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Remote sensing ecological index (RSEI) has the advantages of rapid, repeatable and

relatively accurate in regional eco-environment quality assessment. Due to the lack

of consideration of the interaction of adjacent analysis units in RSEI calculation, there

is a fewuncertainties in the assessment results. BasedonRSEI, the landscapediversity

index (LDI) was introduced, which considered the heterogeneity caused by the

difference between the assessment unit and the adjacent one, and rebuilt modified

remote sensing ecological index (MRSEI) to evaluate the eco-environment quality in

the artificial oasis of Ningxia section of Yellow River. The results showed that the area

of Fair and Poor grades in the low MRSEI year (2000) was greater than that of other

grades, and the area of Moderate and Fair grades was greater than that of other

grades in the high MRSEI year (2020). The conversion characteristics of different

grades were Poor and Fair grades to adjacent high grades. During the study period,

the eco-environment quality of the study area was improved, and the composition

and pattern of land use types had a significant impact onMRSEI. Introduction of LDI-

improvedMRSEI can not only include theheterogeneous effect between the analysis

unit and the adjacent one, but also consider the spatial scale effect of LDI tomake the

evaluation results more credible. However, some evaluation factors of RSEI and

MRSEI (e.g., LDI, NDVI, andNDBSI) represent the accumulation of surface status over

long-time scales, while others (e.g., Wet and LST) reflects only short-time scale

features of the land surface. Therefore, how to eliminate the uncertainty caused by

temporal scale mismatch is a challenge for RSEI and MRSEI applications.
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1 Introduction

Regional eco-environmental quality is directly affected by local natural resources and

human exploitation system, and the amplification effect of human activity intensity on

eco-environmental quality is very significant. Especially in developing countries with the

largest land area in the world and rapid industrialization and urbanization, the rate of
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change of land use/cover has greatly influenced regional or global

climate and environmental change (Yang et al., 2020; Mukesh

et al., 2021). In recent decades, using satellite remote sensing data

and geographic information systems to extract and analyze land

surface information is a very common and effective method to

rapidly assess regional eco-environmental quality (Ellis, et al.,

2006; Willis, 2015). Thus, these data are used to identify basic

ecosystem properties and to judge their different components,

such as leaf area index, aboveground biomass, and land cover

type (Reza and Abdullah, 2011; de Araujo Barbosa et al., 2015),

and these techniques have also been widely used in ecological and

environmental surveys in China and other parts of the world (Tilt

et al., 2007; Chen, et al., 2014; Kennedy et al., 2014; Willis, 2015;

White et al., 2016). Various remote sensing ecological indicators

play an important role in quantifying and mapping the

characteristics and functions of ecosystems. In these findings,

methodologies typically focus on only one aspect of the eco-

environment and then produce a single ecological factor for

evaluation (Nichol, 2009). For example, normalized differential

vegetation index (NDVI), leaf area index (LAI), normalized

differential water index (NDWI), and light index (LI) have

been used to describe spatiotemporal changes in vegetation,

biodiversity, water bodies, bare land, and cities (Choudhary

et al., 2019; Kappas and Propastin 2012; Fu et al., 2013).

Especially in the pattern analysis of land surface temperature

(LST), it was found that the heat island effect in Leipzig

(Germany), was more reliable in densely urbanized areas than

in areas with low population density (Schwarz et al., 2012). The

sandy vegetation pattern in Horqin (China) was negatively

correlated with land surface temperature, and the more complex

the vegetation structure, the closer the correlation (Qiao et al.,

2021). These studies are of great significance for carrying out more

targeted ecological restoration work, and are also the current

hotspots for quantitatively describing and estimating the spatio-

temporal dynamics of eco-environmental quality and promoting

sustainable development in different regions.

After the improvement of a single remote sensing index

for the evaluation of a certain land surface attribute state,

combined with pressure-state-response (PSR) model and

analytic hierarchy process (AHP), a method of

comprehensively using multiple remote sensing indicators

to determine regional eco-environmental quality has been

formed (Fulton Elizabeth, 2010; Yu and Hong, 2022; Tom´

as et al., 2004; Patrício et al., 2016). In this method, structure

construction and factor weight distribution are the key.

Because the factor weight system must contain subjective

weight, and expert knowledge and experience such as AHP

must be integrated into the analysis process (Zhao et al.,

2016), which is not conducive to the rapid evaluation of

the eco-environmental quality of a certain region. The

multi-dimensional and multi-feature technology developed

in the past decade has shown great advantages in regional eco-

environmental quality assessment (Boori et al., 2018; Xu et al.,

2018; Wu et al., 2020). In particular, Xu (2013) proposed the

Remote Sensing Ecological Index (RSEI), which integrates

four calculated indicators based on remote sensing bands to

represent four major ecological elements (NDVI; Wet;

NDBSI; LST), and principal component analysis (PCA)

based on covariance was used to determine the

comprehensive contribution of the four factors to eco-

environmental quality. The effectiveness of the proposed

method was evaluated in different landscape types, such as

urban landscape, alpine grassland landscape, Loess Plateau

landscape and agricultural and forestry mixed with water

landscape. (Hu and Xu, 2018; Liu et al., 2019; Sun et al.,

2020; Yuan, et al., 2021). However, two problems in RSEI have

attracted the attention of researchers (Yuan, et al., 2021). One

is that RSEI calculated based on grid data cannot express the

differences caused by homogeneity (or heterogeneity) of

adjacent grids. Secondly, the evaluation factors used by

RSEI usually have a high correlation with each other, and

NDVI has the highest eigenvalue on PC1, which leads to some

contradictions in comparing RSEI results in ecological

interpretation of different multi-ecosystems landscapes.

That is, the area with the dominant agricultural land

ecosystem may obtain a higher RSEI value. So how do you

avoid these problems in your RSEI evaluation? The

introduction of landscape diversity index (LDI) may be an

appropriate method to correct the above deficiency, because

the calculation of LDI takes into account the differences of

basic unit attributes within a certain scale. At the same time,

there are a large number of shared and paid resources to

choose from land cover interpretation products based on

Landsat data, and there are also some landscape analysis

software to calculate LDI, such as PCA.

If LDI is added to modify RSEI (MRSEI), the first problem to

be solved is to determine the appropriate scale, that is, to obtain

the scale-dependent characteristics of LDI (Li et al., 2018; Liang

and Li, 2018; Yang, et al., 2021). Previous studies have shown that

there are differences in scale dependence between similar or

different landscape areas. Therefore, identifying the scale

dependence of LDI in the study area is the basis of landscape

analysis.

