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Urine source separation, a kind of new sewagemanagement concept, hasmade

great progress in technology development and application in the past 30 years.

However, understanding of the potential microbial risks in reuse of urine-

derived fertilizer products (UDFPs) in agriculture is still lacking. Outbreak of

pandemic of Coronavirus Disease 2019 and more deadly disease caused by

Monkeypox strongly sounds the alarm bell to the attention on pathogens in

urine and their fate in UDFPs. Therefore, this study presented a comprehensive

review on pathogens inactivation in nutrient recovery technologies. The review

suggests that technologies using alkaline or heating treatment can effectively

reduce pathogens in UDFPs. However, technologies with characteristics such

as membrane rejection of nutrients or nutrient adsorption may even

concentrate pathogens in their fertilizer products. Based on an overall

assessment, connections of technologies and the pathogens inactivation in

their UDFPs have been established. This would help to provide a perspective on

development of urine treatment technology andmanagement ofmicrobial risks

in reusing urine nutrients in agriculture.
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1 Introduction

Urine source separation, a novel concept of wastewater management, was proposed at

the end of the 19th century (Larsen and Gujer, 1996). Human urine contains abundant

amounts of macro-nutrients, accounting for approximately 79% of nitrogen, 49% of

phosphorus, and 58% of potassium in household wastewater (Vinnerås et al., 2006).

Resource recycling from urine benefits closing the loop of nutrients. This would provide a

sustainable approach to ease the tension between the increasing demand of food and

fertilizer and the shortage of nutrients while preventing water pollution (Larsen et al.,

2016; Badeti et al., 2022). Thus, it could be an effective tool to help eradicating hunger and

ensuring environmental sustainability in the Millennium Development Goals (MDGs) of
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United Nations, and achieving zero hunger, clean water and

sanitation, and sustainable cities and communities in the

Sustainable Development Goals (SDGs).

Various technologies have been developed to reuse or recover

nutrients from urine. This has been reviewed in several recent

publications (Simha and Ganesapillai, 2017; Harder et al., 2019;

Patel et al., 2020; Cheng et al., 2022; Liu et al., 2022). Moreover,

dozens of pilot projects of urine source separation have been

constructed and evaluated in schools, villages or modern

buildings in both developed and developing countries (Zhang

et al., 2015). Most of these technologies and projects mainly focus

on the technical and economic efficiency of nutrient recycling

while only a few studies reported the hygienic aspect of urine.

Actually, urine is not sterile and it contains culture-positive

microbiological communities (Hilt et al., 2014). Several

bacterial and viral pathogens were detected in the source-

separated urine collected at the eThekwini Water and

Sanitation municipality in South Africa (Bischel et al., 2015).

Users of toilet and urine-derived fertilizer product (UDFP) may

be exposed to pathogens-carrying urine and UDFPs. Moreover,

consumers also may be exposed to food fertilized with UDFPs.

All these possible exposure pathways can bring health risks to

people who may be infected through vehicleborne transmission

defined as one of the indirect transmission modes (US

Department of Health and Human Services, 2012).

Quantitative Microbial Risk Assessment (QMRA) has been

used to assess the microbial risk in handling of urine and eating

vegetables fertilized by urine (Hoglund et al., 2002; Ahmed et al.,

2017; Bischel et al., 2019; Oishi et al., 2020). Typical pathogens

examined included Campylobacter jejuni, Enterotoxigenic

Escherichia coli (E. coli), Shigella spp., Cryptosporidium

parvum and rotavirus, etc. All these studies reported health

risks to users, workers and consumers when pathogens-

containing urine was collected, transported and handled

without any pretreatment. Storage for 2–6 months is usually

recommended for effective inactivation of pathogens in urine,

which is caused by high alkaline pH and high free ammonia due

to urea hydrolysis (World Health Organization (WHO), 2006;

Vinnerås et al., 2008). Moreover, pathogens in urine can also be

effectively inactivated through alkaline treatment by ash and lime

(Randall et al., 2016; Senecal et al., 2018). However, up to date,

there still lacks a connection of urine treatment to its effect on

pathogens inactivation, which might make researchers ignore the

microbial risks of urine source separation especially developing

new technologies for urine treatment. Particularly, the pandemic

of Coronavirus Disease 2019 (https://www.who.int/emergencies/

diseases/novel-coronavirus-2019) and the outbreak of more

deadly disease caused by Monkeypox (https://www.who.int/

emergencies/situations/monkeypox-oubreak-2022) strongly

reminds the possible microbial risks in the recycling of urine

nutrients in agriculture.

Therefore, this study aimed to review the inactivation of

pathogens in urine treatment technologies. Pathogens in urine

reported in publications were summarized. The inactivation of

pathogens in various technologies and UDFPs were evaluated

based on a comprehensive review of publications. Then, an

overall assessment was carried out to build a connection of

urine treatment to its effect on pathogens inactivation. Finally,

an outlook was proposed for the microbial risk management in

urine source separation and nutrient recovery.

2 Pathogens in urine

Only a few publications reported pathogens detected in urine

collected from toilets while many reported findings in urine

collected from patients in medical research. Bacteria and viruses

detected in urine in literature have been briefly summarized in

Supplementary Table S1. Therefore, urine is not sterile. Possible

approaches for pathogens introducing to urine were discussed as

following.

2.1 Pathogens excretion with urine

Human urine forms by filtration of blood plasma through

glomerular filtration barrier into nephron in kidneys (Rose,

1966). The barrier commonly has nanoscale pores while sizes

of bacteria are approximately of micron scale (Goswami and

Pugazhenthi, 2020). For example, the length and the diameter of

E. coli is approximately 2 µm and 0.5 µm, respectively (Sherbet

and Lakshmi, 1973). Thus, urine often does not contain bacteria.

However, urine will be contaminated by pathogenic bacteria

when infection occurs in the urinary system of patients. Studies

have reported several pathogenic bacteria in urine, which often

cause some clinical urinary tract infection and inflammation,

such as E. coli (Hinata et al., 2004), Proteus mirabilis,

Pseudomonas aeruginosa (Qiao et al., 2013), a variety of

gram-negative and gram-positive bacteria (Shigemura et al.,

2005). Sun et al. (2020) identified more than 105/ml of

bacterial particles in clinical urine samples through analysis by

mass spectrometry combined with UF‒5000i flow cytometry,

and the pathogens were all single microbial species (Sun et al.,

2020). Chen et al. (2018) successfully detected E. coli, Proteus

mirabilis, Pseudomonas aeruginosa and Staphylococcus aureus in

urine samples, with the detection limit of 100 colony-forming

unit (CFU)/mL, using multiplex recombinase polymerase chain

reaction (Chen et al., 2018).

Infection of urinary system can also introduce viruses to

urine similar as the introduction of bacteria. In addition, viruses

usually range in size from 5 to 300 nm (Goldsmith and Miller,

2009) and most of them lies in the lower margin of the scale as

summarized by (Goswami and Pugazhenthi, 2020). Thus, a part

of viruses can pass through the glomerular filtration barrier in

kidneys, thereby contaminating urine. For example, researchers

reported that the diameter of SARS-CoV-2 ranged in 60–140 nm
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(Zhu et al., 2020). The virus detection rate in the serum and urine

samples collected from 74 COVID-19 patients were 2.8% (9/323)

and 0.8% (2/247), with mean viral load of 1210 ± 1861 and 79 ±

30 copies/mL, respectively (Kim et al., 2020). Kim et al. (2020)

did not report urinary system infection by SARS-CoV-2. This

indicates that virus in serum passed through the barrier to urine.

While the viral load in urine was low and the SARS-COV-2 could

not be isolated from the virus-positive samples (Kim et al., 2020),

the microbiological risk of viral infection still cannot be ruled out.

In addition, researchers have found many types of viruses in

urine, such as Zika virus (Wiwanitkit, 2016), SARS virus (Xu

et al., 2005), dengue virus (Van den Bossche et al., 2015), BK virus

(Konietzny et al., 2012), Rift Valley fever and yellow fever virus

(Li M. et al., 2019), etc. Therefore, urine would inevitably contain

pathogens due to pathogen permeation from serum and infection

of urinary system when patients use toilets.

