFA-6 and DFA-BEST6. Relative error is

calculated as follows: E � Eest−Eact
Eact

*100, where Eest is the median

exponent estimated by three methods and Eact is the actual

exponent of the long-range correlated data used in the analysis. E

takes on a value zero if an approximation correctly characterizes

the exponent. In Figure 7, we show the variation of E as a

function of actual scaling exponent for DFA-2, DFA-6, and DFA-

BEST6. For the short dataset containing 3,000 samples, the

relative error of exponents estimated is about 6.9%, 14.7% and

6.2% for DAF-2, DFA-6 and DFA-BEST6, respectively

(Figure 7A). For 20,000 samples, the exponents estimated

form DAF-2 show a relative error of about 3.7% and those

from DFA-BEST6 show a relative error of about 3.2%,

whereas those from DFA-6 show a relative error of about

5.5% (Figure 7B). The relative error for the 20,000 samples is

smaller than that for 3,000 samples, and results estimated from

DFA-BEST6 are relatively more stable than other two methods.

Conclusion and discussion

In this paper, we introduce a variant of the DFA method

using best-fit polynomial to characterize long-range correlations.

By systematically comparing with the results of DFA-n (n = 2,

3,..., 8), we found the result of DFA-n with high order is better

FIGURE 6
The box chart for results of DFA-2, DFA-6 and DFA-BEST6 tests for 2000 samples with data length varied from 300 to 10,000 and scaling
exponents of (A) 0.3, (B) 0.9.

FIGURE 7
Relative error: the biases of the median of estimated exponents from the actual ones are shown for DFA-2, DFA-6 and DFA-BEST6 in (A) for
3,000 samples and in (B) for 20,000 samples.
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than that of low order when the scaling exponents is larger than

0.5. However, the improvement is slight when the order exceeds

6. Then the order of 6 is chosen as the highest order of the best-fit

polynomial. The detrending procedure using n-order polynomial

results in discontinuous jumps at the end points of each window,

a property that may induce an increase in the estimation error.

A modification to the DFA is proposed in this study, which

uses best-fit polynomial to detrend local trend in each segment.

Numerical studies have shown that best-fit polynomial can

effectively improve the bias at the end of each window. The

proposed method performs as well as the traditional DFA

method in estimating the scaling exponent when the exponents

of the time series exceed 0.5. DFA-BEST6 characterizes the long-

range correlations better than the original approach when scaling

exponents are below 0.5. DFA-BEST6 can eliminate the external

linearing trend as well as DFA-2 (see Supplementary Material).

The estimation of the LRC reaches a stable state when the data

length is larger than 1,000. The data length has a stronger effect on

signals of smaller scaling exponents. DFA-BEST6 quantifies the

LRC exponent with a relative error of about 6.2% for short datasets

(3,000 samples) and a relative error of about 3.2% for long datasets

(20,000 samples).

The results of this study have shown that a methodological

improvement in DFA by modifying the detrending algorithm.

Although DFA-BEST6 is able to improve the estimation of the

scaling exponent, there is an overfitting phenomenon in the

results, especially for signals with strong LRC. Moreover, this

approach would require a considerably larger computational cost

than regular DFA. These need further studies to improve themethod.
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