In terms of the practical significance of eco-environmental

quality assessment, there is no doubt that AHP, RSEI or MRSEI,

are not only meaningful in theory for judging the status and

change trend of eco-environmental quality in the study area, but

also an important means for regional sustainable development

planning, management and evaluation in practice. For example,

the RSEI study for different geographical units and types such as

watersheds (Gao and Zhang, 2021; Luo et al., 2022) and National

Nature Reserve (Liu et al., 2019) show great practical significance.

The Yellow River Oasis Area in Ningxia Hui Autonomous

Region is densely covered with lakes and wetlands, and is the

core area of the National Yellow River Economic Zone, as well as

the key area of ecological function zoning. How the regional
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environment changes have attracted much attention from the

state and local governments, and how to implement the rapid and

effective environmental quality assessment of artificial oasis is a

challenge for the academic community.

Here, we used MRSEI method to evaluate the changes of the

oasis of Ningxia section of the Yellow River in recent decades by

increasing the LDI factor, to identify the main driving factors,

and to evaluate the value of MRSEI in the analysis of eco-

environmental quality.

2 Materials and methods

2.1 Study area

The oasis in Ningxia section of the Yellow River is located in

the northern part of Ningxia Hui Autonomous Region, which

ranges from 37°20′ ~ 39°20′ N, 105°0′ ~ 107°0′E, and an area of

about 10,831.3 km2. The core area of Ningxia section of the

Yellow River is an artificial oasis composed of the Weining and

the Yinchuan irrigation district connected by the Yellow River,

with oases areas accounting for more than 60% (Figure 1).

Farmland, lakes and wetlands are densely distributed in the

study area. The main irrigation channels are longitudinally

distributed east trunk Canal, west trunk canal, Han Yan

Canal, Tang Lai Canal and so on. The soil is mainly alluvial

soil and meadow soil. The natural vegetation is mainly date forest

scattered shrub woddland, composed of Elaeagnus angustifolia,

Lycium chinense, Tamarix chinensis and Phragmites communis

and so on. This area is the core area of the national Yellow

Economic Zone, and also the key area of China’s national

ecological function zoning.

2.2 Satellite data and pre-processing

Conventional Landsat imagery has been widely used for

large-scale and periodic ecological monitoring (e.g., NDVI and

LU). Using a shared dataset supported by the U.S. Geological

Survey (USGS), including the Landsat data Collection, 2 Tier

1 and Top of atmospheric (TOA) Reflectance (https://

earthengine.google.com/), the spatial resolution of the data of

30 m. Data were preprocessed with atmospheric and geometric

corrections. To ensure the similarity of vegetation growth

conditions and the comparability of ecological results, the data

were collected from July 5 to 22 August 2000 and August 19 to

28 August 2020, respectively. Since the study area involved three

images (129,033, 129,034 and 130,034), the data of Landsat 5 TM

and Landsat 8 OLI were selected to be concatenated into one

image, respectively.

Land use (LU) data were obtained from the Data Center for

Resources and Environmental Sciences, Chinese Academy of

Sciences (Chen, et al., 2014; Zhang. 2020). The study area

involved eight types of land surfaces, including cultivated

land, woodland, shrub, grassland, wetland, water body, urban

and built-up areas, and wasteland, with the overall interpretation

FIGURE 1
Location of the study area.
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accuracy (Kappa coefficient) ranging from .78 to .82 (https://

www.resdc.cn/).

2.3 Identification of LDI threshold

LDI is an indicator to measure the number of landscape

composition types and the proportion of its area information in

landscape ecology research, and is also the main level of biodiversity

research. A higher LDImeans a higher diversity of ecosystem types in

the study area. Therefore, LDI is credible as an assessment factor for

eco-environmental quality. Here, the LDI is represented by Shannon-

Weiner index and calculated in the neighborhood analysis method of

ArcGIS. It can be computed using the following equation:

LDI � −∑m
i�1
Pi × LnPi (1)

where Pi is the proportion of a certain land use type to the area of the

analysis unit. A quadrat gradient as 90 m × 90m, 300 m × 300 m,

600 m × 600 m, 900 m × 900 m, 1200 m × 1200 m, 1500 m ×

1500 m, 3000 m× 3,000 m, 4500 m × 4500 m and 6000 m× 6000 m

was used to calculate the scale-dependent characteristics and

thresholds of LDI in 2000 and 2020, respectively.

2.4 Assessment factor normalization and
MRSEI calculations

The calculation methods of NDVI, WET, NDBSI, and LST in

this study are consistent with the literature (Yuan et al., 2021). Since

the MRSEI assessment takes grid as the basic unit, it does not

consider the influence of the diversity of adjacent units, and ignores

the girds are not only affected by the influence factor of the same

spatial domain, but also have a significant effect between adjacent

units, that is, the edge effects phenomenon in ecology. To

compensate for this shortcoming in MRSEI, we added the LDI

factor to RSEI and renamed it as MRSEI. Due to the differences in

unit and quantity sizes of the input factors, normalization is required

to unify the index values between 0 and 1. In this paper, the forward

normalization (Eq. 2) method is used for standardization.

Fi � Xi − Ximin( )/ Ximax − Ximin( ) (2)

In Eq. 2, F represents the input factor, and i represents LDI,

NDVI, WET, NDBSI, and LST, respectively; X represents the

input factor cell value. After the evaluative factors were

normalized, MRSEI was calculated using Eq. 3:

MRSEI � ∑n
i

PCn ESV ,NDVI,WET,NDBSI, LST( )
× EVi × ETi (3)

whereMRSEI is a modified remote sensing ecological index, and the

larger the MRSEI value, the better the eco-environment; Vice versa.

N represents the number of components whose principal

component eigenvalues accumulate to more than 90%. In MRSEI

analysis, the input factor is 5, therefore, 1 ≤ i ≤ 5 (i is an integer). EVi

and ETi are ith eigenvalues and accumulative eigenvalues of

eigenvectors, respectively. In order to make the MRSEI values of

different years comparable, the calculated MESEI was normalized

again with a positive difference of the range to unify them between

0 and 1. The spatial heterogeneity analysis of MRSEI was based on

the classification and treated by the equivalent interval method,

which was defined as: poor (0–.2), fair (.2–.4), moderate (.4–.6),

good (.6–.8), and excellent (.8–1.0).

The entire MRSEI of study area can be calculated by Eq. 4:

MRSEITotal � ∑n
i

Mi × PAi (4)

where Mi is the average MRSEITotal of Class i grades in the

assessment area, and PAi is the relative area of MRSEITotal Class i

grades in the assessment area. Statistical analysis was done with

SPSS and Excel. The correlation coefficients of different

evaluation factors were examined for R significance. The

thresholds were R4, .05 = .811 and R4, .01 = .917, respectively.

