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Global warming leads to more frequent and more violent extreme weather

events, which cause severe natural disasters. The sensitivity of physical schemes

in numerical weather predictionmodels for extreme precipitation is a significant

challenge. To simulate a heavy precipitation process from 1 July 2020 to 10 July

2020 over the Poyang Lake Basin, where floods occur frequently, the Weather

Research and Forecast model (WRF) was employed. The observation (OBS)

from 92 meteorological stations was applied to evaluate WRF performance. To

assess the optimal parameter, 27 combinations of multiphysics schemes based

on three cumulus schemes (CUs), threemicrophysical schemes (MPs) and three

land surface schemes (LSMs) were employed in WRF simulation. The Euclid

distance (ED) was derived to evaluate the performance of the modelled total

cumulative precipitation (TCP). The results showed that the simulation generally

reproduced the spatial distribution of precipitation and captured the storm

centre. In general, WRF underestimated the observation for most areas but

overestimated the observation in the northeastern part of the basin. For total

cumulative precipitation (TCP), the spatial correlation coefficients ranged from

0.6 to 0.8. M11 had the highest value of 0.796. The scores (TS, POD, FAR) of

M15 were 0.66, 0.79, and 0.21, respectively. With the maximum similarity of

0.518, M7 (BMJ-WDM6-Noah) showed the best performance in ED based on six

evaluation metrics. The mean values of OBS and M19 were 259.34 and

218.33 mm, respectively. M19 (NT-Thompson-Noah) was closest to the OBS

for the range of the TCP. In terms of daily precipitation, the CC of M3 was

maximum (0.96), and the RMSE of M24 was minimum (11.9 mm. day-1). The

minimum error between the simulation and OBS was found for M3 (NT-

Thompson-Noah). Therefore, with a comprehensive evaluation, five optimal

combinations of physical schemes (M22, M19, M9, M3, M21) were found for the

PLB, which is of great significance for extreme precipitation simulation and

flood forecasting.
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Introduction

Global climate change affects the water cycle, which can

easily cause the changes in precipitation and patterns for

different regions, ultimately resulting in extreme precipitation

(Yang Q et al., 2021; O’Gorman 2015). Precipitation is an

important parameter of atmospheric motion as well as the

water cycle. The natural disasters triggered by rainstorms have

brought significant socioeconomic losses and human casualties

(Jonkman 2005; Jia et al., 2022; Qiao et al., 2022). Due to climate

warming, the frequency and intensity of extreme precipitation

events have increased globally for most areas (Sun and Ao 2013;

Stegall and Kunkel 2019; Yin et al., 2021; Yin et al., 2022).

Gradually, several studies have found that extreme

precipitation events increase frequently in China,

concentrating in the southeastern region and the Yangtze

River basin area, especially during the rainy season from April

to September (Bao et al., 2015; Gao et al., 2017; Yao et al., 2022).

With a humid subtropical climate, Poyang Lake Basin (PLB) is

located in the middle and lower reaches of the Yangtze River,

China. However, the PLB often suffers serious floods, drought

and other disasters due to the climatic characteristics and

topography in summer (Wu et al., 2021; Yang X Xet al.

2021). According to the statistics, the No. 1 flood that

occurred in the basin in July 2020 alone affected more than

5.21 million people and 455 thousand hectares of crops.

Therefore, it is important to enhance the forecasting of

extreme precipitation events for the purpose of reducing the

damage caused.

The formation of extreme precipitation is a complex

multiscale process. Although many different definitions have

been adopted to the extreme precipitation, there is no uniform

criteria of extreme precipitation events. Some studies select

percentile and absolute critical value method to identify

extreme precipitation (Liu et al., 2017). For example, the long-

term 90th or 95th percentile of daily precipitation series is

selected as extreme value (Camuffo et al., 2020). According to

the precipitation grading system in China, the rainstorm is

identified when the daily precipitation exceeds 50 mm. In

addition, the series of extreme climate indices are commonly

used (Lei et al., 2021). The precipitation event selected in this

study reached the rainstorm level (average daily precipitation

exceeds 50 mm) according to the criteria from China

Meteorology Administration. Compared with traditional

precipitation observation methods, quantitative precipitation

forecasting (QPF) can obtain more precipitation information

and effectively prevent intense precipitation and floods (Gao

et al., 2022). Therefore, numerical weather prediction (NWP),

which is based on precise physical control equations, can solve

the problem of precipitation dynamics (Sun et al., 2014).

Generally, NWP models are usually divided into global

climate models (GCMs) and regional climate models (RCMs)

at different simulated area ranges (Yi et al., 2018). However, the

global climate models (GCMs) are not ideal for representing the

intensity of extreme precipitation events on a small spatial scale.

Some studies contend that GCMs are generally not capable of

capturing intense precipitation signals due to their coarse

resolutions (Mahajan et al., 2015). Additionally, the physical

processes of the models are not fully expressed. However, the

regional climate models (RCMs), such as the PSU/NCAR

mesoscale model (MM5) and Weather Research and Forecast

(WRF) meet the requirement of high spatial and temporal

resolution for the simulation of complex areas with specific

terrain, and at the same time, they simulate complex local

processes that are easily overlooked and resolve detailed

regional atmospheric and ground processes (Bao et al., 2015).

The RCMs capture fine-scale features such as topographic

precipitation, rain shadows and storms and describe regional-

scale physical and parametric structures (Jin et al., 2010).

Additionally, previous studies found that RCMs were capable

of simulating precipitation in complicated terrain areas (Ji et al.,

2018). However, the simulation is still limited by factors such as

subgrid parameters, which has become a challenge for numerical

weather prediction (NWP) systems (Yang et al., 2019).

