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Low-level jets (LLJ) are a common phenomenon in the atmospheric boundary

layer and have been reported worldwide. Additionally, they have considerable

relevance in a series of fields. This review aimed to document their implications

on air quality, specifically particulate matter, mineral dust, and ozone in recent

literature focus on i) generalizing long-range advection of pollutants by the

low-level jets; ii) analysing vertical transport due to low-level jets-enhanced

turbulence mixing and the corresponding mechanisms for different pollutants;

and iii) introducing the performance of state-of-the-art numerical models.

Finally, we suggest that high-resolution spatiotemporal observations of the

pollutants and turbulence must be conducted, and current parameterization

schemes should be improved to better represent the low-level jets and

nocturnal boundary layer structures for reproducing the complicated

interactions between the low-level jets and pollutants.
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1 Introduction

Low-level jets (LLJs) are a common phenomenon in the atmospheric boundary layer

(ABL) and have been widely observed worldwide, including in North America (Smith

et al., 2019), South America (Sánchez et al., 2022), East Asia (Wei et al., 2014; Miao et al.,

2018), Europe (Tuononen et al., 2017), and Africa (King et al., 2021). However, there is no

universal consensus on the definition of the LLJs (Fiedler et al., 2013). To summarize the

definitions in previous literatures, the term LLJ used here refers to a stream of fast-moving

flow with maximum wind speed and vertical wind shear in the lower part of the

troposphere (Stull, 1988).

The occurrence and variation of the LLJs are modulated by a combination of

mechanisms on different temporal and spatial scales. Blackadar’s (1957) pioneering

work proposed that inertial oscillations of ageostrophic components contribute to the

diurnal cycle of the LLJs. The “Blocking Theory” (Wexler, 1961) attributed the speeding-

up of flows to the blockage of terrains, such as the Rocky Mountains, an analogy to the
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Gulf Stream in oceanography. The thermal—wind relationship

leads to coastal jets because of the differential heating and cooling

between the land and oceans (Lima et al., 2019). Sloping terrains

and the associated horizontal temperature gradients are other

ways for providing baroclinicity that the LLJs need to develop

(Gebauer and Shapiro, 2019).

The LLJs are primarily a process in the ABL and are highly

relevant in many fields, such as wind energy (Wimhurst and

Greene, 2019), precipitation (Du et al., 2012), fog (Wu et al.,

2020), urban heat islands (Hu et al., 2013a), wildfires (Čavlina

Tomašević et al., 2022), aviation safety (Gultepe et al., 2019), and

migration pathways of birds (Wainwright et al., 2016). This

review aimed to examine how the LLJs impact pollutant

transport locally and inter-regionally, considering mineral

dust, fine particulate matter (PM2.5), and ozone (O3).

Specifically, this paper focuses on the following:

Present the current state of knowledge of the LLJ—pollutant

interaction mechanism.

Document the state-of-the-art methods to analyse the LLJs,

including numerical models and signal analysis techniques.

Outline the remaining gaps between the current progress and

future research.

2 Regional transport

The belt of high wind speed, one of the dominant features of

the LLJs, is a crucial process in the long-range transport of the

pollutants. The contribution of LLJ advection to a certain region

depends on the season, wind direction, and location of pollutant

sources. In the Sahara Desert, dust is primarily advected below

800 hPa to South America in winter and spring and to the

Caribbean at 500 hPa in summer and autumn (Gläser et al.,

2015). In the southwestern China, up to 80% of the summertime

O3 accumulation is because of horizontal transport (Yang et al.,

2020). The LLJs are crucial to the redistribution of O3 between

source locations and downwind regions (Bao et al., 2008; Klein

et al., 2019). Li et al. (2019) revealed that southerly LLJs could

transport large amounts of PM2.5 from upstream regions, leading

to accumulation of the pollutants in the downstream zones. In

contrast, the occurrence of the LLJs positively contributes to the

dilution of pollutants in Beijing (Miao et al., 2019). In Tianjin,

China, southwesterly LLJs transport polluted air masses from the

southern industrial regions, deteriorating local air quality,

whereas the northerly or southeasterly LLJs are helpful in

improving visibility (Wu et al., 2020). In general, the existence

of the LLJs favors the dilution of pollutants, whereas downwind

regions suffer from pollutant advection by the LLJs.