2.5 Relationship between MRSEI and land
use type

The MRSEI was obtained by calculating landscape diversity

index (LDI), greenness (NDVI), humidity (WET), dryness (NDBSI)

and heat (LST). The impact of these five factors on MRSEI was

direct. In regional MRSEI determination, land use type will

indirectly affect all factors involved in MRSEI, especially in

MRSEI analysis on time series. Therefore, unary multiple linear

regression was used to calculate the impact of LU on MRSEI after

completing MRSEI analysis. The regression analysis took MRSEI as

the dependent variable, and the area of the eight land use types

mentioned above as the dependent variable. Stepwise linear

regression was used for optimization selection, and the model

with the highest significance was selected. Due to the large area

of various land use types, range normalization was carried out before

modeling so that all dependent variables fell into (0–1).

In order to test the accuracy of the regression model

constructed by LU, standard error (SE) and mean error

coefficient (MEC) were selected to test the model. A total of

10 test samples were distributed in parallel throughout the study

area (Figure 1).

The calculation formula is as follows:

SE �

����������
∑n
i�1

y − y′( )2
n − 1

√√
(5)

MEC � ∑n
i�1 y − y′( )/y∣∣∣∣ ∣∣∣∣

n − 1
(6)
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where y is the MRSEI calculated value based on the PCAmethod,

y’ is estimated using the obtained optimized regression model

and LU data, and n is the number of validated samples.

3 Results

3.1 The scale dependent threshold for
the LDI

The LU in the two periods were analyzed, and the average value

of LDI was calculated to determine the scale dependence. It was

found that there was a significant trend described by quadratic

equation (p < .001 R > .990). The inflection point of LDI change

could be captured within the range of 6,000 m (at 3,000 m, in the

ellipse in Figure 2). When the analytical scale was smaller than the

inflection point scale, the LDI showed a steep increase trend. When

the analysis scale was larger than the inflection point scale, LDI

showed a gentle increasing trend. Therefore, the basic unit of

3,000 m × 3,000 m was used to calculate the LDI in this paper.

After the calculation, the LDI was resampled to 30 m × 30 m in

order to be consistent with the other three indexes in resolution.

3.2 Relationship between evaluation
factors for PCA

After the introduction of LDI, the original relationship and

degree of association of MRSEI evaluation factors did not change

(Table 1), and NDVI andWET were also kept in the same group,

and the load vector in PC1 component was positive, which was

the driving factor for the improvement of eco-environmental

quality (Table 2). NDBSI and LST belong to the same group, and

the load vector was negative in PC1 component, which was the

driving factor of eco-environmental quality deterioration. The

between-group positive association and between-group negative

association were also unchanged. Except for the correlation

between NDVI and LST in 2000, all the other combinations

had high significance. It should be emphasized that the

correlation between LDI and other factors was low, and the

maximum correlation coefficient (absolute value) of the 2 years

did not exceed .298. LDI increased the dimensions of eco-

environmental quality assessment and made the results more

inclusive.

The PCA results in 2000 and 2020 showed (Table 2) that the

cumulative contribution rate of PC1 and PC2 exceeded 90% after

dimensionality reduction analysis of the five evaluation factors.

FIGURE 2
Scale dependent characteristics of LDI.

TABLE 1 Pearson correlation semi-matrix of evaluative indicators in
2000 and 2020 (* and **: Two tails check is significant at the level of .05 and
.01 levels respectively).

Year Indicators LDI NDVI WET NDBSI LST

2000 LDI 1.000

NDVI -.165 1.000

WET -.164 .778 1.000

NDBSI .158 -.831* -.958** 1.000

LST .163 -.761 -.842* .845* 1.000

2020 LDI 1.000

NDVI -.298 1.000

WET -.270 .867* 1.000

NDBSI .269 -.869* -.979** 1.000

LST .254 -.684 -.824* .838* 1.000

TABLE 2 The results of principal component analysis of five evaluation
factors in 2000 and 2020.

Indicators 2000 2020

PC1 PC2 PC1 PC2

LDI .251 .968 -.377 .926

NDVI -.654 .171 .786 .320

WET -.363 .092 .172 .074

NDBSI .397 -.108 -.178 -.077

LST .469 -.117 -.422 -.168

Eigenvalues .026 .013 .031 .013

Percent of eigenvalues 61.2 29.9 64.7 26.7

Accumulative of eigenvalues 61.2 91.0 64.7 91.4

MRSEI .435 .448
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Among them, the maximum load vectors of PC2 axis were LDI,

which were .968 and .926 respectively, far exceeding other

evaluation factors, indicating that LDI maintains multi-

dimensional representation.

From the relationship between MRSEI and PC1 and PC2

(Figure 3), when the cumulative contribution rate exceeded 90%

and the number of components was 2, the change ofMRSEI showed

complexity. At the overall level, the NDVI of MRSEI in

PC1 component was .285 (±.216), and the LDI of MRSEI in

PC2 component was .386 (±.141). The lowest region of MRSEI

changes formed by the two components appeared in the high value

region of PC1 component and the low-quality region of

PC2 component (lower right corner of Figure 3), while the high

value region appeared in the low value region of PC1 component

and the high-quality region of PC2 component (upper left corner of

Figure 3). In 2020, the dominant NDVI in PC1 component was .451

(±.281), and the dominant LDI in PC2 component was .468 (±.181).

The lowest MRSEI change region formed by the two components

appeared in the low-quality region of PC1 and PC2 components

(lower left corner of Figure 3). However, the high value area

appeared in the intersection area of high value of PC1 and

PC2 components (upper right corner of Figure 3). The obvious

trend was that when the MRSEI changed from the low MRSEI in

2000 to the highMRSEI in 2020 (Figure 4),MRSEI showed a change

trend of rotation to the right with its value center as the axis. The

ecological interpretation was as follows: the resultant force of

evaluation factor in the state of regional average had a relatively

stable median MRSEI value; When the regional eco-environment

changed for the better (from 2000 to 2020), the distribution of the

low value of MRSEI was restricted by the high value of the

component controlled by NDVI and the low value of the

component controlled by LDI, and transformed to the low value

of the component controlled by them. On the contrary, the MRSEI

high value distribution was restricted by the low value of the

component controlled by NDVI and the high value of the

component controlled by LDI, and converted to the high value

of the component controlled by them.

