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The COVID-19 outbreak that began in 2020 has changed human activities and

thus reduced anthropogenic carbon emissions in most parts of the world. To

accurately study the impact of the COVID-19 pandemic on changes in

atmospheric XCO2 concentrations, a data fusion method called High

Accuracy Surface Modeling (HASM) is applied using the CO2 simulation from

GEOS-Chem as the driving field and GOSAT XCO2 observations as the accuracy

control conditions to obtain continuous spatiotemporal global XCO2

concentrations. Cross-validation shows that using High Accuracy Surface

Modeling greatly improves the mean absolute error and root mean square

error of the XCO2 data compared with those for GEOS-Chem simulation data

before fusion, and the R2 is also increased from 0.54 to 0.79 after fusion.

Moreover, OCO-2/OCO-3 XCO2 observational data verify that the fused XCO2

data achieve a lower MAE and RMSE. Spatiotemporal analysis shows that the

global XCO2 concentration exhibited no obvious trend before or after the

COVID-19 outbreak, but the growth of global and terrestrial atmospheric XCO2

in 2020 can reflect the impact of the COVID-19 pandemic; that is, the rapid

growth in terrestrial atmospheric XCO2 observed before 2019 slowed, and

high-speed growth resumed in 2021. Finally, obvious differences in the pattern

of XCO2 growth are found on different continents.
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1 Introduction

As an important greenhouse gas, CO2 has always been the focus of research on climate

change. Since the Industrial Revolution, human activities have intensified, resulting in a

continuous increase in the concentration of CO2 in the atmosphere. TheWorking Group I

report of the IPCC Sixth Assessment Report (AR6) states that by 2019, the annual average

concentration of CO2 had reached 410 ppm (Masson-Delmotte et al., 2021). The COVID-
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19 pandemic emerged in 2020 across the world, and various

control measures implemented by various countries and regions

(Kumari and Toshniwal, 2020; Lau et al., 2020) not only

suppressed the rapid spread of the virus, but also reduced the

impact of human activities on the environment (Chen et al.,

2022; Wang et al., 2022). Studies show that daily global CO2

emissions decreased by 17% in early April 2020 and then

gradually recovered, eventually leading to a 6.3% decrease in

annual emissions (Le Quéré et al., 2020; Liu et al., 2022). There is

a certain hysteresis in the response of atmospheric CO2

concentrations to emission changes, and considering

atmospheric movement, whether the carbon dioxide

concentration has the same degree of change in response to

emission changes is an issue of concern of researchers.

Satellite observation data are the primary means to detect

changes in global or regional atmospheric CO2 concentrations

during COVID-19. Buchwitz et al. (2021) used OCO-2 and

GOSAT satellite data to analyse the changes in XCO2

concentrations in East China and found that the reduction in

XCO2 in this region in March and April 2020 was only

0.1–0.2 ppm. Zhang et al. (2021) studied the satellite column

concentration products of four representative cities in China, of

which Wuhan - the first centre of COVID-19 experienced a

decline of 1.12 ppm. Weir’s research (Weir et al., 2021) showed

that the impact of short-term regional changes in fossil fuel

emissions on carbon dioxide concentrations can be observed

from space, and the concentrations in many of the world’s largest

emission areas are 0.14–0.62 ppm lower than expected.

Sussmann and Rettinger (2020) used the Total Carbon

Column Observation Network (TCCON) and showed that the

growth rate of TCCON related to COVID-19 decreased by

0.32 ppm per year. Golkar and Mousavi (2022) used 6 years of

observational data from the OCO-2 satellite to calculate the

detrended and seasonally decreasing XCO2 anomalies in the

Middle East to characterize the oil/gas industry and emission

changes in the growing season during the COVID-19 pandemic.

Hwang et al. (2021) compared the CO2 concentration data before

and after the inflection point (the first wave of COVID-19) with

the long-term CO2 concentration data obtained by the World

Meteorological Organization’s Global Atmospheric Observation

(WMO GAW) and GOSAT, showing that the global lockdown

during the first wave of the COVID-19 pandemic did not alter the

global vertical profile of CO2 from the surface to the upper

atmosphere.