As a new generation of mesoscale high-resolution prediction

models, WRF employed for atmospheric research and

operational forecasting describes the land‒atmosphere

continuum processes in detail with higher spatial and

temporal resolutions (Di et al., 2017). Compared to MM5,

WRF has a more source-oriented physical parameterization

scheme and a more complete dynamics framework (Chinta

et al., 2021). With a stable model and an assimilated data

function, it effectively reduces the error of precipitation

forecasting, which works better for extreme precipitation

simulations. In the WRF simulation process, uncertainties

dominated by the initial boundary conditions, spatial

resolution, and physical schemes affect the accuracy of

precipitation prediction. Many previous studies have indicated

that physical schemes play a significant role in climate models,

atmospheric circulation models and mesoscale numerical

prediction models. As the parameters primarily responsible

for calculating atmospheric water vapour, cloud liquid water,

cloud ice, and various types of precipitation, microphysical

schemes (MPs) are highly sensitive in predicting convective

storms and precipitation especially for intense precipitation

simulations (Rajeevan et al., 2010; Cossu and Hocke 2014).

Cumulus schemes (CUs) describe the changes in heat and

water vapour caused by updrafts, downdrafts, and

compensatory movements outside the clouds (Wu et al.,

2019). Therefore, the accuracy of precipitation forecasting can
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be improved by suitable parameter schemes. In addition, the

occurrence of intense precipitation is also influenced by the

subsurface (Jin et al., 2010). Atmospheric circulation has been

influenced by land surface schemes (LSMs), which reveal land‒

air interactions (Di et al., 2015; Lv et al., 2020). The land surface

scheme controls the transport of water and heat fluxes in the soil,

as well as the water vapour and heat exchange between the land

surface and atmosphere. The performance of physical

parameterization combinations varies by study area (Yang

et al., 2019). Therefore, it is necessary to study the region-

specific sensitivity of physical parameterization combinations

to forecast future events.

Many simulations of heavy rainfall or storms in Yangtze

River basin which has a huge water system and complex terrain

have been carried out based onWRF (Wang et al., 2012; Ma et al.,

2015; Yao et al., 2022). Previous studies frequently adopted the

fixed physical parameterization schemes and hardly considered

the combination of physical parameters schemes. It is difficult for

one single set of physical schemes to maintain its best

performance consistently for different areas and accurately

capture the physical processes of extreme precipitation. In

particular, the physical parameterization schemes of

simulation are sensitive to terrain changes. Therefore, it is

necessary to evaluate a set of appropriate physical

parameterization schemes on local scales. This study focused

on the parameterization sensitivity of cloud microphysical

schemes, cumulus schemes, and land surface schemes by

using WRF to improve the understanding of how to

accurately simulate extreme rainfall. Additionally, the suitable

combination members were selected to evaluate the reliability of

WRF in extreme precipitation prediction. The observation

interpolated from 92 meteorological stations were applied to

validate the total cumulative precipitation (TCP). To compare

the performance of WRF combination members, an extreme

precipitation over the PLB was simulated from 1 July 2020 to

10 July 2020.

The objectives of this study include 1) whether WRF

simulations can capture the spatial and temporal

characteristics of extreme precipitation over Poyang Lake

Basin, 2) how sensitive the extreme precipitation is to

different combinations of physical schemes, and 3) which

model is a reliable combination scheme for PLB? It is of great

significance to study extreme precipitation in the PLB.

Data and methods

Observation

The Poyang Lake Basin (PLB) is located in the centre of

Southeast China (Figure 1), between 113.74°-118.47°E and

24.57°–30.01°N, with a total area of 16.22 km2 × 104 km2. The

PLB that is comparatively flat encompasses five subbasins:

Xiushui (subbasin size: 3548 km2), Ganjiang (8048 km2), Fuhe

(15,811 km2), Xinjiang (15,535 km2), and Raohe (6374 km2). The

basin has a humid subtropical climate, which is controlled by the

East Asian monsoon (Lei et al., 2022). Therefore, it has obvious

seasonal characteristics and an uneven spatial distribution for

precipitation, with mainly falling from April to June, leading to

frequent floods in summer. The basin is an important flood

storage and detention area for the Yangzte River, as it connects to

the main stream of the Yangtze River. Additionally, the Poyang

Lake is the largest freshwater lake in China (Wagner et al., 2016;

Zhang et al., 2016).

FIGURE 1
Location of study area. (A)WRFmodel domains with three grids (d01-27, d02-9, d03-3 km). (B) Topographic features of the Poyang Lake Basin,
China.
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TABLE 1 Meteorological stations information.

Id Name Latitude (°N) Longitude (°E) Elevation (m) Id Name Latitude (°N) Longitude (°E) Elevation
(m)