2.2 Fecal contamination

Besides urinal, urine diverting toilet, which is divided into

two parts through a partition, is employed to collect urine

separately from feces. This toilet is quite different from a

conventional toilet, which may make users puzzled especially

when there is insufficient instruction. Incorrect use or cleaning of

the toilet may cause the feces to enter the urine, which is a

common unavoidable phenomenon (Schonning et al., 2002).

Moreover, insect vectors (e.g., mosquitoes and flies) can also

be carriers of microbes from feces to urine. The detection of

intestinal microbes such as E. coli in source-separated urine

would be an evidence for the cross contamination by feces

(An et al., 2020). A study found that the corresponding level

of fecal contamination of urine samples in eco-villages was 38%

and at public places (i.e., work places and schools) 58% of the

urine samples were contaminated when the contamination was

determined based on the content of fecal sterols (Schonning et al.,

2002). Therefore, cross contamination of urine by feces can be

confirmed to be another route to introduce pathogens to urine.

Feces contain more than 100 different varieties of viruses,

bacteria, and helminthes (Senecal et al., 2018). However, only

a few kinds of bacteria have been detected in source-separated

urine because of the lack of related studies.

Urine contamination by feces would enlarge the microbial

risks of reusing urine in agriculture. As far as the SARS-COV-2 is

concerned, it may replicate in human gastrointestinal tract, exist

in fecal excrement for a certain period of time, and may have

infectious pathogenicity (Senecal et al., 2018). Zhang et al. (2020)

investigated the feces of 23 patients, 83% of those were positive

and the average duration of virus shedding was 22 days. During

this period, the average titer of virus in feces was 5,623 copies/mL,

but the highest titer reached 105.8 copies/mL at the peak (Zhang

et al., 2020). Although the viral load in urine was quite low in the

clinical study of sampling in aseptic environment (Kim et al.,

2020), the viral load and its potential risk would increase a lot

when urine was contaminated by feces in the field-scale projects

of source separation. As such, cross contamination of feces is

considered as a dominating risk of disease transmission when

handling and reusing urine (Senecal et al., 2018). Therefore, due

care should be taken in the design of new urine-diverting toilets,

instructions of toilet use and training of urine collection users.

3 Pathogens in urine treatment and
UDFPs

3.1 Direct use of urine after storage

Direct use of urine as liquid fertilizer is a commonly

recommended simple approach for nutrient recycling from

urine to agriculture. This has been successfully applied for the

cultivation of microalgae (Adamsson, 2000; Golder et al., 2007),

zooplankton (Adamsson, 2000) and various plants such as

cucumbers (Heinonen-Tanski et al., 2007), lettuce, tomatoes

(Adamsson, 2000; Mnkeni et al., 2008; Pradhan et al., 2009),

okra (Akpan-Idiok et al., 2012), beet (Mnkeni et al., 2008;

Pradhan et al., 2010a), pumpkin (Pradhan et al., 2010b),

carrot (Mnkeni et al., 2008), maize (Guzha et al., 2005;

Mnkeni et al., 2008; Antonini et al., 2012a), cabbage (Pradhan

et al., 2007), water spinach (Yang et al., 2015), Lolium

multiflorum Lam (Antonini et al., 2012a), wheat (Tidåker,

2003) and barley (Tidåker, 2003). However, the presence of

pathogens may pose a potential risk for the users of fertilizer

and the consumers of agriculture products. Particularly, the

regrowth of some microorganisms such E. coli were even

reported in fresh urine because of its appropriate pH and

nutrients (Lahr et al., 2016; Ahmed et al., 2017).

To reduce the microbial risks of urine application, storage for

2–6 months is commonly recommended as a hygienic treatment

method (Schonning, 2001; Jönsson et al., 2004; World Health

Organization (WHO), 2006). Table 1 summarizes the

inactivation of pathogens in urine after storage, including

Aeromonas hydrophila (Höglund et al., 1998), Enterococci

(Höglund et al., 2000), Enterococcus faecalis (Chandran et al.,

2009; Nordin et al., 2013; Almeida et al., 2019), E. coli (Höglund

et al., 1998; Höglund et al., 2000; Chandran et al., 2009;

Wohlsager et al., 2010; Nordin et al., 2013; Ahmed et al.,

2017; Zhou et al., 2017; Almeida et al., 2019; Oishi et al.,

2020), fecal coliforms (Höglund et al., 2000; Wohlsager et al.,

2010; Zhou et al., 2017; Almeida et al., 2019), fecal streptococci

(Höglund, 2001; Wohlsager et al., 2010), human adenovirus

(Decrey and Kohn, 2017), Mycobacterium tuberculosis

(Vinnerås et al., 2011), Mycobacterium bovis (Vinnerås et al.,

2011), Pseudomonas aeruginosa (Höglund, 2001), Salmonella

typhimurium (Höglund et al., 1998; Vinnerås et al., 2008;

Chandran et al., 2009; Wohlsager et al., 2010), Salmonella

senftenberg (Höglund et al., 1998), sulphite reducing Clostridia
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TABLE 1 A summary on the reduction of pathogens in storage of urine.

Urine Temperature°C Pathogens Reduction Days References

Description Unit

Diluted and undiluted 15–35 Escherichia coli 5.5 log10 CFU/mL 3–50 Ahmed et al. (2017)

coliphage MS2 5.2 log10 PFU/mL 2–50

Diluted 5–20 Rhesus rotavirus 90% a 32–240 Höglund et al. (2002)

Salmonella typhimurium 71–1466

Diluted and undiluted 4–20 Aeromonas hydrophila 6 log10 CFU/mL 1–20 Höglund et al. (1998)

Pseudomonas aeruginosa

Salmonella senftenberg

Salmonella typhimurium

Escherichia coli 1 log10 CFU/mL 1–14

Ascaris suum 15%–20% 0–21

faecal streptococci 1 log10 CFU/mL 6–19

Diluted 4 Cryptosporidium parvum oocysts 90% 29 Höglund and Stenström, (1999)

Undiluted 20 Ascaris suum egg 1 log10-3 log10 Eggs/mL 24–90 Senecal et al. (2018)

Salmonella typhimurium 1 log10-6 log10 CFU/mL 9–53

Enterococcus faecalis 26–155

Bacteriophages MS2 PFU/mL 1–6

Bacteriophages ΦX 174 29–175

Diluted and undiluted 15–30 Escherichia coli 6.7 log10 CFU/mL 0–63 Chandran et al. (2009)

Salmonella typhimurium 6.8 log10 7–49

Enterococcus faecalis 8.4 log10 0–69

coliphage MS2 8.6 log10 PFU/mL 7–42

Diluted 21–24 Ascaris suum eggs 3 log10 Eggs/mL 1–10 Nordin et al. (2013)

Enterococcus spp. 90% a 7–10

Enterococcus faecalis 2

Salmonella typhimurium 0.1

Escherichia coli 0.1

enterobacteria phage MS2 8–16

coliphage ΦX 174 37–43

Salmonella typhimurium phage 28B 55–64

Diluted and undiluted 4–30 total coliforms 3–5 log10 CFU/mL 0–90 Almeida et al. (2019)

Escherichia coli 3–4 log 10

Enterobacteriaceae 5–6 log10

Enterococcus 4 log10

total staphylococci 6 log10

Diluted and undiluted 27 total coliforms 5.4 log10 CFU/100 ml 0–28 Wohlsager et al. (2010)

Escherichia coli 4 log10 0–28

Faecal streptococci 6.1 log10 0–56

Diluted 60–70 fecal coliforms 3 log10 CFU/mL 0–1 Zhou et al. (2017)

Escherichia coli 4.3 log10 0–3

Diluted and undiluted 4–34 Salmonella typhimurium 90% a 0–33 Vinnerås et al. (2008)

Enterococcus faecalis 1–47

bacteriophages MS2 1–240

bacteriophages ΦX 174 5–150

bacteriophages 128 1–169

Hydrolyzed 20 BK human polyomavirus 90% a 0–9 Goetsch et al. (2018)

bacteriophages T3 24–46

(Continued on following page)
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(Höglund et al., 2000; Almeida et al., 2019), BK Human

Polyomavirus (Goetsch et al., 2018), Rhesus rotavirus

(Höglund et al., 2002), Ascaris suum, Ascaris suum egg

(Nordin et al., 2009), and Cryptosporidium parvum oocysts

(Höglund and Stenström, 1999). Furthermore, inactivation

experiments sometimes used bacteriophage as virus surrogate,

such as bacteriophage T3 (Goetsch et al., 2018), coliphageVX174

(Vinnerås et al., 2008; Nordin et al., 2013; Decrey and Kohn,

2017), coliphage MS2 (Chandran et al., 2009; Decrey et al., 2015;

Ahmed et al., 2017; Decrey and Kohn, 2017), coliphage T4

(Decrey and Kohn, 2017), Enterobacteria phage MS2

(Vinnerås et al., 2008; Nordin et al., 2013), and Salmonella

typhimurium phage 28B (Höglund et al., 2002; Vinnerås et al.,

2008). Most of these pathogens were reduced to an acceptable

limit after 6 months.