However, many studies have also pointed out that the

sparsity of satellite data has an important influence on the

accuracy of atmospheric CO2 research (Yue et al., 2016a;

Kulawik et al., 2016; Buchwitz et al., 2021), and more

complex analytical methods need to be introduced, such as

transport modelling and consideration of anthropogenic/

natural CO2 surface fluxes. The atmospheric chemical

transport model contains rich sources of CO2 flux

information and atmospheric transport information, and the

spatiotemporally continuous characteristics of the output data

have a considerable advantage over satellite observations (Beck

et al., 2013; Park et al., 2019; Fu et al., 2021). However, the

development teams of these transport models usually do not

update the anthropogenic/natural CO2 flux information in the

models in a timely manner, so the directly simulated atmospheric

CO2 concentration information from the models has

considerable error, so the models are usually used as a

forward model combined with an inversion algorithm to

estimate CO2 emissions (Peters et al., 2007; Peng et al., 2015;

Lian et al., 2022). Based on the High Accuracy Surface Modeling

(HASM) developed from the fundamental theorem of surfaces,

the model simulation results are used as the driving fields, and the

observational data are used as the accuracy control conditions to

obtain more accurate distribution fields. The HASM is currently

applied in many research fields, including soil properties (Shi

et al., 2011; Shi et al., 2016), carbon storage (Yue et al., 2016b;

Wang et al., 2016), climate change (Yue et al., 2013; Zhao et al.,

2018), and atmospheric CO2 research (Liu et al., 2018; Yue et al.,

2020).

In this paper, we first run GEOS-Chem to obtain the

simulation data of atmospheric XCO2 concentrations on a

global scale. Then, the simulation data and the GOSAT XCO2

observation data are fused to obtain fused XCO2 data through the

HASM data fusion method. After verifying the fused XCO2 data,

we finally analyse the temporal and spatial changes in the global

atmospheric XCO2 concentration before and after the COVID-

19 outbreak.

2 Materials and methods

2.1 Study region

This paper examines the effects of the COVID-19

pandemic on the temporal and spatial changes in

atmospheric XCO2 concentration on a global scale. Asia,

Europe, Africa, South America, North America and Oceania

are used as case studies to investigate the temporal and spatial

evolution of atmospheric XCO2 concentrations between

different continents. Since human activity in Antarctica is

minimal and lacks observational data, Antarctica is not within

the scope of this study.

2.2 GOSAT XCO2 data

GOSAT is the world’s first carbon satellite (Kadygrov et al.,

2009; Kuze et al., 2009; Shiomi et al., 2022), launched by Japan on

23 January 2009. This satellite is equipped with TANSO-FTS,

which can detect gas absorption spectra of reflected light in the

short-wave infrared (SWIR) region (0.76, 1.6, and 2.0 μm) and

thermal infrared (TIR) band (from 5.5 to 14.3 μm) from the
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Earth’s surface. XCO2 and CH4 can be retrieved from these

spectral data.

GOSAT XCO2 data are used in HASM data fusion and are

also used to verify the accuracy of the atmospheric XCO2

concentration data before and after data fusion. GOSAT

XCO2 data are filtered by the screening procedures described

in the NIES GOSAT TANSO-FTS SWIR Level 2 Data Product

Format Description. The GOSAT satellite revisit cycle is 3 days,

and the spatial resolution is 10.5 km × 10.5 km. The spatial

resolution of the GEOS-Chem model is 2 × 2.5. Therefore,

there may be multiple GOSAT observations within one grid

of the GEOS-Chem model in the same month. This will disturb

the HASM data fusion method because it cannot tell which

observation represents the grid point. The solution is to average

multiple observations in the same grid.

2.3 GEOS-Chem

GEOS-Chem is a global atmospheric chemical transport

model managed by the GEOS-Chem Support Team that is

based at Harvard University and Washington University and

is widely used in the spatiotemporal simulation of various

components in the atmosphere, such as CO2, O3, SO2, and

CO (Park et al., 2004; Eastham et al., 2018; Murray et al.,

2021). This model includes a variety of CO2 emission sources:

fossil fuel, ocean exchange, biomass burning, biofuel burning,

CASA balanced terrestrial exchange (Carnegie Ames

Stanford—Approach), net annual terrestrial exchange, and

other optional emission sources such as shipping and aviation.