1 Tianmen 30.39 113.19 31.9 47 Wuyi 27.43 118 222.1

2 Wuhan 30.38 114.17 23.6 48 Pucheng 27.55 118.32 276.9

3 Honghu 29.49 113.24 27.4 49 Jianyang 27.2 118.07 169.6

4 Jiayu 29.58 113.50 61.7 50 Jian’ou 27.03 118.19 154.9

5 Yueyang 29.23 113.05 51.6 51 Yunhe 27.58 119.37 150.6

6 Xiushui 29.02 114.34 117.4 52 Shouning 27.32 119.25 815.9

7 Pingjiang 28.43 113.35 106.3 53 Rui’an 27.48 120.37 5.7

8 Yifeng 28.25 114.47 91.7 54 Fuding 27.2 120.12 36.2

9 Youxian 27.00 113.20 102.5 55 Ningdu 26.22 115.50 209.1

10 Zhuzhou 27.50 113.09 74.6 56 Guangchang 26.48 116.11 143.9

11 Lianhua 27.08 113.56 194.5 57 Ninghua 26.14 116.38 342.9

12 Yichun 27.48 114.23 131.3 58 Taining 26.53 117.09 252.2

13 Ji’an 27.05 114.55 71.2 59 Youxi 26.1 118.09 204.8

14 Guidong 26.00 113.56 835.9 60 Xiapu 26.53 120.00 56.8

15 Jinggang shan 26.38 114.06 843.0 61 Ningde 26.4 119.31 32.4

16 Suichuan 26.15 114.20 126.1 62 Fuzhou 26.05 119.17 84.0

17 Ganzhou 25.50 114.50 137.5 63 Changting 25.51 116.22 310

18 Nanxiong 25.08 114.19 149.7 64 Shanghang 25.03 116.25 198.0

19 Yingshan 30.44 115.37 123.8 65 Zhangping 25.18 117.24 205.3

20 Ningguo 30.37 118.58 89.4 66 Longyan 25.06 117.01 376.0

21 Huangshan 30.08 118.09 1840.4 67 Jiuxian 25.43 118.06 1653.5

22 Hangzhou 30.19 120.12 41.7 68 Pingtan 25.31 119.47 32.4

23 Yangxin 29.50 115.10 45.8 69 Shaoguan 24.48 113.35 121.3

24 Lushan 29.35 115.59 1215.0 70 Fogang 23.52 113.32 97.2

25 Wuning 29.16 115.05 116.0 71 Yingde 24.1 113.24 74.5

26 Poyang 29.01 116.40 40.1 72 Longnan 24.53 114.46 206.3

27 Qimen 29.55 117.50 142.0 73 Lianping 24.22 114.29 214.8

28 Jingde 29.10 117.15 61.5 74 Xinfeng 24.03 114.12 198.6

29 Tunxi 29.43 118.17 142.7 75 Xunwu 24.57 115.29 297.8

30 Chun’an 29.37 119.01 171.4 76 Longchuan 24.06 115.15 179.6

31 Jinhua 29.07 119.39 62.6 77 Yongding 24.51 116.49 226.9

32 Shengzhou 29.36 120.49 104.3 78 Dabu 24.21 116.42 81.0

33 Yiwu 29.19 120.04 90.0 79 Meixian 24.18 116.07 116

34 Jing’an 28.51 115.22 78.9 80 Chongwu 24.54 118.55 21.8

35 Nanchang 28.40 115.58 46.9 81 Xiamen 24.31 118.09 139.4

36 Zhangshu 28.01 115.22 30.4 82 Qingyuan 23.43 113.01 79.2

(Continued on following page)
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The meteorological stations (located in the simulated nested

area) were provided by the China Meteorological Center

(Table 1). The stations were distributed with large elevation

differences, ranging from 5.7 to 1840.4 m. Normally, the

station data represent the weather conditions on different

subsurfaces. Generally, a bilinear interpolation method was

employed to compare the accuracy of WRF simulation. The

observations from meteorological stations were interpolated into

the innermost 3 km grid of the WRF by using the Cressman

algorithm (Yin et al., 2014) to validate the simulation results. The

initial and lateral boundary field information of WRF was driven

by Final Operational Global Analysis (FNL) reanalysis from the

National Centers for Environmental Prediction with a horizontal

resolution of 1° × 1° and 34 vertical pressure levels at 6-h intervals

(00, 06, 12, and 18 UTC).

WRF model configuration

The WRF model is a fully compressible, non-hydrostatic

model, with the grid of Arakawa C and terrain following eta-

coordinates. The model system integrates numerical weather

prediction, atmospheric simulation and data assimilation

(Jackson et al., 2008). WRF version 4.3 was used in this study.

Three domains with a grid spacings of 27 (d01), 9 (d02), and

3 km (d03), respectively, were employed for the simulation

(Figure 1). The domain sizes were 115 × 79, 202 × 160, and

280 × 286, respectively. The Lambert conformal conic projection

was used as the model horizontal coordinates. The time steps

were 90 s. Additionally, one-way nesting was applied in this

study. The simulation of the three domains was initialized at

00 UTC 1 on July 2020 to 00 UTC on 11 July 2020. To ensure the

accuracy of the simulated results, the first 36 h of the simulations

were considered the model spin-up time, which was excluded

from the data analysis. The model outputs at every 6 hours were

employed for evaluation. The USGS data were used for

topographic data with resolutions of 5, 2 m and 30 s,

respectively. The regions of domains were set up with full

consideration of the surrounding terrain and the influence of

key weather and climate systems, avoiding cross regions with

vastly different climate characteristics or geographic features in

the simulation. The physical parameter schemes involved in this

precipitation simulation experiment included the cumulus

scheme (CU), microphysical scheme (MP) and land surface

scheme (LSM). The specific combination members of the

WRF model were listed in Table 2. The cumulus schemes

(CUs) selected were Betts-Miller-Janjic (BMJ), Kain-Fritsch

(KF) and New Tiedtke (NT). The microphysical schemes

(MPs) evaluated were WRF Single-Moment 6-class (WSM6),

Thompson and WRF Double-Moment 6 (WDM6), respectively.

The suitable land surface models (LSMs) included Noah, Noah-

MP and CLM4, respectively. In addition, the other WRF physical

parameter schemes were found for the Rapid Radiative Transfer

Model (RRTM) long wave radiation, Dudhia short wave

radiation and Yonsei University (YSU) planetary boundary

layer scheme. The cumulus scheme was not applied to the

d03 domain (3 km) due to the high spatial resolution.