Several factors may respond for the pathogens inactivation,

of which free ammonia (NH3) induced by the hydrolysis of urea

in the storage is considered as the dominating reason (Vinnerås

et al., 2008). NH3 is one of the most important basic species in

stored urine inducing the genome cleavage via alkaline

transesterification, which results in the inactivation of the

single-stranded (ss)RNA viruses (Decrey et al., 2015). Based

on the same mechanism, other bases (carbonate, phosphate,

and hydroxide) should also be taken into account for the

viruses inactivation (Decrey et al., 2015). Furthermore, high

temperature and high pH can accelerate the inactivation

because these two factors also determine the concentrations of

NH3 and other bases (Höglund et al., 1998; Höglund and

Stenström, 1999; Hoglund et al., 2002; Vinnerås et al., 2008;

Ahmed et al., 2017). For example, the inactivation rate constantK

of E. coli increased from 0.20/d to 3.04/d at increasing

temperature from 15°C to 35°C in storage of undiluted urine

(Ahmed et al., 2017). 20°C or higher temperature was

recommended for the current recommended storage time

of 6 months (Vinnerås et al., 2008). Moreover, urine

dilution brought by water flushing or pretreatment before

fertilization (Jönsson et al., 2004) can decrease the

concentration of NH3, thereby slowing the pathogens

inactivation and extending the storage time for hygienic

treatment (Vinnerås et al., 2008).

Notably, the types of pathogens of which the inactivation was

experimentally studied (Table 1) are far less than that detected in

urine (Supplementary Table S1). The inactivation of pathogens

will be surely determined by its type. For example, the mean time

for 1 log10 reduction (t90) of S. typhimuriuma, Enterococcus

Faecalis, MS2, andVX174 was <0.1 d, <1.1 d, <1.6 d, and <5.7 d,
respectively, during the storage of urine at 34°C (Vinnerås et al.,

2008). Some pathogens were still in high concentrations and even

enriched after several months of storage. The concentration of

Bacillus spores did not decrease during the urine storage because

some microorganisms in the sporulated form have a higher

resistance (Almeida et al., 2019). Moreover, the growth of

streptococci was even found in urine collecting pipes and tank

(Höglund et al., 1998). In addition, heterogeneity among viruses

in their susceptibility toward NH3 is driven by the genome type.

It is more difficult to inactivate the double-stranded (ds)RNA

reovirus and Rhesus rotavirus as well as the dsDNA Salmonella

phage 28B than ssRNA viruses (Decrey et al., 2015). Therefore, it

is essential to carry out a comprehensive evaluation of the

inactivation of possible pathogens particularly in areas with

typical infectious diseases when urine was directly used as

liquid fertilizer after storage.

In addition, several pretreatment methods were developed to

accelerate the urea hydrolysis, which may accelerate the

pathogens inactivation. These methods included dosage of

urease (Kabdasli et al., 2006; Engelhardt et al., 2020), fecal

incubation (Hotta and Funamizu, 2008), incubation of stale

urine (Liu et al., 2008), increasing temperature (Liu et al.,

2008) and microbial electrochemical current (Chen et al.,

2017). However, incubation of fecal matter can simultaneously

bring the contamination of urine by pathogens whether more

pathogenic types or higher concentrations. As such, the

pretreatment using fecal incubation should be re-considered

taking the microbial risks into account.

3.2 Urine stabilization

Urea hydrolysis driven by the catalysis of urease occurred

quickly in urine because many bacteria contaminated by feces or

TABLE 1 (Continued) A summary on the reduction of pathogens in storage of urine.

Urine Temperature°C Pathogens Reduction Days References

Description Unit

bacteriophages Qβ 0.3

bacteriophages MS2 0.4

Diluted and undiluted 4–34 Ascaris suum eggs 99% a 3–840 Nordin et al. (2009)

Diluted 4–22 Mycobacterium tuberculosis 90% a 2–10 Vinnerås et al. (2011)

aThe reference doesn’t provide any information on the unit of pathogens tests.
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nature can produce urease (Udert et al., 2003a). More than half of

urea hydrolyzed in the urine collecting pipes and storage tank

(Udert et al., 2003b; 2003c). Although urea hydrolysis promotes

the pathogens inactivation, it also brings the loss of nitrogen due

to ammonia volatilization and the loss of phosphorus due to

phosphate precipitation at alkaline pH. To inhibit urea

hydrolysis, stabilization has been developed as a pretreatment

before urine reuse or dewatering (Randall et al., 2016).

3.2.1 Acidification/alkalinization
Acidification (pH < 5 (Hellstrom et al., 1999; Saetta et al.,

2020; Moharramzadeh et al., 2022)) or alkalinization (11 < pH <
13 (Randall et al., 2016)) can be used to inhibit the hydrolysis of

urea due to the inactivation of urease-producing bacteria or

urease. The inactivation of pathogens after urine acidification

has been rarely reported maybe because the disinfection is not

significant. By comparison, alkalinization of urine is considered

as a promising method to inactivating pathogens as well as

stabilizing urine (Randall et al., 2016). Lime is a common

alkaline agent used for urine stabilization (Randall et al.,

2016), sometimes combining with biochar (Simha et al.,

2020a) and wood ash (Dutta and Vinnerås, 2016; Simha et al.,

2020b). Pathogens inactivation in urine using lime has not been

experimentally examined. However, lime is a well-known

disinfection method for water and sewerage sludge because

high pH was highly effective in the inactivation of pathogens

(Bujoczek et al., 2002; Keller et al., 2004; Hansen et al., 2007).

Moreover, bacteria Enterococcus faecalis and Salmonella spp. and

bacteriophages MS2 and VX 174 were reduced to below the

detection limit when urine was alkalized using wood ash after 4 d

at 20°C (Senecal et al., 2018) while the mean time for t90 of

Enterococcus Faecalis, MS2, and VX174 was 2.3, 15, and 12 d,

respectively, during urine storage at 24°C (Vinnerås et al., 2008).

Therefore, alkalinization would be much quicker and more

effective than urine storage.

3.2.2 Chemical oxidation
Chemical oxidation using hydrogen peroxide or heat-

activated peroxydisulfate could effectively inhibit urea

hydrolysis due to the irreversible destruction of urease (Zhang

et al., 2013; Lv et al., 2020). The two oxidants are normally used in

disinfection of water (Jin et al., 2020; Xiao et al., 2020), providing

a basis for pathogens inactivation of urine. However, chemical

oxidation also brought the loss of nitrogen because of the

oxidation of ammonium to nitrogen gas (Lv et al., 2020). This

might limit the application of chemical oxidation for urine

stabilization.

3.2.3 Biological nitrification
Urine after urea hydrolysis can also be stabilized through

biological nitrification. Ammonium in hydrolyzed urine can be

oxidized to nitrite or nitrate while the pH decreases to a weak

acidic pH (i.e., 5–7) (Udert et al., 2003d; Feng et al., 2008; Jiang

et al., 2011). This would reduce the volatilization of ammonia and

the precipitation of phosphate salts. Furthermore, this produces a

stabilized liquid fertilizer (Feng et al., 2008) or solid fertilizer

when combining with distillation (Udert and Wächter, 2012;

Fumasoli et al., 2016). However, the impact of nitrification on

pathogens inactivation is not an interest even since nitrification

was proposed for biological nitrogen removal from wastewater

(Gujer, 2010). This means that biological nitrification may not be

an effective technology on pathogens inactivation in urine.