In addition, the transport of precursors and moisture by the

LLJs facilitates the formation of pollution periods. In the North

China Plain, southwesterly LLJs establish a moisture channel

from the South China Sea to the Bohai Rim Region, contributing

to the frequent PM2.5 events in winter (Ju et al., 2020).

3 Vertical transport of mineral dust

Although the long-range transport of chemical species by the

LLJs between different regions has been studied previously, the

vertical flux associated with them has not been intensely

investigated (Figure 1). Recent studies have revealed that

vertical dispersion induced by the LLJs may play a crucial role

in the local air quality.

The downward momentum flux caused by the LLJs is

recognized as one of the key mechanisms of dust emissions in

the Sahara Desert, in addition to monsoon surges (Cuesta et al.,

2010), cold pool outflows (Allen et al., 2013), and dry convective

plumes (Ansmann et al., 2009). The LLJs develop in the ABL after

sunset because of the inertial oscillations (Blackadar, 1957). The

wind shear near the jet core creates turbulence in the upper layer

and it is transported downward, generating peak winds near the

surface. There is a time lag of several hours between the maximal

wind speed of the LLJs and that at the surface layer, with the

former occurring before sunrise and the latter occurring mid-

morning. Dust is emitted once the surface wind exceeds the local

dust emission threshold (Allen and Washington, 2014).

Observations and model simulations (Todd et al., 2008) have

confirmed that LLJ-induced downward momentum initiates

mid-morning dust events. Approximately 60% of the total

dust can be attributed to the peak wind caused by nocturnal

LLJs (Fiedler et al., 2013). The LLJs are a common phenomenon

in the Sahara Region and an average of 29% at night was observed

(Fiedler et al., 2013). Frequently occurring LLJs are key drivers of

the local dust emissions. According to satellite observations from

2006 to 2008 (Schepanski et al., 2009), the surface peak wind

associated with the nocturnal LLJs accounted for 65% of dust

source activations during the mid-morning across North Africa,

which is larger than the values at midday. Once uplifted, the dust

is horizontally transported by the LLJs to America, Europe, and

beyond.

4 Vertical transport of PM2.5

Due to the consumption of fossil fuels and the stable

atmosphere, PM2.5 pollution tends to occur frequently during

winter, especially in densely populated metropolises. One feature

of PM2.5 pollutions in winter is persistent and it threatens public

health (Dominici et al., 2014). Persistent heavy pollution events

are divided into two stages (Zhong et al., 2017; Wei et al., 2018;

Zhong et al., 2018; Ren et al., 2019a): the cumulative stage during

which particles accumulate is due to the high emissions, adverse

synoptic weather conditions, regional transport, and secondary

pollutant production and the dissipation stage is characterized by

an abrupt decline in PM2.5 levels. Numerous studies (Wei et al.,

2018; Ren et al., 2019a; Ren et al., 2019c; Li et al., 2020; Wei et al.,

2020; Li et al., 2021) have revealed that the LLJs play a key role in

the dissipation stage of PM2.5.
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Inversion layer frequently develops in winter and traps PM2.5

emitted from the ground within a shallow layer. According to the

“barrier effect” theory (Ren et al., 2021), turbulence disappears at

some heights and laminar flow develops during heavily polluted

periods, which serves as a barrier layer impeding vertical turbulence

transport. In the presence of the LLJs, turbulence bursts produced by

aloft wind shear enhance vertical mixing, break the decoupled ABL

structure, and rebuild the heat/momentum/material exchange

between different heights. Field observations (Li et al., 2020)

confirmed that the LLJs frequently occurred during the

transition between the two stages. Miao et al. (2018) investigated

the climatology of the LLJs in the Beijing Region and discovered that

they frequently occurred in spring and winter and were mostly

concentrated during nighttime. The consistency between the LLJs

and severe PM2.5 events implies that they play a crucial role in PM2.5

pollution, which has been confirmed in a wide range of areas in

China.