We use the GEOS-Chem v11.01 in this study. The simulation

period is fromMay 2012 to December 2021, and the period from

May 2012 to December 2012 is the spin-up time which is

excluded from the analysis. From January 2013 to December

2021, the monthly average value of global atmospheric CO2

concentration is simulated with a spatial resolution of 2 ×

2.5 and 47 vertical layers. To ensure the consistency of

different data types, the simulated data output by GEOS-

Chem is processed into XCO2 concentration data representing

the overall concentration of atmospheric carbon dioxide, and the

weight of each layer is calculated using the pressure weighting

function. The GEOS-Chem XCO2 is calculated based on the

following function:

XCO2 � ∑N
i�1
hiui (1)

where N is the number of layers in the GEOS-Chem output, ui
presents the CO2 concentrations as each layer, and hi presents the

pressure weighting function which relates the layered CO2

concentration to the profile-weighted average (Connor et al.,

2008).

hi � −pi + pi+1 − pi

ln
pi+1
pi

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + pi − pi − pi−1

ln
pi

pi−1
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

psurf
(2)

where pi is the air pressure on each level, and psurf is the air

pressure on the land surface. For the upper or lower boundary

layers, the function retains only the left or right items within the

absolute operator.

2.4 HASM

The HASM data fusion method was developed by the

research team of Professor Yue Tianxiang at the Institute of

Geography, Chinese Academy of Sciences. This method is based

on the fundamental theorem of surface. In this theorem, a surface

is uniquely determined by the first and second fundamental

coefficients. The first fundamental coefficients of a surface

describe the geometric properties of the surface

(Somasundaram, 2005), and the second fundamental

coefficients of a surface describe the local detals of the surface

(Djaferis and Schick, 2000).

Suppose a horizontal surface can be represented as

z � f(x, y), we can obtain three first fundamental coefficients,

E � 1 + f2
x, F � fx · fy, and G � 1 + f2

y, and 3 s fundamental

coefficients, L � fxx������
1+f2

x+f2
y

√ , M � fxy������
1+f2

x+f2
y

√ , and N � fyy������
1+f2

x+f2
y

√ ,

where fx is the first-order partial derivative of the surface z

with respect to the independent variable x. fy is the first-order

partial derivative of the surface z with respect to the independent

variable y. fxx, fxy, and fyy are the second order partial

derivatives of the surface z, which satisfy the following set of

equations based on the Gauss equation:

fxx � Γ111fx + Γ211fy + L��������
E + G − 1

√ (3)

fxy � Γ112fx + Γ212fy + M��������
E + G − 1

√ (4)

fyy � Γ122fx + Γ222fy + N��������
E + G − 1

√ (5)

where Γ111 � GEx−2FFx+FEy

2(EG−F2) , Γ112 � GEx−FGx
2(EG−F2), Γ122 � 2GFy−GGx−FGy

2(EG−F2) ,

Γ211 � 2EFx−EEy−FEx

2(EG−F2) , Γ212 � EGx−FEy

2(EG−F2), and Γ222 � EGy−2FFy+FGx

2(EG−F2) . Γ111,
Γ112, Γ122, Γ211, Γ212, and Γ222 are called the second type of

Christoffel symbols and rely only on the first fundamental

coefficients and their derivatives.

Then, HASM can be expressed as a constrained least-squares

approximation:

min
A
B
C

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ · z n−1( ) −
d
q
h

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ n( )������������
������������2

S · z n−1( ) � k

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)
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where in the first equation of Eq. 6,A, B, and C are the coefficient

matrices of the discrete equation form of Eqs. (3)–(5) and d, q,

and h are found on the right-hand side of Eqs. (3)–(5). n is the

number of iterations. The second equation of Eq. 6 is the

constraint equation representing the sampling point

information. S denotes the sampling matrix, and k denotes

the sampling vector. See Yue (2011) for details.