Notably, a recent study achieved the nitritation of urine in an

acidic nitrifying bioreactor (Li et al., 2020). This may provide an

opportunity to inactivate pathogens in urine because the product

free nitrous acid is biocidal to a broad range of microorganisms

(Jiang and Yuan, 2014) despite the target of nitritation was to

obtain nitrite rather than recover nutrients from urine.

3.3 Dewatering urine to obtain
concentrated fertilizer products

Despite being rich in nutrients, urine still has high content of

water (approximately 97%) when urine is collected in a dry toilet.

Urine will be further highly diluted when a water flushing toilet is

used. Several dewatering technologies have been developed to

concentrate urine to yield concentrated fertilizer products as well

as clean water.

3.3.1 Membrane filtration
Urine can be dewatered to produce concentrated liquid

fertilizer through membrane filtration including nanofiltration

(Ray et al., 2020a; Courtney and Randall, 2022), reverse osmosis

(Ek et al., 2006; Ray et al., 2020a; Courtney and Randall, 2022),

forward osmosis (Zhang et al., 2014; Engelhardt et al., 2020; Jiang

et al., 2022; Pocock et al., 2022), membrane distillation (Zhao

et al., 2013; Volpin et al., 2019a; Khumalo et al., 2019) and

electrodialysis (Brewster et al., 2017; Wang et al., 2017; De Paepe

et al., 2018). Nutrients are rejected in the concentrate while water

passes through the membrane filter to the other side in most of

the filtration processes except the electrodialysis which

concentrates nutrients in the permeate side.

Membrane filtration is a common technology to remove

pathogens from water. The separation of bacteria and viruses

from wastewater using polymeric and ceramic membrane has

been summarized (Goswami and Pugazhenthi, 2020). The

rejection of pathogens by filter mainly depends on the filter

pore size due to the size exclusion mechanisms. Moreover, virus

adsorption, electrostatic interaction and hydrophobic interaction

also respond for the removal of pathogens from water (Goswami

and Pugazhenthi, 2020). A nanofilter with pore size of 20 nm

(Viresolve NFP filter, Millipore, United States) was employed to

remove viruses from urine aiming to obtain virus free urokinase

solution. The log reduction factors for porcine parvovirus

(18–26 nm), human hepatitis A virus (25–30 nm), murine
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encephalomyocarditis virus (28–30 nm), bovine viral diarrhoea

virus (40–60 nm), and bovine herpes virus (120–300 nm)

were ≥4.86, ≥4.60, ≥6.87, ≥4.60, and ≥5.44, respectively (Kim

et al., 2004). The rejection of pathogens by filter also means that

pathogens would be concentrated in the liquid urine fertilizer. A

recent study reported that concentration of urine can also lead to

the inactivation of E. coli due to the high osmotic pressure under

high salt contents (Oishi et al., 2020). 1-day storage was necessary

for the safe reuse of 5-fold concentrated hydrolyzed urine

whereas 91-h storage was required for non-concentrated urine

when the initial numbers of E. coli were the same in these two

urine solutions. However, the inactivation of pathogens might be

inhibited due to the low concentration of free ammonia at low

pH when acidification pretreatment was used to reduce the loss

of ammonia to the water permeate (Tun et al., 2016; Xu et al.,

2019a; Ray et al., 2020a).

Electrodialysis may pose an advantage than other membrane

filtrations for dewatering urine. Nutrients were concentrated in

the permeate side as the ionic species passed through selective

ion-exchange membranes from the urine to the permeate side

driven by an electric field (Pronk et al., 2006; De Paepe et al.,

2018). Thus, pathogens would be retained in urine while yielding

a pathogen free fertilizer product. However, this has not been

examined by experiments.

Forward osmosis and membrane distillation were also

employed to separate ammonia and urea from urine,

producing ammonia- or urea-rich solution in the permeate

side (Xu et al., 2019a; Ray et al., 2019; Ray et al., 2020b; Han

et al., 2022). The N-rich solution would have low pathogen

concentrations due to the rejection by the filter. Furthermore,

a P-rich solid product could be obtained in a pretreatment using

struvite precipitation before the filtration to avoid fouling on the

membrane (Volpin et al., 2018; Volpin et al., 2019b). The

combined processes successfully would achieve the recovery of

N and P from urine. However, special attention should be paid to

microbial risks of the struvite product formed in the urine with

concentrated pathogens.

3.3.2 Evaporation/distillation
Urine can be passively evaporated at ambient temperature to

produce concentrated fertilizer solution or solid fertilizer

products (Bethune et al., 2014). The evaporation was further

accelerated by solar irradiation (Antonini et al., 2012b; Bethune

et al., 2015) or heating at 25–65°C (Dutta and Vinnerås, 2016;

Senecal and Vinnerås, 2017; Simha et al., 2018; Simha et al.,

2020a). The purpose of urine distillation at boiling temperature is

mainly to obtain solid fertilizer products (Udert and Wächter,

2012; Fumasoli et al., 2016; Jiang et al., 2017). The boiling

temperature even increased to 130.1°C when the salts in urine

was highly concentrated following the distillation (Udert and

Wächter, 2012). However, loss of the total ammonia was

observed due to the volatilization of free ammonia during the

evaporation of water (Bethune et al., 2014,2016). Therefore,

stabilization pretreatment such as acidification (Jiang et al.,

2017), alkalinization (Dutta and Vinnerås, 2016; Senecal and

Vinnerås, 2017; Simha et al., 2018; Simha et al., 2020a) and

nitrification (Udert andWächter, 2012; Fumasoli et al., 2016) was

usually employed prior to the evaporation or distillation process.

Several factors involved in the evaporation/distillation of urine

can inactivate pathogens. High temperature is highly effective to

inactivate pathogens as reported in the fields of waste composting

or water disinfection (Chu et al., 2019; Hu et al., 2020). Moreover,

Bethune et al. (2014) suggested that the urine-derived solid

product was sterile because high salinity in the concentrated

product might respond for the inactivation of microorganisms.

In addition, solar thermal evaporation may further enhance the

pathogen inactivation because sunlight radiation is considered as a

unconventional disinfection technology to obtain safe drinking

water (Chu et al., 2019). The inactivation of pathogens would be

further enhanced when alkaline pretreatment was employed to

inhibit the urea hydrolysis before evaporation/distillation. In an

alkaline dehydration of urine using ash at 42°C, five fecal

pathogens including Ascaris suum, Enterococcus faecalis,

bacteriophages MS2 and VX 174, and Salmonella spp. were

inactivated to below the detection limit within 10 d (Senecal

et al., 2018), which met the World Health Organization

(WHO) guidelines for the reuse of excreta (World Health

Organization (WHO), 2006). Although acidification or

biological nitrification may be not effective on the pathogen

inactivation, the following evaporation/distillation can play a

dominating role (Bischel et al., 2015).

The evaporation/distillation of urine can also produce clean

water for reuse. Distillation at boiling temperature would also

promise a sterile water product because boiling temperature is

very efficient on disinfection (Chu et al., 2019). However,

reclaimed water collected after evaporation at ambient

temperature or high temperature around 35–65°C may still

pose microbial risks. Pathogens in the concentrated fertilizer

solution or the solid product may be inactivated by the

synergistic effects of high salinity, pH and temperature. But

single effect of temperature on the water disinfection may not

act as effectively as on the solid product disinfection. Thus, the

reuse of the reclaimed water after the evaporation/distillation of

urine should be further addressed.