The LLJs can affect the diffusion of PM2.5 indirectly via

propagating internal gravity waves (IGWs), in addition to

their direct impact on pollutant transport. The IGWs are a

type of wavelike motion in the stable boundary layer (SBL)

triggered by the LLJs (Jia et al., 2019). One puzzling

phenomenon of heavy pollution is that PM2.5

concentrations at different levels experience non-

simultaneous drops or inverse variations (Ren et al., 2020).

In the presence of the LLJs, the IGWs are generated and

propagated downward, intermittently triggering turbulence

layer by layer (Wei et al., 2022). The vertical spreading of

the IGWs is responsible for short-term PM2.5 removals during

the cumulative stage and asynchronous variation at different

heights.

5 Vertical transport of
tropospheric O3

As a volatile secondary photochemical pollutant, O3

concentration at the surface undergoes a marked diurnal

FIGURE 1
Schematic of vertical interaction between LLJs and pollutants with transport of (A) momentum, (B) dust, (C) fine particulate matter, and (D)
ozone.
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variation: i) High emission of precursors and photodissociation

leads to high O3 concentration during the daytime. ii) After

sunset, the photochemical production shuts down and O3 is

removed via dry deposition and chemical reactions within the

surface layer. Meanwhile the aloft residual layer traps O3. iii) The

following morning, strong turbulence develops and fully mixes

the aloft O3. In this scenario, nocturnal O3 concentration at the

surface should be near zero owing to the absence of production,

removal processes, and a decoupled SBL. However, nighttime O3

spikes have been frequently reported in different regions since

the 1970s (Samson, 1978; Reitebuch et al., 2000).

At night, the surface layer decouples with the aloft residual

layer, thus making the residual layer a “reservoir” of daytime

pollutants. In the presence of the LLJs, the strong wind shear

near the jet core generates turbulence bursts, enhancing the

vertical mixing between the two layers. Thus, the O3 restored

in the residual layer leaks into the surface layer. Studies

(Reitebuch et al., 2000; Hu et al., 2012; Hu et al., 2013b)

have verified that the concentration of O3 in the residual layer,

accompanied by O3 spikes near the surface, is highly variable,

implying active vertical exchanges. This aloft turbulence

source associated with the LLJs depicts a reversed vertical

structure from the traditional SBL, where most of the

turbulence is produced by surface friction and transported

upward. The turbulence induced by the LLJs is highly sporadic

and is marked by intermittent bursts which remains an

intriguing problem. Apart from the LLJs, other mechanisms

causing intermittent turbulence include Kelvin–Helmholtz

instabilities, gravity waves, wake vortices, and density

currents (Wei et al., 2017). Considering that favorable

synoptical patterns for the LLJs are also beneficial to heavy

O3 periods in some regions (Ryan, 2004), the importance of

the LLJs in O3 pollution cannot be ignored.

The maxima O3 concentrations at nighttime may not be

comparable to those in the afternoon. However, relevant

research still has implications: i) The LLJs are important

contributors to the horizontal transport. Considering that

the vertical O3 flux leads to a leaky residual-layer reservoir,

the impact of pollutants carried by the LLJs downwind may

be relieved. ii) O3 dispersed to the surface is permanently

removed via dry deposition at night. As photochemical

production does not occur, the net effect is that the total

amount of O3 is reduced, further easing the next-morning O3

levels. iii) In persistent O3 periods, the amount of O3

removed by nighttime vertical mixing is crucial for the

total O3 budget over several days (Banta et al., 2007). iv)

Nighttime spikes have been reported in different chemical

species, including hydrogen peroxide (Das and Aneja, 1994),

isoprene (Starn et al., 1998), volatile organic compounds

(VOCs) (Ganzeveld et al., 2008), carbon dioxide (CO2)

(Hicks et al., 2015), and PM2.5 (Wei et al., 2018).

Therefore, the studies on the LLJ–O3 mechanism also have

implications for other pollutants.