In HASM, global atmospheric XCO2 spatial distribution data

is considered as a surface, using XCO2 simulation from GEOS-

Chem as the driving field to calculate the first fundamental

coefficients and the second fundamental coefficients and using

XCO2 observation data from GOSAT called the accuracy control

conditions to provide constraint information in Eq. 6. Through

iterative operation, the HASM data fusion method constrains the

deformation of the driving field with the accuracy control

conditions.

3 Results and discussion

3.1 Fusion accuracy verification

Using the 2020 data as an example, cross-validation is

performed to verify the accuracy of HASM data fusion. We

randomly take 90% of the GOSAT data as the accuracy control

condition and input these data into HASM to obtain the fused

XCO2 data, and the remaining 10% is used as the verification

points to compare the error statistics of the XCO2 data before and

after data fusion. The above calculation is repeated 1000 times to

obtain the average error statistics. The error statistics include the

mean absolute error (MAE), root mean square error (RMSE) and

coefficient of determination (R2) as follows:

MAE � ∑n

i�1 si − oi| |
n

(7)

RMSE �
�����������∑n

i�1 si − oi( )2
n − 1

√
(8)

R2 � 1 − ∑n

i�1 si − oi( )2∑n

i�1 �o − oi( )2 (9)

where n is the number of verification points, si is the data fusion

value or simulated value of the i-th verification point position, oi is

the observation value of the i-th verification point position, and �o is

the mean of the observation value on the verification point position.

The monthly error statistics in 2020 are shown in Table 1.

Table 1 lists the monthly error statistics from January to

December 2020. The MAEs of the GEOS-Chem simulation data

are all greater than 2 ppm. After data fusion using HASM, the MAE

at the verification point location is basically below 1.5 ppm. It is

slightly higher, at 1.71 ppm, in June but decreases by approximately

half from 3.13 ppm in the GEOS-Chem simulation. The RMSEs

exhibit the same characteristics, and the RMSEs of the HASM fusion

data are all lower than those of the GEOS-Chem simulation data. The

monthly R2 shows that the fused data have a higher fitting degree to

the GOSAT observations. Overall, the annual average MAE and

RMSE decreased from 2.74 ppm to 3.24 ppm for the GEOS-Chem

simulation data to 1.28 ppmand 1.83 ppm for theHASM fusion data,

TABLE 1 Monthly error statistics in 2020.

Month MAE (ppm) RMSE (ppm) R2

GEOS-Chem HASM GEOS-Chem HASM GEOS-Chem HASM

JAN 2.62 1.13 3.11 1.62 0.66 0.88

FEB 2.34 1.10 2.82 1.68 0.66 0.87

MAR 2.24 1.15 2.74 1.68 0.63 0.86

APR 2.43 1.25 2.90 1.81 0.65 0.87

MAY 2.96 1.29 3.37 1.81 0.57 0.83

JUN 3.13 1.71 3.65 2.37 0.50 0.75

JUL 2.90 1.50 3.38 2.08 0.53 0.75

AUG 2.72 1.32 3.20 1.88 0.54 0.80

SEP 2.71 1.33 3.26 1.92 0.46 0.72

OCT 2.80 1.26 3.33 1.80 0.38 0.69

NOV 3.01 1.17 3.55 1.71 0.34 0.65

DEV 3.04 1.10 3.59 1.62 0.60 0.82

AVERAGE 2.74 1.28 3.24 1.83 0.54 0.79
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respectively, and the annual average R2 increased from 0.54 before

fusion to 0.79 after fusion, indicating that the HASM fusion data have

better performance.

The Orbiting Carbon Observatory-2 (OCO-2) and Orbiting

Carbon Observatory-3 (OCO-3) from the National Aeronautics

and Space Administration (NASA) provide global atmospheric

XCO2 observations with temporal and spatial resolutions of

16 days and 2.25 km × 1.29 km, respectively. The former was

launched on 2 July 2014, and the latter was launched on 4 May

2019, and was mounted on the Japanese Experiment Module-

Exposed Facility on board the International Space Station (ISS).

Here, OCO-2 Level 2 bias-corrected XCO2 (V11r) and OCO-3

Level 2 bias-corrected XCO2 (V10.4r), with the quality flag as “0”

are used as validation data to compare the XCO2 data before and

after fusion. The fused data are obtained by using all of GOSAT

observation data and GEOS-Chem simulations in 2020 through

HASM. As shown in Figure 1, HASM fused data presents a lower

MAE and RMSE. However, R2 also decreases.