Evaluation criteria

To quantitatively validate the accuracy of the WRF results,

the surface-scale and point-scale evaluation systems for the

simulated results were established. Six statistical metrics were

selected to verify the simulation performance of the precipitation.

The statistical indicators of continuity included the correlation

coefficient (CC), root mean square error (RMSE) and bias

(Moazami et al., 2014; Kumar et al., 2017). The CC was used

TABLE 1 (Continued) Meteorological stations information.

Id Name Latitude (°N) Longitude (°E) Elevation (m) Id Name Latitude (°N) Longitude (°E) Elevation
(m)

37 Dexing 28.51 117.34 88.5 83 Gaungzhou 23.08 113.19 70.7

38 Guixi 28.17 117.06 60.8 84 Dongguan 23.02 113.45 56.0

39 Yushan 28.40 118.15 116.3 85 Heyuan 23.44 114.41 70.8

40 Shangrao 28.22 118.02 118.2 86 Zengcheng 23.18 113.49 30.8

41 Lishhui 28.27 119.54 63.0 87 Huiyang 23.05 114.28 108.5

42 Xianju 28.52 120.44 83.0 88 Wuhua 23.56 115.46 135.9

43 Yongfeng 27.21 115.25 85.7 89 Zijin 23.38 115.11 176.8

44 Nancheng 27.33 116.36 80.8 90 Shantou 23.21 116.40 2.9

45 Nanfeng 27.12 116.23 111.5 91 Huilai 23.02 116.18 14.4

46 Shaowu 27.20 117.28 218.0 92 Nan’ao 23.26 117.02 7.2
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to measure the linear correlations between simulation and

spatially interpolated observations. RMSE was used to

measure the average error. Bias was employed to measure the

precision of the results. The results with high CC and low RMSE

indicate good simulation performance. Categorical statistical

metrics (Sen et al., 2014; Jiang et al., 2021) were employed to

evaluate the detection capacity for simulations, including the

probability of detection (POD), false alarm ratio (FAR) and

threat score (TS). The POD reflects the detection ability of a

certain precipitation magnitude, FAR represents the empty

report of the model on the precipitation magnitude, and TS is

a comprehensive score for checking the performance of the

model for eliminating the impact of random hits. The

definition, formula and optimal value for the indices are

shown in Table 2. The 95th percentile of the corresponding

precipitation fields was selected as the threshold, which providing

the comparison for the spatial distributions of the intense

precipitation (Table 3).

It is difficult to accurately select the parameterized scheme

combination with the best comprehensive performance based

on only one single evaluation and analysis. The emphasis of

each metric was different. Therefore, Euclid distance (ED)

TABLE 2 Combinations of physical parameterization schemes in WRF simulations.

Model number Cumulus scheme (CU) Microphysics scheme (MP) Land surface Scheme (LSM)

M1 BMJ WSM6 Noah

M2 BMJ WSM6 Noah-MP

M3 BMJ WSM6 CLM4

M4 BMJ Thompson Noah

M5 BMJ Thompson Noah-MP

M6 BMJ Thompson CLM4

M7 BMJ WDM6 Noah

M8 BMJ WDM6 Noah-MP

M9 BMJ WDM6 CLM4

M10 KF WSM6 Noah

M11 KF WSM6 Noah-MP

M12 KF WSM6 CLM4

M13 KF Thompson Noah

M14 KF Thompson Noah-MP

M15 KF Thompson CLM4

M16 KF WDM6 Noah

M17 KF WDM6 Noah-MP

M18 KF WDM6 CLM4

M19 NT WSM6 Noah

M20 NT WSM6 Noah-MP

M21 NT WSM6 CLM4

M22 NT Thompson Noah

M23 NT Thompson Noah-MP

M24 NT Thompson CLM4

M25 NT WDM6 Noah

M26 NT WDM6 Noah-MP

M27 NT WDM6 CLM4
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(Van Cooten et al., 2009), which is defined as measuring the

absolute distance between two points in multidimensional

spaces, was employed to quantitatively and comprehensively

evaluate each combination of WRF physical parameterization

schemes. To represent different evaluation metrics, ED was of

great significance in the optimal combination of numerical

weather model parameterization schemes. Specifically, the six

metrics of CC, MSRE, Bias, TS, POD and FAR were

synthesized by a vector Se, defined as follows:

Se � μ CC( ), μ RMSE( ), μ Bias( ), μ TS( ), μ POD( ), μ FAR( ){ }
(1)

The values of the six metrics were further scaled to between

0 and 1. Then, the optimal theoretical values for the metrics were

formed into vector [So (1,01,1,0)]. ED was calculated as the

magnitude of difference of the vector Se and the vector So. With a

lower value of ED, one combination member has better

performance. For a more visual comparison, the similarity S

defined by ED was employed, which can be formulated as

follows:

S � 1
d + 1

(2)

where d represents the value of ED, and S represents similarity.

The range is from 0 to 1. The higher S is, the smaller ED is, which

means better simulation.

Results

Evaluation of TCP in WRF simulations

Figure 2 shows the comparison results of the simulations and

observation (OBS) under different physical parameterization

schemes. The value of reference points (REF) in the taylor

TABLE 3 Definition of evaluation criteria.

