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Ozone variation, excluding meteorological effects, is very important to assess

the effects of air pollution control policies. In this study, the Kolmogorov-

Zurbenko (KZ) filter method and multiple linear stepwise regression are

combined to study the impact of meteorological parameters on ozone

concentration over the past 5 years (2016–2020) in a petrochemical

industrial city in northern China. Monte Carlo simulations were used to

evaluate the reliability for the potential quasi quantitative prediction of the

baseline component. The average level of the city and the details of five stations

in the city were studied. The results show that the short-term, seasonal, and

long-term component variances of maximumdaily running average 8 h (MDA8)

ozone in Zibo city (City) decomposed by the KZ filter account for 32.06%,

61.67% and 1.15% of the total variance, for a specific station, the values were

32.37%–34.90%, 56.64%–62.00%, and .35%–3.14%, respectively. The average

long-term component increase rate is 3.19 μg m−3 yr−1 on average for the city,

while it is 1.52–5.95 μg m−3 yr−1 for a specific station. The overall meteorological

impact was not stable and fluctuated between −2.60 μg m−3 and +3.77 μg m−3.

This difference in trends between the city and specific stations implied that the

O3 precursor’s mitigation strategy should be more precise to improve its

practical effects.
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1 Introduction

Over the past few decades, China’s economic development

has seen significant advancements, the pace of urbanization and

industrialization has also been accelerating. Accordingly, the

consumption of fossil fuels, such as coal and petroleum, has

increased significantly, leading to severe air pollution. Haze

pollution–characterized by a high concentration of inhalable

particulate matter (PM10) and fine particulate matter (PM2.5)–

and photochemical smog pollution–characterized by a high

concentration of ozone (O3)–were severe issues in the past

(Huang et al., 2013; Zhang et al., 2015; Wang et al., 2017; Wang

et al., 2019). After the implementation of the “Air Pollution

Prevention and Control Action Plan” (also referred to as the

“Atmospheric Ten Measures”), the concentration of particulate

matter in China has been significantly decreasing each year.

However, regional photochemical pollution has become

increasingly prominent, and the ozone concentration has

risen instead of falling in many cities, and threatens human

health, which is of significant concern for the scientific

community and relevant government departments (Kuerban

et al., 2020; Lin et al., 2021). According to the results of

monitoring data from 338 cities in China, the 90th percentile

of the maximum daily running average 8 h (MDA8)

concentration of ozone increased from 134 μg m−3 in 2015 to

148 μg m−3 in 2019. The proportion of days exceeding the

second standard values (160 μg m−3) specified in the National

Ambient Air Quality Standards (GB3095–2012), with ozone as

the primary pollutant increased from 16.9% in 2015 to 41.7% in

2019, and the proportion of cities exceeding the secondary

standard increased from 16% to 30.6% (Ministry of Ecology and

Environment of China, 2016, 2019). Research has indicated that

the concentration of ozone in 22 of China’s 30 provinces

increased from 2015 to 2018, and ozone pollution was

prominent and concentrated in the Beijing-Tianjin-Hebei

(BTH), Yangtze River Delta (YRD), and Pearl River Delta

(PRD) regions (Kuerban et al., 2020).

In comparison to other pollutants, ozone is chemically

active and susceptible to meteorological (MET) conditions,

such as temperature, relative humidity, wind speed, boundary

layer (Cheng et al., 2019; Zong et al., 2021; Zong et al., 2022),

and atmospheric transmission. The close relationship between

the ozone concentration and meteorological conditions may

cover up the ozone long-term trend caused by emission

change of ozone precursor. Therefore, it is necessary to

filter out the meteorological effects to understand the net

impact of emission changes (Rao et al., 1997; Yu et al., 2019).