3.3.3 Freezing-thawing
Freeze crystallization can recover water in the form of ice

from urine as well as concentrating the fertilizer solution. Low

temperature ranges of −18 to −4°C were examined for freezing

urine (Lind et al., 2001; Gulyas et al., 2004; Schmidt and Alleman,

2005; Ganrot et al., 2007a; Yu et al., 2007; Ganrot et al., 2008;

Moharramzadeh et al., 2022). A thermodynamic model was

further developed providing a theoretical understanding on

obtaining solid salts and water from stored urine (Randall and

Nathoo, 2018). After thawing, the reclaimed water and the

concentrated fertilizer product can be obtained.
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The influence of freezing and thawing on pathogens seems to

be unclear. Freezing creates damage to cell structure of

microorganisms (Sanin et al., 1994). It was found that the

reduction of pathogenic bacteria (Salmonella), virus

(Poliovirus) and parasites (Ascaris suum and Cryptosporidium

parvum) was effectively achieved by freezing-thawing coupled

with anaerobic digestion of sludge in a wastewater treatment

plant, meeting the pathogen reduction requirements for sludge

land disposal by US regulations (Sanin et al., 1994). Furthermore,

freezing is widely used in food storage because of its negative

effect on microbial community. For examples, storage for more

than 3 days at −20°C can effectively inactivate T. gondii in

contaminated meat (Alizadeh et al., 2018). However, freeze-

drying is also considered as a common cryopreservation

method to preserve pathogens because the ultra-low

temperature can fix the cells in powder and nearly completely

inhibit the cell metabolism (Perry, 1998). For example, the freeze-

drying was sustainable for the long-term preservation of marine

pathogen V. anguillarum (Yu et al., 2019). Furthermore, the

stability and retention of infectivity of viruses was confirmed

after frozen storage of foods, indicating negative effect on killing

viruses (Sánchez and Bosch, 2016). In addition, it was reported

that sublethally injured pathogens (E. coli) caused by freezing

during food storage can recover after thawing, presenting a

potential threat on food safety (Zhang R. et al., 2021).

Therefore, the related publications can’t show a clear

understanding whether freeze-drying is bad or good to

effectively deactivate pathogens in urine.

3.4 Extraction of nutrients from urine

3.4.1 Stripping-absorption of ammonia to obtain
liquid N-products

Ammonia separated from urine by air (Behrendt et al., 2002;

Basakcilardan-Kabakci et al., 2007; Antonini et al., 2011; Morales

et al., 2013; Liu et al., 2015; Xu et al., 2017; Jagtap and Boyer,

2018; Jagtap and Boyer, 2020) or membrane stripping (Tarpeh

et al., 2018a; Christiaens et al., 2019; Pradhan et al., 2019) can be

absorbed in water or sulfate acid solution to yield liquid

N-products such as ammonia water or ammonium sulfate

solution. However, an autofluorescent E. coli spiked in the

urine was also observed in the absorbent (Christiaens et al.,

2019), which should be caused by the transfer of microorganisms

from urine to the absorbent via aerosols induced by air stripping

(Benami et al., 2016). This indicates potential microbial risks of

using the ammonia absorbent products in agriculture.

Alkalinization and heating is usually used to improve

ammonia stripping efficiency from urine. pH >12 maintained

by lime increased the removal efficiency by 8% for the stripping

of pure urine at 30°C (Pradhan et al., 2017). Furthermore, high

temperature ranging in 40°C–65°C could significantly increase

the stripping efficiency because of the formation of more free

ammonia (Pradhan et al., 2017; Wei et al., 2018; Tao et al., 2019;

Tian et al., 2019). High pH and temperature would meanwhile

benefit the inactivation of pathogens in urine influent as well as

reducing the pathogens in absorbent.

Membrane stripping provide another approach to reduce the

transfer of pathogens to absorbent. Free ammonia in the urine

side pass through a gas permeate membrane (GPM) to the

absorbent side. Pore size of the GPM commonly ranges in

0.1–0.59 µm (Tarpeh et al., 2018a; Xu et al., 2019a;

Christiaens et al., 2019). As such, most pathogenic bacteria

and some viruses would be rejected by the membrane,

producing N-products with less pathogens in the permeate

side. A study by Tarpeh et al. (2018a) confirmed that E. coli

was not observed in the absorbent of a membrane stripping

process when its concentration was 108.00–8.78 events/mL in the

urine feed. However, it was also found that very small

microorganisms reported in urine (<0.1 µm) could pass

through the membrane with an average measured pore size of

0.274 µm (Dong et al., 2011). Thus, stripping via hydrophobic

GPM does not lead to a pathogens-free absorbent. Similar as that

in the air stripping process, high pH and temperature intending

for high ammonia transfer efficiency in membrane stripping (Xu

et al., 2019a) would probably inactivate pathogens in the feed side

and reduce the transfer of pathogens to the permeate side.

Concentrating ammonia using cation exchange membrane

(CEM) in electrodialysis can increase the concentration of free

ammonia before stripping (Christiaens et al., 2017; Tarpeh et al.,

2018a; Christiaens et al., 2019). Tarpeh et al. (2018a) developed a

novel process combining electrodialysis and membrane stripping

to yield an E. coli-free fertilizer product from urine for potential

safe reuse. Pore size of CEM ranges from 1.5 to 200 nm

(Kononenko et al., 2017), which would benefit rejecting the

transfer of pathogens with small sizes such as nanoscale viruses.

3.4.2 Adsorption of nutrients to obtain solid
fertilizer products

Urea, ammonium, phosphate and potassium in urine can be

adsorbed by various adsorbents such as activated carbon (Ganrot

et al., 2007a), biochar (Bai et al., 2018; Xu et al., 2018; Xu et al.,

2019b; Zhang X. et al., 2021), gastropod shell (Saliu et al., 2020),

ion exchange resin (O’Neal and Boyer, 2013; O’Neal and Boyer,

2015; Tarpeh et al., 2017; Tarpeh et al., 2018b), layered double

hydroxides (LDH) (Dox et al., 2019a; Dox et al., 2019b; Dox et al.,

2022), magnetic Fe3O4@ZrO2 nanoparticles (Guan et al., 2020a),

metal organic frameworks (MOF) (Lin et al., 2015; Guan et al.,

2020b), natural loess (Jiang et al., 2016), porous organic polymer

(Zhang et al., 2020), wollastonite (Lind et al., 2000), zeolite (Ban

and Dave, 2004; Beler-Baykal et al., 2004; Ganrot et al., 2007a;

Leung et al., 2007; Ganrot et al., 2008; Baykal et al., 2009; Beler-

Baykal et al., 2011; Huang et al., 2014; Xu S. et al., 2015;

Mitrogiannis et al., 2018; Makgabutlane et al., 2020; Regmi

and Boyer, 2020). Some of these adsorbents i.e., biochar,

gastropod shell, natural loess, and zeolite after nutrient
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adsorption can be directly used as fertilizer in agriculture (Ganrot

et al., 2008; Beler-Baykal et al., 2011; Xu S. et al., 2015; Jiang et al.,

2016; Bai et al., 2018; Xu et al., 2018; Saliu et al., 2020; Zhang X.

et al., 2021). Other adsorbents should be desorbed in solutions

containing NaOH (Beler-Baykal et al., 2004; O’Neal and Boyer,

2015; Mitrogiannis et al., 2018; Guan et al., 2020a; Guan et al.,

2020b), NaHCO3 (Mitrogiannis et al., 2018; Dox et al., 2019a;

Dox et al., 2019b), NaCl (Lin et al., 2015; O’Neal and Boyer, 2015;

Mitrogiannis et al., 2018; Zhang et al., 2020), HCl (Mitrogiannis

et al., 2018; Guan et al., 2020b), or H2SO4 (Tarpeh et al., 2017;

Tarpeh et al., 2018b) to obtain phosphate-rich solution, after

which a chemical precipitation process such as struvite

precipitation was usually conducted to yield solid phosphate

fertilizer easy to be collected and applied for agriculture.

However, to our best knowledge, the behavior of urine

pathogens during the nutrient adsorption has not been reported.