Metric Formula Optimal value Range

CC
CC � ∑n

i�1(Oi−Oi)(Mi−Mi)���������∑n

i�1(Oi−Oi )2
√ ����������∑n

i�1(Mi−Mi )2
√ 1 (0,1)

RMSE MRSE �
�������������
1
n∑n

i�1(Mi − Oi)
√

0 (0, +∞)

Bias Bias � Mi−Oi
Oi

× 100 0 (-∞, +∞)

TS TS = hits/(hits + misses + falsealarms) 1 (0,1)

POD POD = hits/(hits + misses) 1 (0,1)

FAR FAR = falsealarms/(hits + falsealarms) 0 (0,1)

Notes:WhereOi presents the observed value for precipitation on a grid point,Mi presents the simulated value on a grid point. n is the numbers of grids for simulations and observation. The

hits indicts the precipitation events are simultaneously detected by the data of models and interpolated observation data. Misses represents the precipitation events detected by interpolated

observation data but not by the model. Falsealarms represents the daily precipitation events detected by the model but not interpolated gauge data.

FIGURE 2
Taylor diagram of TCP for WRF combination members. (A) WRF combinations for BMJ cumulus schemes; (B) KF cumulus schemes; (C) NT
cumulus schemes.
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diagram reached 1, and the central normalized RMSE was 0. In

terms of cumulus schemes (CU), the simulation results were

divided into three groups for comparison. Figure 2A shows the

simulation results fromM1 toM9. The cumulus schemes were all

BMJs. The correlation coefficient for M8 was highest with a value

of 0.793. In terms of the performance of the results from M10 to

M18 with the cumulus schemes of KF, M11 had the highest value

of 0.796, which is shown in Figure 2B. Similarly, Figure 2C shows

the results from M19 to M27, which had the same cumulus

schemes as KF. M19 had a good performance for correlation

coefficient, with a value of 0.781. In terms of standard deviation,

the values of M11, M2, M26, and M1 in the simulations were

closest to 1, which indicated good performance. The distribution

of the standard deviation was more dispersed for the simulated

results of scheme combinations using the cumulus scheme of

BML and KF, which means there was a large difference in

simulation capability. The simulated results using the cumulus

scheme of NT were relatively concentrated, mainly between

0.5 and 1. The spatial correlation coefficients between the

simulated and observed values for 27 combinations were

concentrated from 0.6 to 0.8. The highest correlation

coefficient values were found for M8, M11, M19, and M4.

The combinations with the lowest correlation coefficients

(below 0.65) were M6, M13, and M15. Overall,

M11 performed well in terms of the correlation coefficient

and standard deviation. Among the three CU schemes

investigated in this study, the WRF combination members

using KF displayed larger central root mean square error,

lower correlation coefficient, and poorer standard deviation.

Therefore, the BML and NT schemes performed better for

extreme precipitation over the PLB.

Table 4 shows the performance of categorical statistical metrics

(TS, POD, FAR) for 27 WRF combination members. This revealed

the accuracy of precipitation forecasting. For the TS metric, the

highest score was found for M15, followed by M7, M5, and M22,

which were more than 0.5. However, M13,M14,M17, andM26 had

the lowest scores (below 0.1). For POD, the highest score was found

for M15, followed by M7, M5, and M22, which all exceeded 0.7.

M13, M14, and M17 had the lowest scores (below 0.1). M5, M7,

M15, and M22 showed better FAR scores (below 0.3), especially

M15, which has the lowest value of 0.21, indicating a low false alarm

rate. However, M13, M14, M17, and M26 showed worse

performance with high FAR scores (over 0.8). Overall,

M15 performed best, followed by M7, M5, and M22, while M13,

M14, andM17 performedworst among the three evaluationmetrics.

The combination members using the BMJ and KF schemes were

better than those using KF in precipitation forecasting for WRF

simulations. Additionally, with the same CU and MP schemes, the

precision ofM15was better than those ofM13 (with theNoah LSM)

and M14 (with the Noah-MP LSM), which were mainly controlled

by the land surface scheme.

Table 5 shows the similarity based on ED ranking from

highest to lowest for 27 combinations in terms of TCP. The value

of similarity ranged from 0.333 to 0.518. The values of WRF

combination members were relatively close and concentrated

from 0.4 to 0.5. The highest value was found for M7, which

indicated that M7 displayed the best performance for the

simulation of TCP. The lowest value was found for M14.

TABLE 4 Scores of evaluation metrics for total cumulative precipitation.

Model number TS POD FAR Model number TS POD FAR

M1 0.46 0.63 0.37 M15 0.66 0.79 0.21

M2 0.24 0.39 0.61 M16 0.30 0.46 0.54

M3 0.47 0.64 0.36 M17 0.05 0.09 0.91

M4 0.22 0.36 0.64 M18 0.27 0.43 0.57

M5 0.55 0.71 0.29 M19 0.38 0.55 0.45

M6 0.28 0.44 0.56 M20 0.20 0.34 0.66

M7 0.63 0.77 0.23 M21 0.39 0.57 0.43

M8 0.26 0.42 0.58 M22 0.55 0.71 0.29

M9 0.44 0.61 0.39 M23 0.28 0.44 0.56

M10 0.26 0.41 0.59 M24 0.28 0.44 0.56

M11 0.15 0.26 0.74 M25 0.45 0.62 0.38

M12 0.36 0.53 0.47 M26 0.08 0.16 0.84

M13 0.01 0.02 0.98 M27 0.19 0.32 0.68

M14 0.02 0.05 0.95 - - - -
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M22, M25, and M1 demonstrated high values of similarity,

followed by M7. Among the five combination members with

the highest values, the simulations using WDM6 and WSM6 for

the MP scheme, which configured the same CU scheme options

of BMJ, were more suitable for extreme precipitation forecasting.