Some methods can help separate the influence of

meteorological conditions on ozone, such as Fourier

transforms and the wavelet transform method (Eskridge

et al., 1997). The Kolmogorov-Zurbenko (KZ) filter,

combined with the multiple linear regression (MLR)

analysis technique proposed by Rao and Zurbenko (1994)

can separate the influence of meteorological conditions on

ozone concentration. The KZ filter method is a robust

statistical model with a simple algorithm that can be used

directly in the presence of missing data (Porter et al., 2001),

and is widely used to study ozone pollution trends, such as in

Tucson (Wise and Comrie, 2005) and Houston in the

United States (Botlaguduru et al., 2018); Canoas and Estio

in Brazil (Agudelo-Castaneda et al., 2014); Cessa in the Greek

Lee Plain (Papanastasiou et al., 2012); Switzerland (Boleti

et al., 2018); and major cities in South Korea (Seo et al.,

2014), and Australia, and Spain (Anh et al., 1997; Ibarra-

Berastegia et al., 2001; Agudelo-Castaneda et al., 2014), and

other places (Kang et al., 2013; Luo et al., 2019). Sa et al. (2015)

used the KZ filter method to decompose the original time

series of atmospheric pollutants O3, PM10, and NO2 at

different time scales, and then ascertained the influence of

meteorological conditions on the components of each

pollutant through MLR. Research has shown that the KZ

filter method can be used to decompose the air pollutants

concentrated in metropolises in China, such as BTH (Ma et al.,

2016; Gao et al., 2021) and YRD (Yu et al., 2019). Ma et al.

(2016) used KZ filtering to remove meteorological influences

and extracted the long-term ozone trend of background

stations, finding that meteorological conditions have

limited effects on the rapid increases in the ozone

concentration in Beijing. Research in Hebei province (Gao

et al., 2021) has shown that meteorological factors

(temperature, atmospheric pressure, and boundary layer

height) account for 64% of long-term ozone changes.

Therefore, the influence of meteorological factors varies

widely in different cities in different periods. Most previous

research has focused on the influence of meteorological

parameters on regional ozone pollution. However, for

ozone pollution control, emission reduction measures

should be implemented in every district in each city. It is

imperative to investigate whether the effects are similar in all

districts within a city. Thus, it is important to evaluate the

effect of emission reduction without the influence of

meteorological conditions in specific districts within a city.

In this study, Zibo City was selected as a representative

heavily-industrial city. Zibo is an important petrochemical

industrial city in the North China Plain (NCP), with

significant volatile organic compounds (VOCs) emissions (Luo

et al., 2018). The KZ filter method and multiple linear stepwise

regression are used to study the impact of meteorological

parameters on the O3 concentration over a 5-year period (1

1 2016–31 12 2020). Pollutant concentrations on different time

scales (long-term, seasonal, and short-term) were obtained, and

the influence of meteorological conditions was evaluated

quantitatively. The details regarding the long-term component

and meteorology impact in each division in the city were

discussed. This study will help understand the influence of

meteorological conditions on O3 concentration within a city.
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2 Materials and methods

2.1 Site description

Zibo is located in the central region of Shandong Province

(35°55′20″–37°17′14″N, 117°32′15″–118°31′00″E). It is

located in the warm temperate zone, experiencing a semi-

humid and semi-arid continental climate; the terrain is high in

the south and low in the north, and is surrounded by

mountains on three sides—in the east, west, and south. The

permanent population was 4.704 million at the end of 2020

(http://www.zibo.gov.cn/).

There are seven national ambient air quality monitoring

stations in Zibo. Considering the data integrity of both the O3

concentrations and meteorological parameters, data from five

national environmental monitoring stations are selected to study

the characteristics at different sites. The five stations are located

in five districts: Dongfeng Chemical Plant (DFCP) in Zhangdian

District, Putianyuan (PTY) in Linzi District, Qixiangzhan (QXZ)

in Zichuan Dictrict, Sanjin Group in Zhoucun District, and

Shuangshan (SS) in Boshan District, as shown in Figure 1.

Detailed information on these stations can be found in

Supplementary Table S1.

2.2 Data acquisition

The daily concentrations of the maximum daily average

8 h (MDA8) ozone for Zibo city (the average conditions of the

city) and the five specific sites were obtained from Zibo

Environmental Monitoring Center, and the meteorological

data was from China National Meteorological Information

Centre (http://data.cma.cn/). The data was obtained from

1 January 2016 to 31 December 2020. The meteorological

factors used in this study are the daily average relative

humidity (RH), daily average wind speed (WS), and daily

average temperature (T).