Normally, some adsorbents such as zeolites and biochar can

uptake aquatic microorganisms, forming biofilm on the surface

(Perez-Mercado et al., 2019; Wang et al., 2020). The uptake of

microorganisms is mainly driven by weak electrostatic or binding

forces to the carrier surface and the intra-grain and intra-

crystallite pores (Lameiras et al., 2008). Experiments

confirmed the uptake of fecal coliforms and E. coli from

wastewater by clinoptilolite, a naturally occurring zeolite, with

an active uptake of 3989 CFU/g and 2732 CFU/g, respectively

(Ferronato et al., 2015). Furthermore, a correlation model based

on experiments also showed that biochar filters could

significantly remove bacteria and viruses with the reduction

rate of ≥2 log10 and ≥1 log10, respectively, because these

microbes were enriched on biochar due to adsorption (Perez-

Mercado et al., 2019). This indicates that the microbial risks

would even be magnified especially when the nutrient-enriched

adsorbents are directly used as fertilizer in agriculture.

Various metal ions have been used as biocidal agents such as

Ag, Zn, Cu, Ni, Co, Ti and Bi (Wyszogrodzka et al., 2016). Zeolite

exchanged with Cu and Zn can be used as antimicrobial material

for efficient disinfection of contaminated water with bacteria

because it was effective to reduce the concentrations of E. coli and

Staphylococcus aureus (Yao et al., 2019). This may provide a

potential approach to reduce the microbial risks of nutrient-

adsorbed solid fertilizer but pose a potential risk of heavy metals.

Post treatment in an alkaline desorption solution may further

inactivate pathogens adsorbed on adsorbents because alkaline

treatment is effective in the disinfection of urine pathogens

(Senecal et al., 2018). However, it is unclear that whether

desorption of nutrients from adsorbents in acid solution could

inactivate pathogens.

3.4.3 Chemical precipitation to obtain solid
products

Chemical precipitation is a commonly reported approach to

recover nutrients from urine by the formation of non-soluble

phosphate salts. Struvite precipitation is the most concerned

phosphorus recovery technology which can also simultaneously

recover part of ammonium from urine (Krähenbühl et al., 2016;

Zamora et al., 2017; Wei et al., 2018; Zheng et al., 2018; Aguado

et al., 2019; Li P. et al., 2019; Pinatha et al., 2020; Oztekin et al.,

2022). The precipitation of struvite-K, an analogue of struvite,

can simultaneously recover phosphate and potassium from

ammonium-depleted urine (Xu et al., 2011; Xu et al., 2012;

Xu K. et al., 2015; Xu et al., 2017; Zhang et al., 2017; Zhang

et al., 2018; Huang et al., 2019). Furthermore, phosphate can also

be recovered by the precipitation of calcium phosphate (Pradhan

et al., 2017). Finally, filtration and drying following the

precipitation process is essential to obtain solid phosphate

products. Struvite and struvite-K can be directly used as

fertilizer in agriculture because they are both slow-release

fertilizer while calcium phosphate is considered as a raw

material for phosphate fertilizer industry (Ganrot et al., 2007b;

Liu et al., 2020). There are standards for microbial risk

management in industrial fertilizer (Ministry of Industry and

Information Technology of the People’s Republic of China,

2019). Therefore, this review mainly addresses the potential

microbial risk of the recovered phosphate products which can

be directly used in agriculture.

Decrey et al. (2011) found that the struvite precipitation

process did not considerably inactivate the pathogen indicators

phage ΦX174 and Ascaris suum eggs in the urine liquid fraction.

The pH value during the struvite precipitation in urine was

approximately 9 (Etter et al., 2011), which is similar as that in the

storage process. This indicates that free ammonia formed at such

alkaline pH can inactivate pathogens like that in the storage

process. However, the reaction time for struvite formation was

only 10 min in their study (Decrey et al., 2011). Some other

studies used longer precipitation time ranging from 15 to

125 min (Ronteltap et al., 2007; Ronteltap et al., 2010; Liu

et al., 2013), which is still much less that the storage time of

2‒6 months (Jönsson et al., 2004; Vinnerås et al., 2008). As such,

the pathogen inactivation can be neglected within such a short

precipitation time. At a longer precipitation time of 24 h, the

number of coliforms was reduced by 56% during the struvite

precipitation at pH 9 in anaerobically digested chicken slurry

(Muhmood et al., 2018). Furthermore, they also reported a

greater reduction of coliforms (73%) at pH 10. The viability

of spiked E. coli cells also significantly decreased during the

struvite precipitation at pH of 11 in source-diverted blackwater

(Yee et al., 2019). Non-etheless, optimum pH of the struvite

precipitation was approximately 9 and higher pH decreased the

struvite purity (Harada et al., 2006). Thus, high pH for effective

pathogen inactivation may be suitable for precipitation of

calcium phosphate rather than the struvite precipitation.

Complete inactivation of E. coli, Salmonella enterica serovar

typhymurium, and Porcine circovirus type 2 was achieved

when removing phosphate from swine slurry at pH 10 using

Ca(OH)2 (Viancelli et al., 2015). The coliforms was also

completely inactivated after 6 h of treatment using wood ash
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to remove phosphate from urban wastewater and landfill leachate

at pH of 10.1–12.7 (Ivanković et al., 2014). In addition, the

optimal pH in ranges of 10–11 for the precipitation of struvite-K

(Xu et al., 2011; Xu et al., 2012; Xu K. et al., 2015) may also

improve the pathogens inactivation in the liquid fraction despite

this has not been reported.

It is essential to evaluate the pathogens in the solid nutrient

product obtained from urine especially when the product is

directly used as fertilizer. Pathogen indicators phage

ΦX174 and Ascaris suum eggs were both detected in the

struvite product filtered by nylon fabric while no considerable

inactivation was observed in the precipitation process in urine

(Decrey et al., 2011). There was no significant difference on

concentration of phage ΦX174 in both the solid and the liquid

fraction. However, the Ascaris eggs even accumulated by 100 fold

within the solid product because the filter with irregular pore

diameters of 18–240 µm rejected the Ascaris eggs having a size of

35–50 × 45–70 µm in the solid fractions. Bischel et al. (2016) also

reported the accumulation of heterotrophs and total bacteria in the

struvite product obtained by the filtration with nylon or cloth

filters from urine. Non-etheless, these two publications cannot

clearly display an actual behavior of the pathogens in the solid

fraction of struvite precipitation because of the effect of filtration

on the pathogens accumulation. Electrostatic attraction and

repulsion may play an important role for behavior of pathogens

in solid struvite. Struvite crystals are negatively charged with zeta-

potential of −17.5 to −27.6 mV at pH from 8.5 to 10.5 (Le Corre

et al., 2007). Yee et al. (2019) reported that the electrostatic

attraction between C. perfringens with positive zeta potential of

0–3 mV and struvite particles increased the cell aggregation in the

final solid product. However, there was an electrostatic repulsion

between struvite and phage ΦX174 with isoelectric point of 6.6

(Michen and Graule, 2010) carrying negative surface charge at

pH around 9 (Muhmood et al., 2018). Moreover, isoelectric points

of most viruses ranged from 1.9 to 8.4 (Michen and Graule, 2010).

Thus, these viruses would present negative surface charge in the

struvite precipitation system of urine, indicating electrostatic

repulsion between struvite and viruses.

Factors affecting the surface charge of struvite may change

the adsorption of pathogens onto struvite particles. High

concentration of residual Mg2+ lowered the negative charge of

struvite which could lead to more adsorption of pathogens with

low isoelectric point (Decrey et al., 2011). Coagulants and

flocculants may also result in more adsorption of pathogens

when they were used to promote the agglomeration of struvite

crystals (Le Corre et al., 2007). The adsorption of pathogens

would probably be enhanced during the precipitation of struvite

on metal-modified biochar (Xu et al., 2018; Liu et al., 2020) or

zeolite (Huang et al., 2014; Mitrogiannis et al., 2018) with positive

surface charge. In addition, the tendency of bacteria growth on

these carrier (Perez-Mercado et al., 2019; Wang et al., 2020)

would further lead to accumulation of more pathogens in the

struvite product.

Although there lacks understanding on the adsorption of

pathogens on struvite and the following filtration rejects some

pathogens with large size in the struvite filter cake, pathogens in

the solid products can still be effectively inactivated in the

following drying process (Bischel et al., 2016). Temperature

and humidity were important factors determining the

efficiency of pathogens inactivation. No significant

inactivation of Ascaris suum eggs in struvite obtained from

urine were observed at 5 and 20°C while the eggs was

inactivated by more than 99% at 35–36°C after drying for

3 days (Decrey et al., 2011). Furthermore, inactivation of

Ascaris suum eggs was only 1.2 log10 after 3 days drying at

temperature of 35°C and relative humidity of 85% while it

reached more than 2 log10 after 1 day of drying at

temperature of 36°C and relative humidity of 36%. Thus,

inactivation of Ascaris suum eggs in struvite drying was

enhanced at low relative humidity (Decrey et al., 2011).