In terms of the NT cumulus scheme, Thompson and

WDM6 were more suitable for the simulation configuration.

Noah was found to be the best land surface scheme. Therefore,

the combination member of BMJ-WDM6-Noah performed best.

Figure 3 shows the range and mean value of the TCP for the

observation (OBS) and WRF simulation. The TCP is shown in

Figure 3A. The value of observation was relatively concentrated,

with the quartile (25%–75%) ranging from 200 to 400 mm. The

differences among the simulated results were significant. For

example, M5, M14, M15, and M16 demonstrated relatively

smaller ranges, while M21, M24, and M27 displayed larger

ranges. All simulation members underestimated the median

values compared to the OBS. The median value of M19 was

closest to OBS. For maximum values, all simulation members

were higher than OBS, especially M9 and M21, which had the

largest difference. In terms of mean values (Figure 3B), the

deviation between M19 and OBS was smallest, followed by

M3, M9, M18, M21, M22, M24, and M27 (over 200 mm),

with relatively small differences from OBS. Additionally, M18,

M19, M20, M21, M24, and M27 overestimated the 75th

percentile values compared to OBS. However, the difference

among them was small. In general, the deviation between

M19 and OBS was the smallest. Therefore, M19 was regarded

as the optimal member among the 27 simulation scheme

combinations.

TABLE 5 Similarity by Euclidean distance for WRF combination members.

Model number Similarity Ranking Model number Similarity Ranking Model number Similarity Ranking

M7 0.518 1 M5 0.433 10 M4 0.404 19

M22 0.496 2 M23 0.428 11 M27 0.395 20

M25 0.476 3 M12 0.420 12 M11 0.393 21

M1 0.474 4 M8 0.419 13 M6 0.390 22

M19 0.468 5 M18 0.416 14 M26 0.373 23

M9 0.464 6 M24 0.414 15 M10 0.360 24

M3 0.448 7 M16 0.409 16 M17 0.348 25

M15 0.437 8 M20 0.407 17 M13 0.335 26

M21 0.437 9 M2 0.405 18 M14 0.333 27

FIGURE 3
TCP of observation and WRF simulations. (A) Range of TCP for simulation and observation. Thick horizontal lines in boxes indicate the median
values, and boxes show the inner-quartile (25%–75%). (B) Mean values of the TCP.
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Spatial evaluation of TCP in WRF
simulations

Figure 4 illustrates the spatial distributions of TCP for WRF

combination members and OBS by interpolation. Spatially, the

OBS indicated that the TCP generally increased from south to

north of PLB, exhibiting a clear gradient, with the maximum

precipitation in the northeast and the minimum in the south of

the basin. The low value appeared near Poyang Lake. The storm

centre with high values (over 400 mm) was mainly located in the

northeastern PLB, specifically the Raohe Basin, the western

Xinjiang Basin, and a small part of the northern Ganjiang and

Fuhe Basins. According to the simulated combination members,

the results can basically reproduce the spatial distribution

characteristics of the TCP showing an increasing trend from

south to north as a whole. The storm centre with high values

appeared in the northeastern PLB. The maximum precipitation

(over 600 mm)of the WRF simulation was higher than the

observed value. The high value appeared in Poyang Lake,

which was contrary to the result of OBS. This may be due to

the lack of meteorological stations near Poyang Lake, resulting in

some differences between the observations by spatial

interpolation and simulations. The distribution of the storm

centre (high value) was different from the OBS. The

simulation combination members underestimated the coverage

of the high value area, which was further north relative to the

OBS. The performance of the simulation combination members

was different. In terms of the storm centre, the distributions of

M7 and M1 were relatively small and concentrated in the Raohe

Basin, with the maximum precipitation in the northeastern PLB.

The distribution of M22 was relatively large and mainly

concentrated in the Raohe Basin, Xiushui Basin, and Poyang

Lake, and the maximum precipitation was in the northern Raohe

Basin. M25 was mainly distributed in the Raohe Basin, the

FIGURE 4
Spatial distribution of TCP for OBS and WRF combination members.
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northeastern area of Poyang Lake (more than 400 mm) and the

northern Ganjiang and Fuhe Basins. However, less precipitation

was found in the southwestern PLB. In contrast, the precipitation

centre of M19 covered the largest area with a distribution of five

subbasins, which canmore effectively capture the precipitation of

the PLB.

To more intuitively analyse the spatial difference, Figure 5

describes the bias distribution of WRF simulations compared to

the interpolated observation (simulated value minus the observed

value). Overall, a negative value indicated that the WRF

simulation underestimated the OBS, while a positive value

indicated an overestimation. The largest underestimation was

found in the central and western regions of the PLB, concentrated

in the central and northern parts of the Ganjiang Basin. In

addition, the junction areas of Xinjiang and Fuhe Basin

underestimated precipitation. The overestimated areas were

FIGURE 5
Bias distribution of WRF combination members compared to observed precipitation by interpolation (simulation minus observation).

FIGURE 6
Time series of average daily precipitation for observation and
WRF simulations.
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found in the northeastern part of the BLP, mainly in the Raohe

Basin and Poyang Lake. Specifically, the overestimation areas for

M22 and M19 were larger than those of M7, M25, and M1. The

overestimated area for M22 was distributed in the northern

Raohe Basin, Poyang Lake, and Xiushui Basin. For M19,

overestimation is found at the junction with Xinjiang and the

Fuhe Basin, especially in the Raohe Basin and Poyang Lake.

Additionally, the overestimated areas were scattered in the

middle of the Fuhe Basin but did not appear in other simulations.