To facilitate a comparison, the ozone concentration of different

cities was found and analysed. The ozone concentration data of

Beijing (the average value of 12 sites), Tianjin (the average value of

14 sites) and Shijiazhuang (the average value of 7 sites) are from the

national real-time air quality release platform of the China National

Environmental Monitoring Centre (https://quotsoft.net/air/), and

the ozone data of Shanghai (the average value of 19 sites) were

collected from Shanghai Municipal Bureau of Ecology and

Environment (https://sthj.sh.gov.cn/). Ozone time series data of

Los Angeles, California were collected from Air Data at the US

Environment Protection Agency (https://www.epa.gov/outdoor-air-

quality-data). Available O3 time series data in Berlin (the average

value of 3 sites), Paris (the average value of 8 sites) and London (the

average value of 6 sites) were obtained from https://discomap.eea.

europa.eu/map/fme/AirQualityExport.htm.

2.3 KZ filter method

The KZ filter method was used to decompose the time series

of ozone and meteorological conditions. According to Rao and

Zurbenko (Rao and Zurbenko, 1994), the original time series of

pollutants can be expressed as

X t( ) � e t( ) + S t( ) +W t( ) (1)

Where X(t) represents the original time series, e(t) represents the

long-term component, S(t) represents the seasonal component,

and W(t) represents the short-term component. In terms of the

air quality component, the short-term component can be

attributed to the weather and the short-term fluctuations of

source emissions, the seasonal component can be attributed to

the changes in the angle of the sun, for example, solar radiation,

monsoon, temperature and rainfall due to solar angle changes

FIGURE 1
Location of the study area and air quality monitoring sites in Zibo City.
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show seasonal variations, and the associated changes in biogenic

emissions on a time scale of generally 1a, and the long-term

component can be attributed to the changes in source emissions,

climate change, policy or economic activities (Rao and Zurbenko,

1994).

The KZ filter method is mainly implemented through the

KZA package in R software (Version 4.0.2). It is based on the

iterative moving average to eliminate high-frequency changes in

the data, which is defined as p applications of a moving average of

m points (Rao and Zurbenko, 1994). Its calculation formula is as

follows:

Yi � 1
m

∑k
j�−k

Xi+j (2)

Where Yi represents the time series after filtering once, and the

calculation is performed again using Yi as the input of the next

filter, which iterates p times, and finally yields the filter result

KZ(m, p). The unit of the filtered result is the same as that of the

original time series; m represents the length of the sliding

window (m = 2k+1), k represents the length of the sliding

window at both ends when Xi is filtered; X represents the

original time series; i represents the sequence (the unit of

sampling interval in this study is days); j represents the

sliding window variable, which represents the time points

involved in the sliding. By adjusting the filter parameters m

and p, the filtering of different scale processes can be obtained,

and the effective filter width satisfies the following formula:

m × p
1 /

2 ≤N (3)

The abovementioned formula implies that the filter result KZ(m,

p) (X) removes high-frequency waves with a wavelength less than N.

According to formula (Eq. 3), KZ(15, 5) (X) (the length of the sliding

window is 15, and 5 iterations have been carried out) filters out

fluctuations with a period less than 33 d (15 × 51/2 ≤ 33); the effective

filter width is approximately 33 d (Rao et al., 1997).

Apply meteorological weather and air pollutant quality data

to the KZ(15,5) filter, and the extracted time series represent the

baseline component, which is defined as the sum of the long-term

component and the seasonal component:

Xb t( ) � KZ 15,5( ) � e t( ) + S t( ) (4)

The long-term component of the data can be obtained by

selecting a KZ filter with a larger window length (Eskridge et al.,

1997), and by using the KZ (365, 3) filter (Rao et al., 1997), the

long-term component is extracted in the data, and its effective

filter width is 632 d, which is about 1.7a. That is, this component

filters out fluctuations in the original sequence whose period is

less than 632 d (365 × 31/2 ≤ 632).

e t( ) � KZ 365,3( ) (5)

FIGURE 2
Calendar heat map of MDA8 ozone of Zibo city during 2016–2020.
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From the above mentioned functions, the seasonal and short-

term components can be calculated as follows:

S t( ) � KZ 15,5( ) −KZ 365,3( ) (6)
W t( ) � X t( ) −KZ 15,5( ) (7)

Ozone is still affected by meteorological conditions after KZ

filtering. Linear stepwise regression (Version 22.0, SPSS) is used to

eliminate these meteorological effects (Flaum et al., 1996). The

decomposed baseline component and short-term component,

along with the corresponding decomposed meteorological factors,

are introduced into stepwise linear regression, and the O3 statistical

model is generated; the corresponding explanatory variance is

subsequently given. The robustness of the stepwise linear

regression model is tested using 10,000 times Monte Carlo

simulation, based on the t distribution of the mean squared error

of the model (Xiao et al., 2018). The R2 distribution map is drawn

based on this result. It is generally agreed that R2 > .64 indicates that

themodel has an explanatory degree of 80%. The calculationmethod

for variance explained is as follows (Wise and Comrie, 2005):

VE � varX t( ) − var ε t( )
varX t( )( ) × 100% (8)

Where VE is the explained variance, varX(t) is the variance of the

original time series of ozone, and varε(t) is the variance of the residual

series. Generally speaking, the smaller the residual sequence, the

larger the interpretation variance, and the greater the explanatory

power and influence degree of the meteorological conditions

participating in the model construction on the time series of ozone.

O3 was measured using online commercial gas analyser

(Thermo Scientific 49i, United States), and the measurement

method was UV photometric. Previous articles have been

published using part of these data, for details see Li et al. (2021).

In this study, ground observation data in accordance with the

Technical Regulation for Ambient Air Quality Assessment (on

trial) (HJ 663-2013) in the data statistical validity provisions, that

is, the MDA8 within a natural day is specified as at least 14 valid 8-h

average concentration values from 08:00 to 24:00 on that day.When

the 14 valid data are notmet, if theMDA8 concentration exceeds the

concentration standard limit, the statistical results are still valid. For

the treatment of missing data, KZ is an iterated moving average and

can be used with missing values. Please see the introduction of KZA

package in R for details.

3 Results and discussion

3.1 General characteristics ofmeteorology
and ozone concentration

Major MET variables in Zibo City in 2016 and 2020 were

compared. The monthly variation in (a) temperature, (b)

FIGURE 3
Separated time series of MDA8 of the ozone values during 2016–2020. (A) the original data; (B) the short-term component; (C) the seasonal
component; (D) the long-term component.
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relative humidity, and (c) wind speed in Zibo City in 2016 and

2020 are illustrated in Supplementary Figure S1. The annual

average wind speed and relative humidity decreased (by

.25 m/s and .79%, respectively), and the annual average

temperature remained basically unchanged (14.3°C in

2016 and 14.2°C in 2020). The changes in the MET

conditions will affect the concentration of pollutants.

Therefore, it is of great significance to understand the

effects of the MET conditions on the concentrations of

pollutants to eliminate them.

The 90th percentile of MDA8 of the ozone concentration in

Zibo City from 2016 to 2020 is between 184 and 203 μg m−3,

exceeding the secondary standard limit (160 μg m−3) by

1.15–1.27 times. The annual ozone concentration reached a

maximum in 2019 and a minimum in 2017. Another

cumulative index for human health, the annual Sum of Ozone

Means Over 35 ppb (SOMO35), was 1.27 × 104 ppb d–1.74 ×

104 ppb d (1.55 × 104 ppb d, on average) from 2016 to 2020,

which was higher than the highest SOMO35 (6.8 × 103 ppb d)

reported in the southeastern Unites States in 2000 (Ellingsen

FIGURE 4
Evolution of urban surface MDA8 ozone levels in different cities. SH, Shanghai, BJ, Beijing, SJZ, Shijiazhuang, TJ, Tianjin, LA, Los Angeles, ZB,
Zibo, LD, London, PA, Paris, BL, Berlin.

TABLE 1 Contribution of the KZ filter to the total variance of each component in the original MDA8 ozone.