Moreover, the reduction of phage ΦX174 in struvite was 0.03,

0.07 and 0.09 log10/day in the drying process at 5°C/85%

(temperature/relative humidity), 20°C/93% and 5°C/35%,

respectively. As such, its inactivation was enhanced at high

temperatures and low relative humidity. Experimental results

further showed that the inactivation of heterotrophic bacteria,

total bacteria, Enterococcus spp. and Salmonella typhimurium

accumulated in struvite from urine was also improved with

increasing temperature for drying at a constant relative

humidity (Bischel et al., 2016). The reduction of heterotrophs

even reached 3 log10 at optimized drying conditions within

100 h. Therefore, drying, also as an essential process to obtain

final solid struvite product, is recommended as an effective

method for the disinfection of the final product. Experimental

results confirmed that the concentrations of total coliforms and

E. coli were under the detection limits when struvite formed in

anaerobically digested chicken slurry was dried at 40°C without

control of humidity for 48 h after a filtration using 0.45 μm

membrane (Muhmood et al., 2018; Muhmood et al., 2019).

Drying at higher temperature than the ambient temperature

already examined in experiments will reasonably improve the

pathogens inactivation of struvite product. However, this may

also result in the loss of crystal water and ammonia in the struvite

crystals due to its decomposition (Bhuiyan et al., 2008).

Drying struvite by sunlight is also an option especially for small-

scale reactor. However, Decrey et al. (2011) found that no significant

inactivation of phage ΦX174 or Ascaris suum eggs was observed

when struvite was exposed to sunlight within 5 h at 31°C with

relative humidity of <35%. The short exposure time may be one of

the dominating reasons for ineffective inactivation. Exposure to

sunlight will increase the temperature of struvite and accelerate the

loss of struvite moisture, thereby theoretically introducing the

disinfection of struvite. Moreover, sunlight radiation in ultraviolet

range is known to be effective in pathogens inactivation (Chu et al.,

2019). Therefore, struvite disinfection is expected to be realized to

some extent for long time of exposure in sunlight.

Frontiers in Environmental Science frontiersin.org10

Xu et al. 10.3389/fenvs.2022.1056019

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056019


TABLE 2 An overall assessment of pathogens inactivation in urine treatment technologies and the related UDFPs.

Technology Nutrient
recovered

UDFP Inactivationa

Urine
storage

Complete Liquid urine ++

Urine stabilization

Acidification Complete Liquid urine N.I.

Alkalinization Complete Liquid urine ++

Chemical oxidation Complete Liquid urine ++

Biological nitrification Complete Liquid urine N.I.

Urine dewatering

Membrane Reverse osmosis Complete Liquid
UDFP

– –

Forward osmosis Complete Liquid
UDFP

– –

Nanofiltration Complete Liquid
UDFP

– –

Membrane distillationc Complete Liquid
UDFP

++b

P, K Liquid
UDFP

++b

Electrodialysis N, P ++

Evaporation/
distillation

Complete Liquid
UDFP

++

Solid UDFP ++

Freezing Complete Liquid
UDFP

N.I.

Nutrient extraction

Stripping-absorption Air stripping N Liquid
UDFP

++b

Membrane stripping N Liquid
UDFP

++

Adsorption Direct use N Solid UDFP –

P Solid UDFP –

part of N, P Solid UDFP –

P, K Solid UDFP –

Alkaline desorption N Liquid
UDFP

++

Acidic desorption N Liquid
UDFP

N.I.

P Liquid
UDFP

N.I.

part of N, P Liquid
UDFP

N.I.

P, K Liquid
UDFP

N.I.

Chemical
precipitation

Calcium phosphate P Solid UDFP N.I.

Struvite part of N, P Solid UDFP N.I.

Struvite-K P, K Solid UDFP N.I.

Filtration/centrifugation
separation

Direct use P Solid UDFP – –

part of N, P Solid UDFP – –

P, K Solid UDFP – –

(Continued on following page)
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Decomposition of struvite (Eq. 1) can release ammonia

which can be recovered through absorption in water or acid

solution and the solid decomposition product can be employed to

remove ammonia from urine through the re-precipitation of

struvite (Eq. 2) (Chen et al., 2020). The decomposition was

commonly conducted in ranges of 100–150°C using

calcination (Huang et al., 2016), ultrasound radiation (Huang

et al., 2017), and microwave radiation (Chen et al., 2020), the

latter two processes of which were even carried out in alkaline

solution containing NaOH. High temperature and combination

of alkaline condition would probably inactivate pathogens in

struvite, thus promising clean products of solid struvite and

liquid ammonia-rich solution.

MgNH4PO4 · 6H2O s( ) → MgHPO4 s( ) + NH3 g( ) + 6H2O

(1)
MgHPO4 s( ) + NH3 aq( ) + 6H2O → MgNH4PO4 · 6H2O s( )

(2)

3.5 An overall assessment

Table 2 summarizes the overall assessment of pathogens

inactivation in different urine treatment processes. Storage for

2–6 months was considered as an effective pretreatment

technology to inactive pathogens when urine was used as

liquid fertilizer (Schonning, 2001; Jönsson et al., 2004; World

Health Organization (WHO), 2006). Urine dewatering and

dehydration technologies are developed to obtain concentrated

liquid fertilizer or solid fertilizer. Pathogens could be retained in

concentrated urine fertilizer by membrane treatment using

reverse osmosis, forward osmosis, and nanofiltration. This

would bring strong negative effect on pathogens inactivation.

However, electrodialysis may effectively remove pathogens

because concentrated liquid fertilizer is obtained in the

permeate side and pathogens are retained in the urine feed

side. Moreover, membrane distillation should have strong

positive effect on inactivating pathogens in concentrated urine

fertilizer because of alkalinization or heating of urine feed.

Evaporation under heating or distillation will probably yield

sterile concentrated liquid or solid fertilizer products because

high temperature is effective for pathogens inactivation.

Urine stabilization is commonly essential before urine

dewatering to prevent loss of ammonia due to urea hydrolysis.

Alkalinization can be used to enhance the pathogens inactivation

as a pretreatment process, which may be particularly important

for dewatering technologies without inactivation effect such as

reverse osmosis, forward osmosis, nanofiltration and freezing.

Pathogens would also be effectively inactivated by chemical

oxidation. However, the effect of chemical oxidation on the

characteristics of UDFPs is unclear. Moreover, it is also

unclear whether acidification or biological nitrification can

inactivate pathogens in urine. Thus, these two technologies

would be suitable for urine stabilization before urine

dewatering through membrane distillation, electrodialysis,

evaporation and distillation while may be unsuitable prior to

urine dewatering using reverse osmosis, forward osmosis,

nanofiltration and freezing.

Absorption of ammonia by water or acid solution following

stripping can recover N and yield liquid ammonia fertilizer. Air

stripping with heating or at alkaline pH and membrane stripping

would probably have strong positive effect on pathogens

inactivation. Adsorption can recover specific nutrients from

urine determined by the adsorbents’ characteristics. However,

direct use of the solid nutrients-enriched adsorbents in

agriculture may pose microbial risks because pathogens may

also be adsorbed on the UDFP. Alkaline desorption of nutrient

from the solid UDFP to yield liquid fertilizer may be a promising

post-treatment process to reduce the microbial risks. Non-

etheless, alkaline desorption may be only suitable for

ammonia recovery from urine. None information could be

obtained on the pathogens inactivation through acidic

desorption despite this post-treatment process can recover N,

P and K in liquid UDFP. There lacks understanding on the

inactivation of pathogens in the chemical precipitations of

TABLE 2 (Continued) An overall assessment of pathogens inactivation in urine treatment technologies and the related UDFPs.