In the next section, we input all GOSAT data into the HASM

data fusion method to obtain monthly global atmospheric XCO2

concentration data from 2013 to 2021, and conduct

spatiotemporal analysis.

3.2 Temporal and spatial variation in global
XCO2 concentration

We calculated the multiyear average global atmospheric

XCO2 concentration from 2013 to 2021 as shown in Figure 2:

Figure 2 shows the global distribution of the multiyear

average XCO2 concentration from 2013 to 2021. The XCO2

concentration in the Northern Hemisphere is significantly

higher than that in the Southern Hemisphere, which is

indicative of the influence of human activities. There are also

low-value areas of XCO2 concentrations year-round in some

areas of the Northern Hemisphere, such as central North

America and the central Eurasian continent. The Southern

Hemisphere, with the exception of the Amazon in South

America and a small area in central Australia, maintains

relatively low concentrations of XCO2.

FIGURE 1
Comparison between XCO2 concentrations from GEOS-Chem/HASM and observations from OCO-2/OCO-3. The coefficient of
determination (R2), slope (S), constant (C), root mean square error (RMSE) and mean absolute error (MAE) of the linear regression are indicated in the
lower right of the panel.

FIGURE 2
Spatial distribution of multiyear global average XCO2

concentration from 2013 to 2021 (ppm).
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We obtained the XCO2 concentration of HASM at the

location of the TCCON site (Park Falls, United States,

[90.273°W, 45.945°N]) through bilinear interpolation, and

compared it with the observation at this site in Figure 3. Since

there are no GOSAT observations for January 2015, the black line

is discontinuous that month. Figure 3 shows that the global

average concentration of XCO2 has a clear upwards trend of

oscillation with significant seasonality, from approximately

395 ppm in January 2013 to 415 ppm in December 2021.

Monthly XCO2 observations from the TCCON site also show

the same change characteristics. For the period from 2019 to

2021, no significant changes can be observed in the global XCO2

concentration, which is basically consistent with the results of

Hwang’s research (Hwang et al., 2021).

3.3 Year-to-year growth in XCO2
concentration

To examine the growth of atmospheric XCO2 concentrations

before and after the COVID-19 pandemic in more detail, this

study compares the year-to-year growth in 2019, 2020, and 2021,

using the average year-to-year growth from 2014 to 2018 as the

reference growth.

First we calculate the year-to-year growth in each year from

2014 to 2021 using the annual average XCO2 concentration:

GRy � Dy −Dy−1 (10)

where y represents the year (from 2014 to 2021),GRy is the year-

to-year growth in the yth year, Dy and Dy−1 are the annual

average XCO2 concentration in the yth year and the (y-1)-th year.

The reference growth is obtained by calculating the average of

2014–2018:

GRref �
∑2018

y�2014GRy

5
(11)

The relative increase of the year-to-year growth in year y is

expressed as follows:

R INCy � GRy − GRref

GRref
(12)

Table 2 shows the comparison of the year-to-year growth of

atmospheric XCO2 and the relative increase in 2019, 2020, and

2021. Globally, the year-to-year growth in 2019 was higher than

the reference growth, reaching 2.40 ppm, and the relative

increase reached 10.91%. The growth in 2020 was 2.05 ppm,

which was 5.20% lower than the reference growth. By 2021, the

growth in atmospheric XCO2 concentration returned to a level

that was close to the reference growth. The reference growth and

year-to-year growth in 2019, 2020, and 2021 on land were faster

than the global growth, at 2.26 ppm, 2.52 ppm, 2.25 ppm and

2.38 ppm respectively. However, when the pandemic emerged in

2020, the year-to-year growth of XCO2 over the mainland was

only slightly lower than that in the multiyear reference. This

pattern also proves that the reduction in human activities caused

by COVID-19 has not significantly reduced the growth of XCO2

over the continents as a whole. There are differences in growth

across the six continents. In 2020, when the pandemic occurred,

the growth on six continents decreased to varying degrees

compared with that in 2019, but the growth in Asia and

North America were still higher than the reference growth,

while in Europe, South America, Australia and Africa, the

growth was below the reference growth. In 2021, the growth

in Asia, North America, South America, and Europe recovered

rapidly, while South Australia and Africa maintained relatively

low growth.