Site Contribution to the total variance (%)

Long-term Seasonal Short-term Sum

DFCP .67 59.87 34.51 95.06

PTY .64 62.00 32.31 94.95

QXZ .35 59.43 34.90 94.68

SJG .82 61.66 32.27 94.75

SS 3.14 56.64 34.78 94.56

City 1.15 61.67 32.06 94.88

Note: DFCP, Dongfeng chemical plant; PTY, putianyuan; QXZ, Qixiangzhan; SJG, Sanjin Group; SS, Shuangshan.
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et al., 2008), as well as the observed value (1.5 × 103–6.0 × 103) in

France (Sicard et al., 2016).

In terms of monthly variations, as shown in Figure 2, the

MDA8 is relatively high from April to September, while the

MDA8 is relatively low fromDecember toMarch of the following

year. The highest MDA8 usually appeared in June and July. In

terms of daily variations, the concentration of MDA8 ozone

varies greatly, ranging from 9 to 274 μg m−3. In terms of the inter-

annual variation, an increasing trend can be observed. The

overall variations of six percentiles (5%, 25%, 50%, 75%, 95%

and 99%) based on the MDA8 ozone statistics were +2.2, +4.0,

+4.5, +4.2, and +5.2 μg m−3 for the whole city during 2016–2020,

indicating increases in all data segments and a relatively faster

increase at the upper end of the ozone distribution.

In addition, the time when the MDA8 ozone concentration

exceeded the secondary standard limit (160 μg m−3) appeared earlier

every year from 2016 to 2019. The first day of MDA8 exceeding

160 μg m−3 occurred on 30 April in 2016, on 7 April in 2017, on

25 March in 2018, on 10 March in 2019 and on 23 March in 2020.

The MDA8 ozone concentration fluctuated greatly in the summer

and remained relatively stable in winter.

3.2 O3 time series after KZ filtering

3.2.1 Separated time series of MDA8 ozone
KZ filtering was performed on theMDA8 of the ozone sequence

of Zibo City (Figure 3) and five sites (Supplementary Figure S2) to

obtain the short-term, seasonal and long-term component sequences.

It can be seen that, for all cases, there is high-frequency noise in the

original time series of MDA8 ozone, which exhibits obvious seasonal

characteristics. After removing the short-term component, caused by

meso-scale and synoptic-scale meteorological processes (Yu et al.,

2019), the seasonal component presents clearer and smoother

periodic characteristics, with a trough from December to January

of the following year, and with a peak in June. Every site in each year

exhibited obvious bimodal peaks. In general, peaks occurred in June

and September, and dips occurred in July or August. Owing to the

influence of the monsoon climate, the precipitation was mainly

concentrated from July to August. For example, the sum of the

average precipitation in July to August from 2016 to 2020 was 373.2,

283.9, 422.6, 621.1, and 347.3 mm, respectively, accounting for

52.39%, 56.57%, 45.92%, 78.64% and 48.14% of the total annual

average precipitation (Zibo City Statistical Yearbook, 2016, 2017,

2018, 2019, 2020). In additional to the precipitation, the high relative

humidity, low temperature, cloudy days, and the clearance of the

precursor also weaken the ozone formation (Boleti et al., 2018; Lin

et al., 2021).

The long-term component clearly exhibits an upward trend of

MDA8 ozone, and this trend is covered in the original time series

by high-frequency noise (Yu et al., 2019). The variation shows an

obvious increase in the study period for all cases, followed by a

smooth or small fluctuation trend. The growth rates of the long-

term component of the city is 3.19 μg m−3 yr−1 from 2016 to 2020.

The growth rates of the long-term components of the DFCP, QXZ,

PTY, SJG, and SS stations are 1.52, 1.61, 1.97, 1.99, and 5.95 μg m−3

yr−1, respectively. The increase rate of the city is higher than the

2.42 μg m−3 yr−1 rate of the SDZ background station in Beijing (Ma

et al., 2016), and is lower than the average value of 3.85 μg m−3 yr−1

in the YRD region during 2013–2017 (Yu et al., 2019).

TABLE 2 Stepwise regression model for the baseline and short-term components of MDA8 ozone.