6 Models and analyses methods

Model simulation has become a useful tool for investigating

the LLJs and their interactions with air pollutions. Based on the

inertial oscillation theory, numerical models can reproduce the

diurnal variation in the LLJs (van de Wiel et al., 2010). However,

the underestimation of the maximal wind speed and deviations of

profiles by the numerical models have been widely reported

(Smith et al., 2018; Haikin and Castelli, 2022). The simulation

bias of the maximal wind strength and profiles could further

affect the wind shear and turbulence mixing. The simulation of

the nocturnal LLJ is highly sensitive to the vertical resolution,

planetary boundary layer (PBL) schemes and surface-layer

parameterizations. Refining vertical spacing is helpful to

improve the LLJs while the computational cost and model

stability should be considered.

The simulation bias in the diurnal variation of PM2.5 levels is

largely due to turbulence mixing during nighttime. Considering

that the LLJs and serious PM2.5 pollution tend to occur in

stabilized atmosphere, local closure PBL schemes are suitable

for the simulation of the LLJs and PM2.5 events (Jia and Zhang,

2020). Some literatures (Udina et al., 2020; Yang et al., 2021) have

confirmed that the Mellor—Yamada—Janjic scheme (Janjic,

2002) shows better performance compared with other

schemes, while it still cannot reproduce the different stages of

haze events. The turbulence mixing coefficient is one of the key

parameters to control the PBL mixing. Du et al. (2020) revealed

that increasing the threshold of turbulence mixing coefficient was

helpful to the simulation of diurnal variation of PM2.5. Jia et al.

(2021) developed a turbulence diffusion term for aerosols and

embedded it into a mesoscale model for the first time.

The high wind speed of the LLJs is crucial to achieving long-

range transport of dust. The underestimation of the jet core speed

implies a weakened region-to-region transport simulation. In

addition, parameterization of the mineral dust budget depends

on the simulation of the downward momentum flux (Pérez et al.,

2011; Knippertz and Todd, 2012). However, a weakened LLJ

strength can lead to an underestimation of the dust emissions, as

the surface wind speed is not strong enough to reach the dust

emission threshold. Besides, the overestimation of LLJ strength

and vertical mixing at night alters the diurnal variation of the

wind field in the ABL (Sandu et al., 2013).

The tropospheric O3 concentration during the daytime can

be simulated in accordance with the field observations, although

distinct differences exist at night. The primary reason for this is

the representation of the nighttime turbulence transport by the

LLJs. Although the horizontal structure of the LLJs can be

reasonably simulated, the results of the simulated LLJ vertical

profiles are far from satisfactory. Sensitivity simulations (Hu

et al., 2012) elucidated that longer turbulence lengths and long-

tail stability functions are more suitable for O3 and LLJs

modelling, implying that turbulence mixing during nighttime

requires careful treatment.
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Turbulence intermittency has still not been effectively

considered in the numerical models, although field

observations have confirmed its importance in the transport

of O3 (Salmond and McKendry, 2002; Salmond and

McKendry, 2005), PM2.5 (Wei et al., 2018; Ren et al., 2019b),

and CO2 (ElMadany et al., 2014; Hicks et al., 2015). The classical

Monin—Obukhov similarity theory (MOST, Monin and

Obukhov, 1954), which has been widely adopted in

atmospheric and environmental models, is only suitable for

unstable ABL or traditional surface-forced SBL. Large

uncertainties may exist when applying the MOST-based

models to intermittent turbulence. Furthermore, no

overarching agreement has yet been reached an appropriate

method to describe the turbulence intermittency in the ABL.

The traditional Fourier transform cannot be applied to the

analysis of non-linear and non-stationary turbulence bursts.

The wavelet analysis was used to separate the LLJ-induced

intermittent turbulence during O3 periods (Salmond, 2004).

Based on the self-adaptive Hilbert—Huang transform (Huang

et al., 1998), several indexes have been proposed to quantify the

strength of the turbulence intermittency (Wei et al., 2018; Ren

et al., 2019b; Ren et al., 2019c).