According to above mention, it could be inferred that in the

process of improving eco-environmental quality in the multi-

ecosystems region, under the certain condition of PC2

(dominated by LDI), the effect of PC1 (dominated by NDVI) on

MRSEI changed from a decreasing to an increasing trend with the

increase of PC1. The distribution range of MRSEI high value

changed from .4–.6 of PC1 in 2000 to .6–.8 in 2020. However,

the effect of PC2 on MRSEI was obviously different, and its effect

was increasing during this period. The high value region of MRSEI

FIGURE 3
A 3D-scatter plot showing the relationship among MRSEI, PC1 and PC2 (red balls, 2000; blue balls, 2020).
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was consistent with that of PC2. This is very obvious during the

improvement of MRSEI in the study area, the influence of NDVI on

MRSEI varied greatly, while the influence of LDI on MRSEI was

relatively stable.

3.3 Ecological quality status and
hierarchical pattern

According to the spatial distribution analysis of MRSEI

classification pattern, in the 2 years of the study, the areas

with high eco-environmental quality were mainly distributed

near the boundary of the study area and the two banks of the

Yellow River (Figures 4A,B), indicating that the artificial oasis

area in the semi-arid region had obvious boundary effect on a

large scale. In time (Table 3), in 2000, the Fair and Poor areas

with low eco-environmental quality were relatively large, which

were 3,911.1 km2 and 3,138.3 km2, accounting for 65.1% of the

total area. On the contrary, the areas of Good and Excellent

grades with high eco-environmental quality were relatively small,

which were 1,109.4 km2 and 132.2 km2 respectively, accounting

for only 11.5% of the total area. In 2020, the area of Fair level

increased to 4,233.1 km2, but the area of Poor level decreased

greatly, only 631.9 km2 remained, and the area of low-level

FIGURE 4
Spatial distribution of different MRSEI grades along the Yellow River Oasis in Ningxia [(A), MRSEI of 2000; (B), MRSEI of 2020; (C), change from
2000 to 2020].

TABLE 3 The status of different MRSEI grades in 2000 and 2020.

Year Type Area (km2) Ratio (%) Patch number Mean area (km2)

2000 Poor 3,138.3 29.2 2,556 1.22

Fair 3,911.1 36.4 4,292 .91

Moderate 2,539.7 23.6 2,549 .99

Good 1,109.4 10.3 989 1.11

Excellent 132.2 1.2 145 .91

2020 Poor 631.9 5.8 10,943 .06

Fair 4,233.1 39.1 17,137 .25

Moderate 4,236.4 39.1 21,145 .2

Good 1,544.2 14.3 12,463 .12

Excellent 185.1 1.7 3,578 .05
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ecological quality accounted for 44.9% of the total area. On the

contrary, the areas of Good and Excellent, which had high eco-

environmental quality, increased to 1,544.2 km2 and 185.1 km2,

respectively, accounting for 16.0% of the total area. TheModerate

level increased by 15.7 percent from 2,539.7 km2 in 2000 to

4,236.4 km2 in 202.

From 2000 to 2020, the number and average patch area of

different grades showed an obvious increasing trend. Factor

analysis in the above section showed that the overall levels of

NDVI and LDI in 2000 were lower than those in 2020, indicating

that the classification pattern of MRSEI tended to be fragmented

during the study period (Table 3). For details of the excellent

level, its area was distributed over a total area of 132.2 km2 in

2000 to 185.1 km2 in 2020, but the average patch area decreased

from .91 km2 to .05. km2. This phenomenon indicates that the

excellent area in the study area had changed from concentrated

continuous distribution to scattered distribution, which can be

seen from Figures 4A, B, and most of the intact excellent areas

(grids) in 2000 are fragmented in 2020.

From 2000 to 2020, the eco-environmental quality changed

towards good. The improved type was the main body in the

middle and upper part of the study area, and the impervious type

was the main body in the lower part of the study area (Figure 4C).

The improved and impervious area were 5,423.5 km2 and

4,357.7 km2 respectively, accounting for 9.3% of the total area,

while the area of the degraded area was only 1,049.6 km2,

accounting for less than 10% (Table 4). For the details of the

changes (Figure 5), the Poor grade was mainly characterized by

the transformation to Fair and Moderate grades, which were

2034.0 km2 and 576.6 km2, respectively. The general grade was

characterized by transformation to Moderate grade and good

grade, which were 1779.3 km2 and 201.6 km2, respectively. The

moderate grade was mainly transformed to moderate grade and

good grade, which were 391.6 km2 and 617.0 km2, respectively.

The good grade was mainly transformed to moderate grade,

which were 377.5 km2. The excellent grade increased from

129.9 km2 in 2000 to 185.0 km2 in 2020, mainly from the

“moderate” and “good” grades. The quality of eco-

environment has been improved not only at the whole area

scale, but also at the patch scale.

From the perspective of driving forces of the transformation

mechanism during 2000–2020, LU change under the guidance of

policies such as urbanization process, eco-environmental

protection measures and adjustment of agricultural planting

structure pattern is the main driving force of MRSEI

transformation.

3.4 Effect of LU composition on MRSEI

The composition and pattern of LU types are affected by

evaluation factors such as NDVI and LDI, which in turn affect

MRSEI. Therefore, LU types affect MRSEI. Forward stepwise

linear regression analysis showed that the relationship

between oasis MRSEI and LU types in the oasis of Ningxia

section of the Yellow River was different in different years

(Table 5). In the year with low MRSEI levels (2000), there was

a significant multivariate linear relationship between MRSEI

and the variables (LU type) such as grassland, shrubland,

artificial surface and barren land area. The regression equation

was MRSEI 2000 = .348–.245 grassland +2.943 shrubs

+.678 urban land and built-up land +2.368 wasteland (R2 =

.925, F = 7.460, p = .025), among which wasteland and

artificial surface area were more important. Accounted for

.491 and .401, respectively. In the year with high MRSEI

(2020), there was also a significant multivariate linear

relationship between MRSEI and shrub, wetland, water and

artificial surface area. The regression equation was MRSEI2020 =

TABLE 4 Change results of different MRSEI grades from 2000 to 2020.

Changed status Total area (km2) Ratio (%) Patch number Mean area (km2)

Degraded 1,049.6 9.7 9,752 .108

Impervious 4,357.7 4.2 29,836 .146

Ameliorative 5,423.5 5.1 19,802 .274

FIGURE 5
The details of transferred area of different MRSEI grades
during 2000–2020 in the oasis of Ningxia section of the Yellow
River.
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.455–7.733 shrubs +17.525 wetland -1.571 Water +.248 urban and

built-up land (R2 = .914, F = 13.330, p = .007), and the wetland area

was the most important (.759).

The accuracy test of the above regression model showed that

SE andMECwere 2.41% and 4.87% in 2000 and 1.68% and 3.75%

in 2020, respectively. This indicates that the higher the overall

level of MRSEI, the higher the accuracy of the corresponding

model (the lower the error rate), and the relationship between

MRSEI and its predicted value varies with year (p < .001)

(Figure 6).