Component Site Regression model VE (%) N R2

Xb(t) DFCP 4.5T-0.903RH+93.83 90.22 1827 .859

QXZ 4.819T-1.375RH+124.755 86.82 1827 .868

PTY 4.581T-0.585RH+17.248WS +47.594 87.74 1827 .877

SJG 4.97T-1.153RH+116.797 90.62 1827 .906

SS 4.559T-1.432RH-5.895WS+135.759 86.98 1827 .870

City 4.374T-1.484RH-4.807WS+147.039 89.98 1827 .900

W(t) DFCP 4.75T-0.934RH-8.880WS+0.061 32.78 1745 .326

QXZ 4.909T-0.863RH-7.992WS-0.063 29.98 1777 .299

PTY 4.405T-0.720RH-12.565WS+0.016 30.50 1773 .302

SJG 4.772T-0.854RH-10.794WS-0.019 29.08 1777 .290

SS 4.938T-0.744RH-3.724WS-0.056 33.59 1777 .335

City 4.738T-0.881RH-7.703WS-0.101 35.17 1776 .351

Note: VE, explained variance, N, Total number of samples, R2, square of correlation; DFCP, Dongfeng chemical plant; PTY, putianyuan; QXZ, Qixiangzhan; SJG, Sanjin Group; SS,

Shuangshan.
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The long-term component of MDA8 ozone for the city from

2016 to 2020 was compared with the long-term component of

MDA8 ozone in Los Angeles from 1990 to 2020, and Beijing,

Tianjin, Shijiazhuang, Shanghai, London, Paris, and Berlin in

recent years (Figure 4). The trend of the long-term component of

MDA8 ozone for compared cities was similar to those found in

previous studies (Yu et al., 2020), which proves that our MLR

method is reliable. In comparison to London, Paris, and Berlin,

the concentration level in the selected cities in China was much

higher. Further, there was a large increase from 2017 to 2019 for

the long-term component trend of MDA8 ozone in this study,

which is similar to that in Shijiazhuang, Tianjin, and Los Angeles

in the early 21st century but in different years.

3.2.2 Contribution of each component to the
total variance

To identify the contribution of each temporal component to

the original ozone data, the variance of each generated time series

was calculated and the contribution to the total variance of the

original data was determined as shown in Table 1. Ideally, the

long-term component, the seasonal component, and the short-

term component should be independent of each other, that is, the

variance of the original time series should be equal to the sum of

the three component variances (Ibarra-Berastegia et al., 2001).

The higher the sum of the contribution rate of each component to

the variance of the total variance, the better the decomposition

effect after filtering. The results from Table 1 show that the sum

of the variance of the short-term, seasonal, and long-term

components of MDA8 of ozone after KZ filter decomposition

contributes 94.56%–95.06% to the variance of the original time

series, indicating that the components basically meet the

conditions of mutual independence.

The seasonal component contributes the most to the total

variance of the original MDA8 ozone sequence (61.67%),

followed by the short-term component (32.06%) and the long-

term component (1.15%), demonstrating that ground ozone

concentrations in the city were mainly affected by the

variations in the seasonal and short-term meteorological

conditions. These contributions were consistent with these

found in previous studies (Ma et al., 2016; Cheng et al., 2019;

Yu et al., 2019). For example, Ma (Ma et al., 2016) used KZ

filtering to analyse the MDA8 of ozone of Beijing Shangdianzi

(SDZ) background station from 2003 to 2015, revealing that the

total variance of the seasonal and short-term component

accounted for 57.6% and 36.4%, respectively.

It can be seen from Table 1 that the contribution of seasonal

and short-term component dominated the variation of ozone for

each station, with certain differences. For the SS site, the long-

term component (3.14%) is significantly higher than that of the

other four sites (.62% on average), while the seasonal component

of the SS site (56.64%) is lower than that of the other four sites

(average 60.71%). The long-term component represents the

combined effects of different factors, such as pollutant

emissions, climate change, and socioeconomic development.

This site (SS) is located on a hill at an elevation of about

150 m, within 1 km radium, there is a main road on the west

sides, and no other obvious sources of contamination. Relative to

the other urban sites, the SS site is at higher altitude and may be

more influenced by climate and atmospheric circulation in the

long term. Therefore, the long-term component contribution of

this site is large compared to other sites.