7 Summary and discussion

This review summarized the current state of interactions

between the LLJs and pollutants from the perspective of

observations, models, and mechanisms. With the literature of

the three most-studied species (i.e., mineral dust, PM2.5, and O3),

the effects of the LLJs can be divided into long-range horizontal

transport and local vertical dispersion. Recent works have been

listed in Table 1. The fast-moving stream of the LLJs is an

important pathway for the region-to-region transport of

moisture, precursors, and pollutants. Whether the LLJ is a

boon or bane for the local air quality depends on the season,

wind direction, and location of the pollutant sources. Recently,

vertical mixing induced by the LLJs has been under the spotlight

for explaining the local variation of pollutant levels. The

downward transport of intermittent turbulence resulting from

the LLJs is crucial for re-coupling nocturnal SBLs, enhancing

vertical mixing, transporting pollutants downward/upward, and

worsening/improving the air quality. What the three species have

in common is that the downward momentum due to LLJs

strengthens the turbulence mixing and pollutants transport.

Specifically, O3 dissipates downward from the aloft

“reservoir”, leading to O3 peaks at night. The mineral dust

was uplifted from the underground the next morning. The

PM2.5 is mostly transported upward and diluted over a deeper

layer. The intermittency of LLJ-induced turbulence perplexes the

mechanism of the vertical dissipation of pollutants.

In the future, high-resolution turbulence and pollutant

observational data is needed to investigate the complicated

vertical LLJ—pollutant interaction and establish the turbulence

diffusion relationship of pollutants. Most current work is based

on surface observations of pollutants and turbulence. However,

to study the fine structure of the SBL, continuous profiles are

required. A meteorological tower can provide multilevel

observations, however, its spatial resolution is far from

satisfactory. Radiosonde data suffers from a low time

resolution. Carrying out intensive observation period

experiments can be a good way for addressing these problems.

Remote sensing technologies, such as Lidar are helpful methods

to obtain continuous observation. Furthermore, the current

findings were mostly obtained from one site. There is a large

scope for further research on the spatial distribution of

intermittent turbulence and pollutants based on multi-site

observation.

The numerical models perform well in the simulation of the

horizontal structure of the LLJs, while the vertical distribution

remains unsatisfactory. PBL schemes need to be further

improved for better representing nighttime processes.

Accurate simulation of the LLJ profiles and development is

TABLE 1 Summary of main studies (mostly after 2012) on the LLJs and
chemical species transport in different regions.

Research
focus

Regions and references

Dust Africa: Knippertz and Todd, (2012); Fiedler et al. (2013);
Allen and Washington, (2014); Gläser et al. (2015);
Schepanski et al. (2015); Kalenderski and Stenchikov,
(2016); Wiggs et al. (2022)

East Asia: Ge et al. (2016); Zhou et al. (2019); Han et al.
(2022)

West Asia: Gandham et al. (2022) the dust belt: Shi et al.
(2021); Tindan et al. (2022)

PM2.5 Asia: Chen et al. (2018); Wei et al. (2018); Wei et al.
(2020); Ren et al. (2019a); Ren et al. (2019b); Ren et al.
(2019c); Li et al. (2019); Miao et al. (2019); Jin et al.
(2020); Li et al. (2020); Li et al. (2021); Wei et al. (2022);
Mei et al. (2022)

South America: Martin et al. (2018);
Rodriguez-Gomezetal et al. (2022)

North America: Dreessen et al. (2016); Wang et al. (2018)

O3 Europe: Kulkarni et al. (2016); Klein et al. (2019)

North America: Hu et al. (2012); Hu et al. (2013b); Ryan,
(2004); Caputi et al. (2019)

South America: Martins et al. (2018); Melo et al. (2019)

Asia: Zhu et al. (2020); Zhao et al. (2022)

CO2 Africa: Han et al. (2015)

Black Carbon South America: Martins et al. (2018)

Sulphur and NO Europe: Arkadievi Obolkin et al. (2014)
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crucial for nocturnal turbulence mixing. In addition, present

models do not consider the turbulence intermittency, and most

studies on the LLJ-burst interplay focus on O3 and PM2.5. How

this mechanism impacts the variation of other chemical species,

such as nitrogen oxides (NO), VOCs, and carbon monoxide,

remains to be assessed.
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