In terms of the statistical analysis of the prediction results

(Table 6), theMRSEI predicted mean was .002more than the true

value and the standard deviation and coefficient of variation were

almost identical in 2000. In 2020, the MRSEI predicted mean was

.002 less than the true value, and the standard deviation and

coefficient of variation of the true value were .004 and .008 more

than the predicted value, respectively. It is explained that the

multiple regression model constructed based on LU type and

forward stepwise linear regression method would basically

express (predict) the influence mechanism of LU on MRSEI

changes.

4 Discussion

This study shows that the introduction of LDI can modify the

regional eco-environment assessment method based on MRSEI

model, which not only considers the element composition

around the MRSEI analysis unit, but also considers the spatial

scale effect of LDI, which can make the assessment results more

credible.

The LDI spatial threshold of different landscape types was

different, but it did not change much in specific regions (Li, et al.,

2018; Liang and li, 2018; Yang et al., 2021). Our study shows that

the LDI spatial threshold of the oasis of the Ningxia section of the

Yellow River is 3,000 m (Figure 2 ellipse).

After the introduction of LDI, the relationship between the

existing factors was not affected by LDI, as the maximum

TABLE 5 Results of forward stepwise linear regression of the eco-environmental quality (MRSEI value, predictive variable) and the land use/cover type areas
(explanatory variables) in the Oasis of Ningxia section of the Yellow River.

Predictive variable Constant Explanatory variables Coefficient Importance P

2000 MRSEI .348 grassland -.245 .075 .166

shrubbery 2.943 .034 .325

urban and built lands .678 .401 .013

barren 2.368 .491 .009

2020 MRSEI .445 shrubbery -7.733 .359 .006

wetland 17.525 .759 .001

Water body -1.571 .192 .020

urban and built lands .248 .482 .003

FIGURE 6
Relationship between truth values and predictive values of MRSEI [(A), 2000; (B), 2020].
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correlation coefficient did not exceed .3 within 2 years (Table 1),

which verified that MRSEI was complementary to RSEI. At the

same time, PCA results after the introduction of LDI significantly

reduced the phenomenon that more than 75% of the eigenvalues

were concentrated on PC1 (Xu et al., 2019; Yuan et al., 2021). The

improvement of the method makes up for the lack of attention to

heterogeneity in the evaluation of regional environmental

quality. By introducing LDI, MRSEI reduces the

dimensionality of multiple factors and disperses them into

multiple dimensions (the cumulative eigenvalue is greater

than 90%), which highlights the complexity and multiplicity

of MRSEI. Determining the scale dependence of LDI

(Figure 2) can not only ensure the expression of heterogeneity

between adjacent elements, but also avoid the uncertainty of

MRSEI results caused by the scale effect of LDI (O’neill et al.,

1996; Gallé, et al., 2020). The method of this study improves the

deficiency that RSEI does not express the eco-environmental

quality of water body in regional eco-environment assessment.

To recognize whether the MRSEI results have organized for

the oasis, the multiple regression approach with MRSEI, PC1 and

PC2 are subsequently applied to the Ningxia section of Yellow

River. The regression could be expresses as MRSEI = .041E-

5+.156PC1+.768PC2 (R = .999, F = 1.246E9, p < .001) when the

overall level of MRSEI is lower (2000). And it also could be

expressed as MRSEI = .012–.034PC1+.796PC2 (R = .999, F =

1.094E9, p < .001) when the overall level of MRSEI was higher

(2020). Compared the MRSEI findings with the RSEI in different

regions, MRSEI values (.43) in Ningxia section of the Yellow

River was more than RSEI value (.24) in the desert area (Jiang

et al., 2019; Li et al., 2019), less than RSEI value (.63) in forested/

vegetation-dense areas (Wang et al., 2016), and close to RSEI

value (.43–.54) in tableland of loess plateau region (Sun et al.,

2020). This indicated that the LDI introduction does not conflict

with the original RSEI assessment results from the overall

characteristics, and the change is only the spatial pattern of

the eco-environment quality. Simultaneously, it was evident from

Figure 4A and Figure 4B where MRSEI calculations do not

require water body exclusion and form distinct MRSEI high-

value zones in the land-water body transition zone (along the

Yellow River) and the oasis edge zone. In terms of the MRSEI

change characteristics from lower level (2000) to higher level

(2020), the MRSEI degraded area was almost distributed in the

edge area of the oasis and the water body or land transition zone

along the Yellow River besides of the less scattered distribution in

the urban areas such as Yinchuan in the middle of the study area

(Figure 4C), and this phenomenon once again confirmed the

occurrence of edge effects and vulnerability among different

ecosystems from a dynamic perspective (Hofmeister et al.,

2013; Estoque et al., 2017; Mansoury et al., 2021). Due to the

grade level change details (Figure 5), transferred areas occurred

mostly in adjacent levels and less cross-level. Among of them,

Poor and Fair had the largest upward conversion, with

2034.0 km2 and 1779.3 km2, respectively. The overall

conversion characteristics were mainly Poor class area

decreased significantly and Moderate class area increased

significantly, increasing by −3,019.0 km2 and 1,61.6 km2,

respectively. The phenomena indicated that the improvement

of the eco-environment in the semi-arid artificial oasis area

generally occurred below Moderate level, and the change

scope above good level was not large.

LU type is the basis for calculating LDI in the assessment

of the eco-environment quality, its composition and pattern

not only directly affect LDI, but also have an indirect effect on

RSEI or MRSEI through influencing the distribution of all

evaluative factors (Liu et al., 2007; Xu et al., 2018; Yuan et al.,

2021). Based on the spatial sampling (Figure 1) and the LU

classification, multiple stepwise regression analysis that

selected MRSEI as predictive variable and LU types as

explanatory variables showed that had inconsistent

explanatory variable combinations in different yearly

MRSEI levels. In the low MRSEI levels (2000), grasslands,

shrublands, urban and built-up lands and barren land lands

areas had a good predictive result on MRSEI, with an accuracy

of more than 95%. In the higher MRSEI levels (2020),

shrubland, wetland, water body and urban and built-up

lands had a good predictive result on MRSEI, the accuracy

also reached more than 95%. Importance values indicated that

urban and built-up lands and barren land area with low

ecological quality in 2000 shown to have a greater impact

on MRSEI, while water body and wetland with higher

ecological quality in 2020 had a greater impact on MRSEI,

this result is basically consistent with that of RSEI change

research in Dongting Lake and can be mutually verified (Yuan

et al., 2021).

TABLE 6 Statistical analysis comparison of MRSEI prediction value and truth value.