3.3 Quantitative assessment of the long-
term impact of meteorological conditions

3.3.1 Multiple linear stepwise regression and
robustness test

The time series decomposed by KZ filtering is still affected by

some meteorological conditions, and multiple linear stepwise

FIGURE 5
The results of 10,000 times Monte Carlo simulation based on the t distribution of the mean squared errors of the baseline component (A) and
short-term component (B) regression models in the city.
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regression is an effective measure to further eliminate

meteorological conditions (Flaum et al., 1996). The filtered

ozone time series was set as the dependent variable, and the

filtered meteorological variable time series was set as the

independent variable. By using multiple linear stepwise

regression (SPSS 22.0), the model between the ozone and the

meteorological conditions was established in terms of the

baseline component and the short-term component, and the

relationship formula is as follows (Cheng et al., 2019)

W t( ) � a0 +∑ aiwi t( ) + εw t( ) (9)
Xb t( ) � b0 +∑ bixi t( ) + εb t( ) (10)

Where W(t) and wi(t) are the short-term components of ozone

and the ith meteorological conditions respectively. a0 and ai are

regression coefficients. εw(t) is the regression residual of the

short-term component. Xb(t) and xi(t) are the baseline

components of ozone and the ith meteorological conditions,

respectively. b0 and bi are regression coefficients. εb(t) is the

regression residual of the baseline component.

Table 2 shows the statistical model of multiple linear stepwise

regression and the corresponding explanatory variance (Gao, et al.,

2021). In terms of baseline components, the three meteorological

factors explained 89.98% of the total ozone variance in the city, and

the value ranged from 86.82% to 90.62% for the five sites.

Temperature was positively correlated with MDA8 ozone and

relative humidity was negatively correlated with MDA8 ozone.

The coefficient of temperature was much higher than that of

relative humidity. For wind speed, negative correlations existed

for the city, which is consistent with the general finding that a

high wind speed facilitates diffusion. However, for specific sites,

positive correlations exist between wind speed and MDA8 ozone,

which points to significant differences between sites. Monte Carlo

simulation (Figure 5A, Supplementary Figure S3) shows that the

simulated R2 surpassed .64 for over 95% of the baseline component,

indicating that the model might be reliable for potential quasi-

quantitative prediction of the baseline component.

For the short-term component, the relationship between

the ozone and the meteorological variables is relatively low,

and the explained variance was 29.08%–33.59% (35.17% on

average) for all monitoring sites. For this component, wind

speed presents the highest explained variance, indicating that

wind speed has a great impact on ozone over the short term.

Monte Carlo simulation (Figure 5B) shows that the simulated

FIGURE 6
Variation in the ozone long-term component before and after meteorological adjustment. DFCP, Dongfeng Chemical Plant site, QXZ,
Qixiangzhan, PTY, Putianyuan site, SJG, Sanjin Group site, SS, Shuangshan site and City: Zibo city.

Frontiers in Environmental Science frontiersin.org09

Li et al. 10.3389/fenvs.2022.1081453

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1081453


R2 is widely distributed between 0 and 1, and is smaller than

.5 for all cases, indicating that the regression model was less

robust (Xiao, et al., 2018).

3.3.2 Reconstruction of long-term ozone
component time series

According to Eqs 9, 10, the fitting value of the short-term and

the baseline component of ozone can be obtained, and it can be

considered that the sum of the short-term and the baseline

component primarily reflects the influence of meteorological

factors. The residual error between the observed value of

ozone and the fitted value is expressed as follows:

ε t( ) � εb t( ) + εw t( ) (11)

The residual sequence ε(t) mainly represents ozone fluctuations

caused by the changes in the emissions from the pollution source,

but the series still contains the influence of meteorological

conditions that are not considered in the regression fitting;

further, there are also contributions from modelling errors and

monitoring errors of ozone. In view of these factors, KZ (m=365, p=3) is

used to filter ε(t) again, and the filter result εLT(t) represents the long-

term change trend of ozone caused only by changes in the pollution

source emissions. Although εLT(t) is filtered, it is still a residual

sequence. To intuitively reflect the long-term component changes of

O3 caused by pollution emissions, XLT(t) is reconstructed (Cheng

et al., 2019)

XLT t( ) � �XLT + εLT t( ) (12)

Where εLT(t) is the result of ε(t) filtered by KZ (m=365 p=3), �XLT is

the mean value of the long-term ozone component;XLT(t) is the
adjusted and reconstructed long-term ozone component time

series, which eliminates the impact of the meteorological

conditions, and is only related to pollution source emissions.