Figure 4A shows the spatial distribution of the average year-

to-year growth of the global XCO2 concentration from 2013 to

2018. A similar level of growth occurs worldwide, with values of

between 2.0 and 2.5 ppm, which also reflects the CO2 from high-

emission areas in the Northern Hemisphere gradually spreading

worldwide with atmospheric transport. Figures 4B–D shows the

year-to-year growth in 2019, 2020 and 2021. Compared with

2018, the regions on land with faster growth in 2019 were mainly

in western North America, Europe, western Siberia in Asia and

Southeast Asia. In addition, in the Southern Hemisphere, central

South America, Africa and Australia also experienced high

growth in XCO2 concentrations. Compared with 2019, the

regions with growth of more than 2.5 ppm in 2020 were

significantly reduced, reflecting that in response to the

COVID-19 pandemic, the closures and control measures in

various countries and regions reduced human activities and

CO2 emissions. At the same time, it can be observed that the

areas with higher growth in 2020 were generally opposite to those

in 2019, which reflects atmospheric transmission. In 2021, there

FIGURE 3
Monthly concentration of XCO2 from the TCCON
observations and HASM data fusion for the location of the TCCON
site (Park Falls, United States). The red line represents the start of
the COVID-19.
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was a higher degree of growth in North America, and regions

with growth of more than 2.5 ppm became larger in Europe, Asia,

and South America. In contrast, Africa and Australia did not

change greatly and still maintained low XCO2 growth.

3.4 Growth compared with the same
month of the previous year in XCO2
concentration

Growth compared with the same month of the previous year

in XCO2 concentration are calculated to analyse the growth

change in different months of 2019, 2020 and 2021, and the

average growth compared with the same month of the previous

year from 2013 to 2018 is used as the reference growth. Seasonal

and Trend decomposition using Loess (STL) is performed on

monthly XCO2 concentrations to remove seasonal variation in

advance.

Growth compared with the same month of the previous year

in XCO2 concentration is calculated as follows:

GRm,y � Dm,y −Dm,y−1 (13)

where m represents the month (from January to December). y

represents the year (from 2014 to 2021). GRm,y is the growth of

the mth month and yth year, Dm,y is the deseasonalized

atmospheric XCO2 data of the mth month and yth year, and

Dm,y−1 is the deseasonalized atmospheric XCO2 data of the mth

month and (y-1)-th year.

TABLE 2 The year-to-year growth of atmospheric XCO2 and the relative increase globally and on six continents in 2019, 2020, and 2021.

GR (ppm), R_INC. (%)

Area GRref GR2019 R_INC2019 GR2020 R_INC2020 GR2021 R_INC2021

Global 2.16 2.40 10.91 2.05 −5.20 2.22 2.66

Land excluding Antarctica 2.26 2.52 11.53 2.25 −0.44 2.38 5.32

Asia 2.30 2.46 7.00 2.38 3.62 2.47 7.66

North America 2.18 2.41 10.43 2.37 8.53 2.46 12.72

Europe 2.32 2.49 7.31 2.15 −7.42 2.54 9.59

South America 2.23 2.58 15.72 1.92 −13.90 2.33 4.59

Australia 2.28 2.72 19.33 2.01 −11.65 1.94 −14.58

Africa 2.25 2.73 21.56 2.14 −4.73 2.10 −6.69

FIGURE 4
Spatial distribution of reference growth and year-to-year growth in 2019, 2020 and 2021 (ppm).
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The reference growth in each month GRm,ref and the

absolute increase in growth A INCm,y are expressed as follows:

GRm,ref �
∑2018

y�2014GRm,y

5
(14)

A INCm,y � GRm,y − GRm,ref (15)

In Figure 5, the dashed, solid, and dotted lines show the absolute

increase in growth compared with the same month of the previous

year in 2019, 2020 and 2021 at the global level, respectively, using

average growth from 2013 to 2018 as the reference growth. In 2019,

except for in April, October, and November, the absolute increases

in growth were higher than the reference growth, indicating that

atmospheric XCO2 increases rapidly inmost months of that year. In

2020, there was a continuous negative value from February to

September, indicating that the growth in atmospheric XCO2 slowed

because of COVID-19 prevention measures such as factory

shutdowns and city lockdowns. In 2021, the absolute increase of

the growth in atmospheric XCO2 rebounded as a whole, with

7 months having higher growth than the reference growth,

reflecting the rapid growth of atmospheric XCO2 caused by

resumed production in various countries.