2000 2020

Truth value Predictive value Truth value Predictive value

Mean .426 .428 .432 .430

Standard deviation .043 .044 .062 .058

Coefficient variable .102 .102 .143 .135
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However, a common defect of RSEI and MRSEI is that the

participating evaluation factors LDI, NDVI, and NDBSI reflect

the long-term accumulated surface reflection characteristics,

while Wet and LST only reflect the short-term surface

reflection characteristics (Bindlish and Barros, 2001; Sobrino

et al., 2008; Qiao et al., 2021). The removal of this uncertainty

due to time scale mismatch is a challenge for RSEI and MRSEI

applications. In addition, from the application prospect of

MRSEI, as long as the study area is a multi-ecosystem, LDI

introduction has both theoretical basis and practical significance,

because LDI can express the complexity of evaluation units and

adjacent units.

5 Conclusion

In regional eco-environment assessment, MRSEI can make

up for the defects that RSEI cannot evaluate water areas. The

introduction of LDI with defined threshold values fully expresses

the heterogeneity (diversity) of adjacent units of analysis.

From 2000 to 2020, the MRSEITotal in the study area changed

from .435 to .448, both of which were at a moderate grade, but the

area of good and excellent increased, and the transformation

from poor and moderate level to adjacent high level was the main

direction.

LU types have indirect effects on MRSEI through the

composition and pattern of impact assessment factors. When

the MRSEI level was high, shrub, wetland, water and urban built-

up area were the main influencing factors. When theMRSEI level

is low, grassland, shrub, urban built-up area and barren area are

the main influencing factors.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

CD: Contributed ideas and designed the study, collected the

remote sensing data with support from, conducted the data

analysis and wrote the manuscript with the help of all the

other authors. RQ: Did the field surveys and collected survey

data, collected the remote sensing data with support from,

conducted the data analysis. ZY: Collected the remote sensing

data with support from. LL: Contributed ideas and designed the

study, conducted the data analysis and wrote the manuscript with

the help of all the other authors. XC: Contributed ideas and

designed the study, collected the remote sensing data with

support from, identified the study area boundary, conducted

the data analysis and wrote the manuscript with the help of all the

other authors, did the field surveys and collected survey data,

supported. All authors gave final approval for publication, did the

field surveys and collected survey data.

Funding

This research was funded by the Key Research and

Development Program of Ningxia Hui Autonomous Region

(2021BGE02010), National Natural Science Foundation of

China (41271193).

Acknowledgments

The authors sincerely thank for the data support from “Data

Center of Resources and Environmental Sciences of the Chinese

Academy of Sciences (https://www.resdc.cn/)”, and thank the

editors and reviewers for their kindly view and constructive

suggestions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

1071631/full#supplementary-material

Frontiers in Environmental Science frontiersin.org11

Dong et al. 10.3389/fenvs.2022.1071631

https://www.resdc.cn/
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1071631/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1071631/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1071631


References

Bindlish, R., and Barros, A. P. (2001). Parameterization of vegetation backscatter
in radar-based, soil moisture estimation. Remote Sens. Environ. 76 (1), 130–137.
doi:10.1016/s0034-4257(00)00200-5

Boori, M. S., Paringer, R., Choudhary, K., and Kupriyanov, A. (2018).
Comparison of hyperspectral and multi-spectral imagery to building a spectral
library and land cover classification performance. Comput. Opt. 42 (6), 1035–1045.
doi:10.18287/2412-6179-2018-42-6-1035-1045

Chen, J., Ban, Y., and Li, S. (2014). China: Open access to Earth land-cover map.
Nature 514 (7523), 434. doi:10.1038/514434c

Choudhary, K., Shi, W., Boori, M. S., and Corgne, S. (2019). Agriculture
phenology monitoring using NDVI time series based on remote sensing
satellites: A case study of guangdong, China. Opt. Mem. Neural Netw. 28 (3),
204–214. doi:10.3103/s1060992x19030093

de Araujo Barbosa, C. C., Atkinson, P. M., and Dearing, J. A. (2015). Remote
sensing of ecosystem services: A systematic review. Ecol. Indic. 52, 430–443. doi:10.
1016/j.ecolind.2015.01.007

Ellis, E. C., Wang, H. Q., Xiao, H. S., Peng, K., Liu, X. P., Lie, S. C., et al. (2006).
Measuring long-term ecological changes in densely populated landscapes using
current and historical high-resolution imagery. Remote Sens. Environ. 100 (457-4),
457–473. doi:10.1016/j.rse.2005.11.002

Estoque, R. C., Murayama, Y., and Myint, S. W. (2017). Effects of landscape
composition and pattern on land surface temperature: An urban heat island study
in the megacities of southeast asia. Sci. Total Environ. 577, 349–359. doi:10.1016/j.
scitotenv.2016.10.195

Fu, Y., Lu, X., Zhao, Y., Zeng, X., and Xia, L. (2013). Assessment impacts of
weather and land use/land cover (lulc) change on urban vegetation net primary
productivity (NPP): A case study in guangzhou, China. Remote Sens. (Basel). 2013
(5), 4125–4144. doi:10.3390/rs5084125

Fulton Elizabeth, A. (2010). Approaches to end-to-end ecosystem models. J. Mar.
Syst. 81 (1-2), 171–183. doi:10.1016/j.jmarsys.2009.12.012

Gallé, R., Geppert, C., Földesi, R., Tscharntke, T., and Batáry, P. (2020).
Arthropod functional traits shaped by landscape-scale field size, local agri-
environment schemes and edge effects. Basic Appl. Ecol. 48, 102–111. doi:10.
1016/j.baae.202.09.006

Gao, W. L., Zhang, S. W., Rao, X., Lin, X., and Li, R. (2021). Landsat TM/
OLI-Based ecological and environmental quality survey of Yellow River
basin, inner Mongolia section. Remote Sens. 13 (21), 4477. doi:10.3390/
rs13214477

Hofmeister, J, Jan, H, Brabec, M, Hédl, R, and Modrý, M (2013). Strong influence
of long-distance edge effect on herb-layer vegetation in forest fragments in an
agricultural landscape. Perspect. Plant Ecol. Evol. Syst. 15 (6), 293–303. doi:10.1016/
j.ppees.2013.08.004

Hu, X., and Xu, H. (2018). A new remote sensing index for assessing the spatial
heterogeneity in urban ecological quality: A case from fuzhou city, China. Ecol.
Indic. 89, 11–21. doi:10.1016/j.ecolind.2018.02.006