Temporal validation of daily precipitation

Figure 6 shows the time series of average daily precipitation

of the observations and 27 combination members over the PLB.

For the OBS (black line), the minimum value appeared on 6 July

2020 with a value of 7.09 mm. The maximum value was found on

9 July 2020 with a value of 68.78 mm. ForWRF simulations, most

of the combination members fit the OBS well from 3 July and

7 July, while the simulated values were underestimated compared

to the OBS from 7 July to 10 July. In particular, the maximum

overestimation occurred at the peak of rainfall. Among the

combination members, M3 demonstrated the best

performance, followed by M21, M22, and M24 (thick lines).

However, M13, M18, and M12 displayed great differences

compared to the OBS, resulting in poor fittings. Figure 7

shows the correlation coefficient (CC) and root mean square

error (RMSE) for 27 WRF simulations. For CC, the maximum

value (0.96) was found for M3, followed by M21, M24, M22, and

M27. In terms of RMSE, the minimum value of M24 was

11.9 mm. day-1, followed by M21, M3, M27, and M22.

Overall, for the change in average daily precipitation, the best

performers were M21, M3, M24, and M22, while the worst

performer was M13.

For those combination members with good performance in

daily precipitation, M22, M3, and M21 performed better in TCP

evaluation, while M24 performed worse. Among the five

combinations (M7, M22, M25, M1, and M19) with the best

performance of TCP, M19, and M25 performed well with small

bias for daily precipitation, while M7 and M1 displayed

large bias.

Discussion

Identification of suitable WRF
combinations for physical schemes

This study selected a typical extreme precipitation event

in the PBL. The study area is located in the lower reaches of

the Yangtze River basin, where the precipitation variation is

large, and the terrain with many mountains is complex,

resulting in difficulty for simulation. In this study, the

high-resolution WRF model was used to simulate

precipitation, which was especially beneficial to the areas

with complex terrain. We found that WRF basically

simulated the spatial distribution of precipitation that the

storm centre was located in the north of the PLB, which was

similar to a previous study. Yu et al. (2011) captured the

rainstorm centre and the main rain belt by using WRF, which

FIGURE 7
The correlation coefficient and RMSE for 27 WRF combination members.
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was distributed from northeast to southwest in the Yangtze

River Basin. Bao et al. (2015) found that WRF showed a high

spatial pattern correlation with observations in extreme

precipitation simulations. Therefore, the WRF model has

been proven to be effective in simulating extreme

precipitation. However, the simulation is influenced by

other factors that can lead to certain deviations. For

example, the deviation near Poyang Lake may be affected

by the lack of meteorological stations. For comparison with

simulations, the meteorological stations were interpolated in

the grid of WRF by bilinear interpolation method. Although

the errors of results were limited by the distances and

numbers of the ground stations, the required spatial

resolution of observation was obtained by interpolation

method (Yang Q et al., 2021). Global or regional

precipitation products such as the Tropical Rainfall

Measuring Mission (TRMM) and China Precipitation

Analysis (CPA) data have been increasingly applied to the

validation of model results, which effectively overcome the

impact of sparse ground stations (Nooni et al., 2022).

Therefore, the precipitation datasets from satellite and

reanalysis product can be also considered in WRF

evaluation in future work. The maximum deviation in the

central and northern parts of the Ganjiang Basin may be

affected by the mountainous terrain (Argüeso et al., 2012;

Bian et al., 2022). In addition, it may also be affected by the

uneven spatiotemporal distribution of precipitation.

Compared with fixed physical parameterization schemes,

the combination of microphysical schemes, cumulus schemes

and land surface schemes performs differently in extreme

precipitation. For extreme precipitation simulations, it is still

a challenge to identify the optimal configuration from a large

number of combined physical schemes (Zhou et al., 2018).

Our findings showed that the performance of WRF

combinations in simulating extreme precipitation is

restricted by evaluation metrics. It is difficult for one

combination to maintain its best performance consistently

in all metrics. In terms of the evaluation of TCP, the

combination of M7 (BMJ-WDM6-Noah) was the most

suitable simulation, followed by M22 (NT-Thompson-

Noah). Combined with the daily precipitation evaluation,

M3 (NT-Thompson-Noah) was the optimal combination due

to the minimum bias of daily precipitation. Although M7,

M25, and M1 performed well in the total rainfall evaluation,

their daily precipitation error was large. M24 and

M27 showed small daily precipitation errors, but displayed

worse performance in the total cumulative precipitation

assessment. This may be related to the serious

underestimation of the simulation value from 7 July to 10

July. The results reveal that the identification of physical

schemes is based on the study area and precipitation

characteristics. The temporal evaluation and spatial

distribution of precipitation have brought uncertainty to

the simulation. Therefore, the appropriate combination

should be determined by the research emphasis. Based on

the comprehensive factor, five optimal WRF combinations

are identified for the extreme precipitation in the PLB

(Table 6). Therefore, the construction of a quantitative and

integrated parametric scheme combination evaluation

method is an important issue for future research on

precipitation simulation.

Applicability of physical schemes

Research on physical schemes has received extensive

attention, such as the comparison of microphysical schemes,

radiation schemes, cumulus schemes and the performance of

WRF ensembles. Many studies have confirmed that the

magnitude and distribution of precipitation are sensitive to

the CU and MP schemes (Zhou et al., 2018; Ma et al., 2019).