Technology Nutrient
recovered

UDFP Inactivationa

Drying P Solid UDFP ++d

part of N, P Solid UDFP +

P, K Solid UDFP ++

Struvite decomposition and
reuse

N Liquid
UDFP

++

aThe symbol + means that pathogens can be positively inactivated while – presents the opposite effect. Higher number of symbols indicates strong effect. NI means none information.
bTreatment with heating or at alkaline pH.
cMembrane distillation can concentrate P and K or N, P and K, respectively, determined by the operation conditions.
dStruvite can only be dried at temperature <35°C while struvite-K and other phosphate salts can be dried at higher temperature.
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calcium phosphate, struvite, and struvite-K. However, the

following filtration or centrifugation separation of precipitates

from urine would retain pathogens in the solid UDFP. This may

pose strong negative effect on pathogens inactivation in UDFP.

Post-treatment through drying with heating could effectively

inactivate pathogens in the solid UDFP. Moreover, recovery of

total ammonia in urine through recycling use of struvite

precipitation and decomposition may also yield sterile liquid

ammonia fertilizer because of struvite decomposition with

heating and alkaline treatment.

Combination of different processes is usually essential to

extract N, P and K from urine. Adsorption and precipitation was

combined to yielding solid N-P enriched UDFP (Lind et al., 2000;

Ban and Dave, 2004; Ganrot et al., 2007a; Ganrot et al., 2008; Xu

S. et al., 2015; Zheng et al., 2018). This combined processes would

have negative effect on pathogens inactivation because each

separated process has negative effect. Moreover, precipitation

of struvite and stripping-absorption can be combined to recover

N and P producing liquid ammonia fertilizer and solid struvite.

Pathogens in the liquid ammonia fertilizer would be reduced

because of heating and alkaline treatment of urine. However, the

pathogens in struvite were determined by the order in the

combination. Pathogens in urine can be inactivated in the

stripping process. Thus, struvite obtained in a precipitation

process following the stripping (Pradhan et al., 2017) would

have lower contents of pathogens than that yielded in a

precipitation process followed by stripping(Antonini et al.,

2011; Morales et al., 2013; Wei et al., 2018; Tao et al., 2019;

Yang et al., 2022; Zhang et al., 2022). However, pathogens in solid

product obtained in combined processes of stripping and

precipitation of struvite-K may be inactivated because the

operating pH in this precipitation was approximately

11 which benefits pathogens inactivation (Xu et al., 2017).

This indicates that more attention should be paid to the

interaction effects of processes combination on pathogens

inactivation in further studies.

It should be noted that this study has not reviewed the

treatment technologies which are developed to remove

pollutants or recover energy from urine. Biological processes

including nitrification-denitrification (Udert et al., 2003d),

partial nitrification-denitrification (Yao et al., 2017) and

nitritation-anammox (Buergmann et al., 2011) can remove

nitrogen from urine. Microbial electrolysis cell can remove

organics in urine (Boggs et al., 2009; Barbosa et al., 2018;

Barbosa et al., 2019). The removal of N and organics has

been examined through electrochemical oxidation processes

(Amstutz et al., 2012; Dbira et al., 2015; Zoellig et al., 2015;

Zollig et al., 2017; Cotillas et al., 2018a; Dbira et al., 2019).

Energy production has been achieved via microbial fuel cells

(You et al., 2016; Salar-Garcia et al., 2017; Gajda et al., 2019;

Sabin et al., 2022). Advanced oxidation processes including

chemical oxidation (Sun et al., 2018; Li et al., 2022),

photocatalytic oxidation (Zhang et al., 2016), and

electrochemical oxidation (Antonin et al., 2015; Cotillas

et al., 2018b) have been developed to remove

micropollutants. Pathogens inactivation in these technologies

has not been discussed in this review. Microbial risks in UDFPs

should be paid more attention when these technologies are

combined with nutrient recovery technologies.

In addition, only the pathogens inactivation in storage

and alkaline stabilization has been experimentally examined.

Most of the cases were assessed based on publications about

their effects on pathogens inactivation in other fields rather than

in urine treatment. Moreover, none information on the

pathogens inactivation could be obtained when urine was

treated using acidic stabilization, stabilization via biological

nitrification, dewatering via freezing or desorption after

nutrient adsorption. This means that systematic and

meticulous research work is urgently needed to provide

technical support for better and safe development of the

concept of urine source separation. This is particularly

important for achieving U.N. SDGs in developing countries

and regions lacking sanitation.

4 Outlook on microbial risk
management of urine source
separation

Disinfection of UDFPs and agricultural products is essential

if recovery technology can’t effectively inactivate pathogens in

urine and the fertilizer product. Conventional technologies

including high-temperature sterilization, ultraviolet

disinfection and chemical oxidation disinfection have been

proved to be effective for product disinfection (US Centers for

Disease Control and Prevention, 2008). Cooking agricultural

products before eating will be preferred to reduce the

microbial risk by consumers. However, few publications

reported the disinfection of UDFPs. Due care should be taken

if these disinfection technologies would affect the fertilizer

characteristics in further studies.

Moreover, it is essential to set standards on pathogen

limitations in UDFPs and technical standards from the aspect

of microbial risk management. The related standards lacks

despite the concept of urine source separation has been

proposed for nearly 30 years. The WHO guidelines

recommends that the number of E. coli in water is less than

104/100 ml in the reuse of water in drip irrigation (World Health

Organization (WHO), 2006). The Environmental Protection

Agency regulations suggest that the number of E. coli should

be less than 102/100 ml in the reused water (Environmental

Protection Agency, 2012). The maximum allowable

concentration of bacteria is 1000 CFU/g in recycled organic

waste fertilizer products following the European Animal By-

Products Regulation (The European Parliament and of the

Council, 2002). These regulations may provide references for
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UDFPs which are also used for agriculture. However, this has to

be addressed in further studies.

Effective inactivation of pathogens in UDFPs would reduce

the microbial risk to farmworkers and consumers of agricultural

products. However, urine collection and transportation can also

bring health risk to users. It is commonly assumed that the direct

accidental ingestion of urine was 1 ml per case in recycling of

urine in agriculture (Hoglund et al., 2002; Ahmed et al., 2017).

Non-etheless, a recent study found that indirect ingestion also

played a role in the exposure of urine collection users to urine

(Bischel et al., 2019). The indirect ingestion refers to hand to

mouth contacts with pathogens when hands, skin and clothes are

contaminated and then hands bring pathogens to mouth.

Furthermore, operating struvite precipitation reactor also

resulted in health risk due to direct and indirect contacts with

pathogens-carrying substances (Bischel et al., 2019). This

indicates that microbial risk in urine source separation should

consider all possible exposure pathways besides the exposure to

UDFPs. Therefore, it is recommended that personal protective

equipment (facemasks, gloves, work clothes, etc.) is essential to

reduce the exposure of urine collection users and farmworkers to

urine and UDFPs.

5 Conclusion

Pathogens in source-separated urine can be introduced

through two approaches including excretion with urine and

fecal contamination. A summary on bacteria and viruses

detected in urine confirms that urine is not sterile. Then, this

study reviewed and evaluated pathogens inactivation in urine

treatment technologies classified based on their UDFPs. Storage

and alkaline stabilization have experimentally proved effective

effects on pathogens inactivation of urine. Technologies

including membrane distillation, electrodialysis, evaporation,

distillation, air stripping, and membrane stripping should have

positive effect on pathogens inactivation of UDFPs because

alkaline treatment, high temperature and membrane

separation in these technologies could reduce pathogens.

However, pathogens might be concentrated when urine is

dewatered using reverse osmosis, forward osmosis, and

nanofiltration. Moreover, adsorption and precipitates

separation using filtration and centrifugation may also present

negative effect on pathogens inactivation in UDFPs. Non-

etheless, post treatment through alkaline desorption,

precipitates drying, and struvite decomposition and recycle

would benefit the disinfection of UDFPs. Finally, an overall

assessment was carried out to show a clear map of the

connection of technologies and the pathogens inactivation in

UDFPs. Based on the assessment, this review discussed the lack

of experimental studies on pathogens inactivation in urine

treatment and presented outlooks on development of new

urine treatment technology and management of microbial risk

in urine recycling in agriculture.
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