Figure 6 shows the absolute increase in growth in 2019,

2020 and 2021 on six continents. Here, the calculations only

consider the land area showed in Figure 2. Since most of the

world’s economic powerhouses are concentrated in Asia, North

America and Europe, the growth in atmospheric XCO2 on these

three continents in the first half of 2020 was lower than that in

2019 to varying degrees, indicating that the COVID-19 pandemic

had a significant impact on regional economies in the first half of

2020. Later, with resumed production, carbon emissions gradually

returned to normal levels. In Australia and Africa, the growth in

FIGURE 5
The absolute increase in growth compared with the same
month of the previous year in 2019, 2020 and 2021 at the global
level using average growth from 2013 to 2018 as the reference
growth.

FIGURE 6
The absolute increase in growth compared with the same month of the previous year in 2019, 2020 and 2021 on six continents, using average
growth from 2013 to 2018 as the reference growth.
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2020 and 2021 were much lower than these in 2019. However, the

growth in South America did not show a clear pattern.

4 Conclusion

This study used HASM to fuse the CO2 simulation from the

atmospheric chemical transport model with XCO2 observations

from GOSAT to obtain global atmospheric XCO2 concentration

fusion data. The accuracy of the fused data were verified, and the

characteristics of atmospheric XCO2 changes under the influence

of the COVID-19 pandemic were analysed. The main

conclusions of this paper are as follows:

(1) The accuracy of the fused XCO2 data is greatly improved

compared with that of the GEOS-Chem simulation. Cross-

validation shows that the average MAE and RMSE of the

fused XCO2 data decreased from from 2.74 ppm to 3.24 ppm

before fusion to 1.28 ppm and 1.83 ppm, respectively. R2

increased from 0.54 to 0.79. The test results using the

observations of OCO-2/OCO-3 as verification points also

confirm that the fused data have a lower MAE and RMSE.

(2) Global XCO2 concentration analysis shows that despite the

influence of the COVID-19 pandemic, the global XCO2

concentration is still rising as a whole, and no significant

trend changes can be observed in terms of temporal evolution.

(3) From the perspective of year-to-year growth and growth

compared with the same month of the previous year, the

COVID-19 pandemic is found to have reduced the growth of

atmospheric XCO2 concentrations on a global scale as a whole in

2020, but the growth gradually recovered and accelerated in

2021. However, growth differed considerably on different

continents. In Asia, North America, and Europe, the growth

during the COVID-19 outbreakwas lower, but then recovered or

even exceeded the growth before the outbreak. The growth of

XCO2 in Australia and Africa has remained at a low level after

the outbreak, and South America does not show this

characteristic pattern.

As it is affected by the spatial resolution of GEOS-Chem, the

spatial resolution of the XCO2 dataset after its fusion with HASM is

relatively coarse, and there may be uncertainties in the regional

analysis (compared with TCCON observations, HASM misses some

small changes in Figure 3). On the other hand, this study mainly

focuses on the change in XCO2 concentrations over land areas, and

does not involve theXCO2 signal over the ocean. There is a time delay

in the response of the changes in the high XCO2 concentrations over

the ocean to human activities, so further research is needed on the

time window on ocean areas. Even on land, XCO2 in upwind areas

can be transported to downwind areas, causing false anthropogenic

signals. For example, the lowXCO2 in Siberia in winter is transported

southwards with cold air, reducing the XCO2 concentrations in

eastern China. This may affect the conclusion. In follow-up

research, we will consider using the regional atmospheric chemical

transport model to improve the spatiotemporal resolution, which will

be conducive to amore detailed discussion of the temporal and spatial

changes in regional atmospheric XCO2 under the influence of the

COVID-19 pandemic.
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