Jiang, C. L., Wu, L., Liu, D., andWang, S. M. (2019). Dynamic monitoring of eco-
environmental quality in arid desert area by remote sensing: Taking the
gurbantunggut desert China as an example. J. Appl. Ecol. 30, 877–883. doi:10.
13287/j.1001-9332.201903.008

Kappas, M. W., and Propastin, P. A. (2012). Review of available products of leaf
area index and their suitability over the formerly soviet central Asia. J. Sens. 11,
582159. doi:10.1155/2012/582159

Kennedy, R. E., Andréfouët, S., Cohen, W. B., Gómez, C., Griffiths, P., Hais, M.,
et al. (2014). Bringing an ecological view of change to Landsat-based remote
sensing. Front. Ecol. Environ. 12, 339–346. doi:10.1890/130066

Li, Q., Yang, Y., Wang, Z., Cui, J., Yang, G., and Lian, G. (2019). Dynamic
change analysis of remote sensing ecological index in Aksu based on TM data
analysis. Southwest China J. Agric. Sci. 32, 1646–1651. doi:10.16213/j.cnki.scjas.
2019.7.030

Li, Y. Y., You, L. L., Chen, Y. S., and Huang, J. X. (2018). Spatial-temporal
characteristics of multi-pond landscape change and their driving factors in the
Chaohu Basin, China. Acta Ecol. Sin. 38 (17), 6280–6291. doi:10.5846/
stxb201708281551

Liang, J. X., and Li, X. J. (2018). Characteristics of temporal-spatial differentiation
in landscape pattern vulnerability in Nansihu Lake wetland, China. Chin. J. Appl.
Ecol. 29 (2), 626–634. doi:10.13287/j.1001-9332.201802.018

Liu, M., Liu, C., and Wang, K. (2007). Eco-security in Dongting Lake watershed:
Its changes and relevant driving forces. Chin. J. Ecol. 26, 1271–1276. doi:10.13292/j.
1000-4890.2007.0220

Liu, Q., Yang, Z., Han, F., Shi, H., Wang, Z., and Chen, X. (2019). Ecological
environment assessment in world natural heritage site based on remote-sensing data.
A case study from the bayinbuluke. Sustainability 11, 6385. doi:10.3390/su11226385

Luo, M., Zhang, S. W., Huang, L., Liu, Z. Q., Yang, L., Li, R. S., et al. (2022). Temporal
and spatial changes of ecological environment quality based onRSEI: A case study in ulan
mulun river basin, China. Sustainability 14, 13232. doi:10.3390/su142013232

Mansoury, M, Hamed, M, Karmustaji, R, Hannan, F A, and Safrany, S T. (2021).
The edge effect: A global problem. The trouble with culturing cells in 96-well plates.
Biochem. Biophysics Rep. 26, 100987. doi:10.1016/j.bbrep.2021.100987

Mukesh, S. B., Komal, C., Rustam, P., and Alexander, K. (2021). Eco-
environmental quality assessment based on pressure-state-response framework
by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 23 (2021), 10053.
doi:10.1016/j.rsase.2021.100530

Nichol, J. (2009). An emissivity modulation method for spatial enhancement of
thermal satellite images in urban heat island analysis. Photogramm. Eng. remote
Sens. 75, 547–556. doi:10.14358/pers.75.5.547

O’neill, R., Hunsaker, C., Timmins, S. P., Jackson, B. L., Jones, K. B., Riitters, K. H.,
et al. (1996). Scale problems in reporting landscape pattern at the regional scale.
Landsc. Ecol. 11 (3), 169–180. doi:10.1007/bf02447515

Patrício, J., Elliott, M., Mazik, K., Papadopoulou, K.-N., and Smith, C. J. (2016).
DPSIR—Two decades of trying to develop a unifying framework for marine
environmental management? Front. Mar. Sci. 3, 177. doi:10.3389/fmars.2016.00177

Qiao, R. R., Dong, C. Y., Ji, S. X., and Chang, X. L. (2021). Spatial scale effects of the
relationship between fractional vegetation coverage and land surface temperature in
Horqin sandy land, north China. Sensors 21 (20), 6914. doi:10.3390/s21206914

Reza,M. I. H., and Abdullah, S. A. (2011). Regional index of ecological integrity: A
need for sustainable management of natural resources. Ecol. Indic. 11, 220–229.
doi:10.1016/j.ecolind.2010.08.010

Schwarz, N., Schlink, U., Franck, U., and Großmann, K. (2012). Relationship of
land surface and air temperatures and its implications for quantifying urban heat
island indicators: An application for the city of Leipzig (Germany). Ecol. Indic. 18,
693–704. doi:10.1016/j.ecolind.2012.01.001

Sobrino, J. A., Jimenez-Muoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno,
J., et al. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors.
IEEE Trans. Geosci. Remote Sens. 46, 316–327. doi:10.1109/tgrs.2007.904834

Sun, C., Li, X., Zhang,W., and Li, X. (2020). Evolution of ecological security in the
tableland region of the Chinese loess plateau using a remote-sensing-based index.
Sustainability 12, 3489. doi:10.3390/su12083489

Tilt, J. H., Unfried, T. M., and Roca, B. (2007). Using objective and subjective
measures of neighborhood greenness and accessible destinations for understanding
walking trips and BMI in Seattle, Washington. Am. J. Health Promot. 21, 371–379.
doi:10.4278/0890-1171-21.4s.371

Tom as, B., Ramos, S., Caeiro, J., and de Melo, J. (2004). Environmental indicator
frameworks to design and assess environmental monitoring programs. Impact
Assess. Proj. Apprais. 22 (1), 47–62. doi:10.3152/147154604781766111

Wang, S., Zhang, X., Zhu, T., Yang,W., and Zhao, J. (2016). Assessment of ecological
environment quality in the Changbai Mountain Nature Reserve based on remote
sensing technology. Prog. Geogr. 35, 1269–1278. doi:10.18306/dlkxjz.2016.10.010

White, D. C., Lewis, M. M., Green, G., and Gotch, T. B. (2016). A generalizable
NDVI-based wetland delineation indicator for remote monitoring of groundwater
flows in the Australian Great Artesian Basin. Ecol. Indic. 60, 1309–1320. doi:10.
1016/j.ecolind.2015.01.032

Willis, K. S. (2015). Remote sensing change detection for ecological monitoring in
United States protected areas. Biol. Conserv. 182, 233–242. doi:10.1016/j.biocon.
2014.12.006

Wu, T. X., Sang, S., Wang, S. D., Yang, Y. Y., and Li, M. Y. (2020). Remote sensing
assessment and spatiotemporal variations analysis of ecological carrying capacity in
the Aral Sea Basin. Sci. Total Environ. 735 (2020), 139562. doi:10.1016/j.scitotenv.
2020.139562