Figure 6 shows the variation of the long-term ozone component

before and after meteorological adjustment. The red curve

represents the long-term change trend of the ozone component

after the meteorological influence is eliminated. This series only

reflects the variation caused by pollutant emissions. It can be seen

that, due to the variation in pollutant emissions, the long-term

component of ozone for the city exhibited an overall upward trend

in 2016–2018 and a downward trend in 2019–2020. In 2018, the

People’s Government of Zibo issued the “Three-Year

FIGURE 7
Assessment of the influence of weather conditions on the long-term variation of ozone in the city and five districts within the city. DFCP,
Dongfeng Chemical Plant site, QXZ, Qixiangzhan, PTY, Putianyuan site, SJG, Sanjin Group site, SS, Shuangshan site and City: Zibo city.
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Implementation Plan for Zibo to Win the Blue Sky Defense War

(2018–2020),” which pointed out that the trend of rising O3

concentration must be significantly curbed by 2020 (http://www.

zibo.gov.cn). This indicates that the action plan that began in

2018 has greatly reduced anthropogenic emissions in the city. In

terms of the specific districts, the long-term component of ozone in

the PTY site exhibited an upward in 2016–2018 and a downward

trend in 2019–2020. The QXZ site exhibited a downward trend in

2016, an upward trend in 2017–2018, and no significant variation in

2019–2020. In addition, the SS site does not change much after the

meteorological impact is eliminated. This is because the site is a

hillside site with a high altitude, relatively good diffusion conditions,

relatively large surrounding vegetation coverage, and has less impact

from anthropogenic emissions.

The impact of meteorological conditions on the long-term

component of ozone can be expressed more directly by

calculating the difference between the long-term components

before and after adjustment, as shown in Figure 7. If the

difference (the ozone concentration before adjustment minus that

after) is positive, the meteorological condition does not favour ozone

generation. For the city, during the periods from January to May

2016, from July 2017 to April 2018, and from March 2020 to

December 2020, the meteorological conditions are not conductive

to the improvement of ozone concentrations, increasing the long-

term component of ozone by .69, .38, and 2.11 μg m−3, respectively.

However, from June 2016 to July 2017 and from May 2018 to

February 2020, the meteorological conditions are conducive to the

abatement of ozone, reducing the long-term components of ozone by

1.62 and .95 μg m−3, respectively. The overall meteorological impact

was not stable and fluctuated between −2.60 and +3.77 μg m−3.

4 Conclusion

KZ filtering is used to decompose the ozone time series into

long-term, seasonal, and short-term components in Zibo City

and the five stations in this city. Monte Carlo simulation was used

to evaluate the reliability of the potential quasi-quantitative

prediction of the baseline component. The impact of

meteorological parameters on the ozone concentration for the

past 5 years (2016–2020) was studied.

The seasonal component contributes the most to the total

variance of the original MDA8 ozone sequence (61.67%),

followed by the short-term component (32.06%) and the long-

term component (1.15%). The growth rate of the long-term

component in the city is 3.19 μg m−3 yr−1 from 2016 to 2020.

The growth rates of the long-term component for the DFCP,

QXZ, PTY, SJG, and SS stations are 1.52, 1.61, 1.97, 1.99, and

5.95 μg m−3 yr−1, respectively. After the meteorological adjustment,

the long-term component of ozone for the city exhibited an overall

upward trend in 2016–2018 and a downward trend in 2019–2020.

This transition time was consistent with the implementation of the

Blue Sky Defense Action Plan, which began in 2018. The overall

meteorological impact was not stable and fluctuated

between −2.60 and +3.77 μg m−3.

In this study, the time period was from 2016 to 2020, as the O3

monitoring started in 2016 for all cities in China.Whenmore data is

available, further evaluations should be conducted. In addition, if

more data is available, the influence of solar radiation, the dew-point,

the boundary layer height and other pollutants on O3 concentration

could also be analysed using the method in this study.
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