Our findings demonstrated that the performance of the KF

evaluated in this study was the worst, which is different from

the results of previous studies. One possible reason is the regional

dependencies for different cumulus schemes (Yu et al., 2011). By

comparing the three microphysical schemes of WSM6,

WDM6 and Thompson, we found that Thompson was the

best for the simulation in the PLB, which indicated that the

scheme containing more complete and complex cloud physical

processes in the high-resolution simulation was more

advantageous. The investigation was also similar to previous

evaluation studies. Merino et al. (2022) found that the Thompson

scheme had the best performance in the verification of extreme

precipitation in the Mediterranean by using the station data. For

the microphysical parameter evaluation of extreme precipitation

in the central Himalayas, the model results driven by the

Thompson scheme were found to have the best consistency

with the observation results (Karki et al., 2018).

Few relevant studies have focused on parameter schemes

over PLB, especially for the sensitivity of microphysical schemes

(Wagner et al., 2013). Previous studies have found that the

WSM6 scheme has a good simulation effect in most areas of

China. Our results demonstrated that WDM6 of MP

outperforms WSM6 in the case of the same cumulus scheme.

WDM6 and Thompson have advantages in simulating

convective clouds of precipitation due to the double moment

method scheme (Xue et al., 2021).

The WRF members behaved differently for each of the

evaluation metrics, resulting in a challenge in identifying the

suitable combination of physical schemes. Therefore, the

confirmation of the physical scheme was based on actual

needs, which gradually became an indicative factor. As

physical processes in atmospheric simulations are susceptible

to topographic and climatic conditions, the physical scheme

plays a decisive role in the simulation process. The accuracy

of WRF simulation is influenced by driving conditions, domain
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scales and terrains. Therefore, the NWP precipitation evaluation

index system needs to be constructed to improve the simulation

accuracy. By optimizing the combination of parameterization

schemes, the simulation results are more reliable than the default

parameters of the model. These investigations demonstrate a

reference for regional extreme precipitation forecasting. The

limitation of this study was the number of extreme

precipitation events. The extreme precipitation events selected

in this study was a typical event, which has more serious negative

impact on Poyang Lake Basin. Previous studies have shown that

the rainstorm in the first 10 days of July is an important reason

for the flood in the PLB, accounting for a large proportion of

historical disasters. Therefore, this rainstorm is a typical event, it

can represent the basic law of rainstorm (similar atmospheric

physical mechanisms) and flood in this basin. We set up

comparative ensemble tests as many as possible to reduce the

errors caused by this typical event. In general, our research is

universal and representative. In addition, the different initial and

lateral boundary conditions for WRF should also be explored for

more accurate forecasting of extreme weather events at the local

scale.

Conclusion

This study simulated extreme precipitation events over the

PLB by numerical weather forecasting from 1 July to 10 July

2020. To reproduce the extreme precipitation process,

27 combination members of WRF physical schemes were

designed, with three CU schemes (KF, BMJ, GF), three MP

schemes (WDM6, WSM6, Thompson) and three land surface

schemes (Noah, Noah-MP, CLM4). Additionally, compared to

the observations interpolated by data from 92 meteorological

stations data, the appropriate WRF configurations were

identified by spatial and temporal evaluation. Then, the major

findings were summarized as follows.

1) The spatial comparison showed that theWRFmodel basically

simulated the spatial and temporal distribution of extreme

precipitation over the PLB and captured the precipitation

centre in the northeast of the PLB. However, compared with

the observed value, the WRF combinations showed the

overestimation mainly in the Raohe Basin and Poyang

Lake. The largest underestimation was found in the central

and western regions of the PLB, concentrated in the central

and northern parts of the Ganjiang Basin.

2) For TCP, the metrics of CC, RMSE, Bias, TS, POD, and

FAR were employed to validate the performance of WRF

combination members. The spatial correlation coefficients

ranged from 0.6 to 0.8 for WRF combination members.

And M11 has the highest value of 0.796. For standard

deviation, the values of M11, M2, M26, and M1 in the

simulations were closest to 1. In terms of categorical

statistical metrics, the highest scores (TS, POD, FAR)

were found for M15, followed by M7. The TS, POD and

FAR of M15 were 0.66, 0.79, and 0.21, respectively. Based

on the comprehensive ED metric, the value of similarity

ranged from 0.333 to 0.518. M7 with maximum similarity

(0.518) demonstrated the best performance in extreme

precipitation simulation. The quartile (25%–75%) of

observation ranged from 200 to 400 mm. The mean

value of OBS and M19 were 259.34 and 218.33 mm,

respectively. The deviation between M19 and OBS was

smallest. In addition, M19 performed well in the range of

the TCP.

3) For the error analysis of daily precipitation, the maximum

value of CC was 0.96, which was found for M3. The

minimum value of RMSE was 11.9 mm. day-1, which was

found for M24. The simulated values were underestimated

compared to the OBS from 7 July to 10 July. M3 (BMJ-

WSM6-CLM4) and M21 (NT-WSM6-CLM4) were optimal

among the members. In general, five optimal combinations

of WRF physical schemes (M22, M19, M9, M3, M21) were

selected for extreme precipitation simulation over the PLB

in this study.
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TABLE 6 Optimal combinations of WRF physical schemes.

Ranking Model
number

Cumulus
scheme

Microphysics
scheme

Land surface
scheme

Lw
radiation

SW
radiation

Planetary boundary
layer scheme

1 M22 NT Thompson Noah RRTMG Dudhia YSU

2 M19 NT WSM6 Noah RRTMG Dudhia YSU

3 M9 BMJ WDM6 CLM4 RRTMG Dudhia YSU

4 M3 BMJ WSM6 CLM4 RRTMG Dudhia YSU

5 M21 NT WSM6 CLM4 RRTMG Dudhia YSU
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