Xu, H. (2013). A remote sensing index for assessment of regional ecological changes.
China Environ. Sci. 33 (5), 889–897. doi:10.3969/j.issn.1000-6923.2013.05.019

Xu, H., Wang, M., Shi, T., Guan, H., Fang, C., and Lin, Z. (2018). Prediction of
ecological effects of potential population and impervious surface increases using a
remote sensing based ecological index (RSEI). Ecol. Indic. 93, 730–740. doi:10.1016/
j.ecolind.2018.05.055

Xu, H., Wang, Y., Guan, H., Shi, T., and Hu, X. (2019). Detecting ecological
changes with a remote sensing based ecological index (RSEI) produced time series
and change vector analysis. Remote Sens. (Basel). 11, 2345. doi:10.3390/rs11202345

Frontiers in Environmental Science frontiersin.org12

Dong et al. 10.3389/fenvs.2022.1071631

https://doi.org/10.1016/s0034-4257(00)00200-5
https://doi.org/10.18287/2412-6179-2018-42-6-1035-1045
https://doi.org/10.1038/514434c
https://doi.org/10.3103/s1060992x19030093
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.rse.2005.11.002
https://doi.org/10.1016/j.scitotenv.2016.10.195
https://doi.org/10.1016/j.scitotenv.2016.10.195
https://doi.org/10.3390/rs5084125
https://doi.org/10.1016/j.jmarsys.2009.12.012
https://doi.org/10.1016/j.baae.202.09.006
https://doi.org/10.1016/j.baae.202.09.006
https://doi.org/10.3390/rs13214477
https://doi.org/10.3390/rs13214477
https://doi.org/10.1016/j.ppees.2013.08.004
https://doi.org/10.1016/j.ppees.2013.08.004
https://doi.org/10.1016/j.ecolind.2018.02.006
https://doi.org/10.13287/j.1001-9332.201903.008
https://doi.org/10.13287/j.1001-9332.201903.008
https://doi.org/10.1155/2012/582159
https://doi.org/10.1890/130066
https://doi.org/10.16213/j.cnki.scjas.2019.7.030
https://doi.org/10.16213/j.cnki.scjas.2019.7.030
https://doi.org/10.5846/stxb201708281551
https://doi.org/10.5846/stxb201708281551
https://doi.org/10.13287/j.1001-9332.201802.018
https://doi.org/10.13292/j.1000-4890.2007.0220
https://doi.org/10.13292/j.1000-4890.2007.0220
https://doi.org/10.3390/su11226385
https://doi.org/10.3390/su142013232
https://doi.org/10.1016/j.bbrep.2021.100987
https://doi.org/10.1016/j.rsase.2021.100530
https://doi.org/10.14358/pers.75.5.547
https://doi.org/10.1007/bf02447515
https://doi.org/10.3389/fmars.2016.00177
https://doi.org/10.3390/s21206914
https://doi.org/10.1016/j.ecolind.2010.08.010
https://doi.org/10.1016/j.ecolind.2012.01.001
https://doi.org/10.1109/tgrs.2007.904834
https://doi.org/10.3390/su12083489
https://doi.org/10.4278/0890-1171-21.4s.371
https://doi.org/10.3152/147154604781766111
https://doi.org/10.18306/dlkxjz.2016.10.010
https://doi.org/10.1016/j.ecolind.2015.01.032
https://doi.org/10.1016/j.ecolind.2015.01.032
https://doi.org/10.1016/j.biocon.2014.12.006
https://doi.org/10.1016/j.biocon.2014.12.006
https://doi.org/10.1016/j.scitotenv.2020.139562
https://doi.org/10.1016/j.scitotenv.2020.139562
https://doi.org/10.3969/j.issn.1000-6923.2013.05.019
https://doi.org/10.1016/j.ecolind.2018.05.055
https://doi.org/10.1016/j.ecolind.2018.05.055
https://doi.org/10.3390/rs11202345
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1071631


Yang, G., Zhang, Z. J., Cao, Y. G., Zhuang, Y. N., Yang, K., and Bai, Z. K. (2021).
Spatial-temporal heterogeneity of landscape ecological risk of large-scale open-pit
mining area in north Shanxi. Chin. J. Ecol. 40 (1), 187–198. doi:10.13292/j.1000-
4890.202101.003

Yang, Y., Bao, W., Li, Y., Wang, Y., and Chen, Z. (2020). Land use transition
and its eco-environmental effects in the beijing–tianjin–hebei urban
agglomeration: A production–living–ecological perspective. Land 9, 285.
doi:10.3390/land9090285

Yu, D. J., and Hong, X. Y. (2022). A theme evolution and knowledge trajectory
study in AHP using science mapping and main path analysis. Expert Syst. Appl. 205,
117675. doi:10.1016/j.eswa.2022.117675

Yuan, B. D., Fu, L. N., Zou, Y. A., Zhang, S. Q., Chen, X. S., Li, F., et al. (2021).
Spatiotemporal change detection of ecological quality and the associated affecting
factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302 (2021), 126995.
doi:10.1016/j.jclepro.2021.126995

Zhang, X. (2020). Global land-cover classification and mapping at 30 m using
quantitative remote sensing technique. Beijing: University of Chinese Academy of
Sciences, p133. doi:10.44231/d.cnki.gktxc.2020.000011

Zhao, J., Jin, J., Zhu, J., Xu, J., Hang, Q., Chen, Y., et al. (2016). Water
resources risk assessment model based on the subjective and objective
combination weighting methods. Water Resour. manage. 30 (2016),
3027–3042. doi:10.1007/s11269-016-1328-4

Frontiers in Environmental Science frontiersin.org13

Dong et al. 10.3389/fenvs.2022.1071631

https://doi.org/10.13292/j.1000-4890.202101.003
https://doi.org/10.13292/j.1000-4890.202101.003
https://doi.org/10.3390/land9090285
https://doi.org/10.1016/j.eswa.2022.117675
https://doi.org/10.1016/j.jclepro.2021.126995
https://doi.org/10.44231/d.cnki.gktxc.2020.000011
https://doi.org/10.1007/s11269-016-1328-4
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1071631

	Eco-environmental quality assessment of the artificial oasis of Ningxia section of the Yellow River with the MRSEI approach
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Satellite data and pre-processing
	2.3 Identification of LDI threshold
	2.4 Assessment factor normalization and MRSEI calculations
	2.5 Relationship between MRSEI and land use type

	3 Results
	3.1 The scale dependent threshold for the LDI
	3.2 Relationship between evaluation factors for PCA
	3.3 Ecological quality status and hierarchical pattern
	3.4 Effect of LU composition on MRSEI

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


