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Vegetative filter strips (VFS) are best management practices with the primary aim of
protecting surface waters from eutrophication resulting from excess nutrient inputs from
agricultural sources. However, we argue that there is a substantial time and knowledge lag
from the science underpinning VFS to policy and implementation. Focussing on
phosphorus (P), we strive to introduce a holistic view on VFS that accounts for the
whole functional soil volume, temporal and seasonal effects, the geospatial context, the
climatic and physico-chemical basic conditions, and the intricate bio-geochemical
processes that govern nutrient retention, transformation, and transport. Specifically, we
suggest a step-wise approach to custom VFS designs that links and matches the
incoming P from event to multi-annual timescales from the short- and mid-term
processes of P retention in the effective soil volume and to the longer-term P retention
and offtake coupled to the soil-vegetation system. An a priori assessment of the P export
potential should be followed by bespoke VFS designs, in line with local conditions and
socio-economic and ecological constraints. To cope with increasingly nutrient saturated or
functionally insufficient VFS installed over the last decades, concepts and management
strategies need to encompass the transition in understanding of VFS as simple nutrient
containers to multifunctional buffer zones that have a complex inner life. We need to
address these associated emerging challenges and integrate their implications more
thoroughly into VFS research, monitoring, policy, and implementation than ever before.
Only then we may get VFS that are effective, sustainable, and persistent.

Keywords: riparian buffer strips (RBS), nutrient management, adaptive design, functional soil volume, erosion,
runoff, concentrated flow, vegetated filter strips
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INTRODUCTION

Vegetative filter strips (VFS) are a commonly prioritised best
management practice for protecting surface waters from
eutrophication resulting from excess nutrient inputs from
agricultural sources (Schindler et al., 2016; Lind et al., 2019).
Their implementation began in the early 20th century, initially as
a means against sediment loss (e.g., Allison, 1935), later on as a
barrier to edge-of-field nutrient export (e.g., Willrich and Boda,
1976; Vanderholm et al., 1979). Since their conception, the role
of VFS has evolved: from a simple solution mitigating the
inflow of various forms of agricultural pollutants to
multifunctional buffer zones in which nutrients are not only
retained but also altered through biological activity and
geochemical processes (Roberts et al.,, 2012; Weihrauch and
Opp, 2018). Coupled with this was the recognition that VFS are
finite nutrient sinks that require management to remain
effective (Cooper and Gilliam, 1987; Schauder and
Auerswald, 1992) and an awareness that VFS can change
from nutrient sinks to sources under certain
circumstances—especially for phosphorus (P), e.g., due to a
saturation of sorption sites (Stutter et al., 2009).

With this Perspective article, we call for an integration of recent
developments in soil P research into VFS management science,
notably that P pools are a continuum of solubility/bioavailability
rather than discrete P fractions and the acknowledgement of high
spatio-temporal dynamics and complexity in P biogeochemistry
(Kruse et al., 2015; Weihrauch and Opp, 2018; Weihrauch, 2019).
While some of the advances in soil science have been
incorporated theoretically into VES science and included in
review papers (e.g., Carstensen et al., 2020; Prosser et al., 2020;
Stutter et al., 2021), we argue that a substantial part of VFS
research is based on outdated concepts, especially regarding
studies that deal with retention effectivity or monitoring.
Often such studies still focus on short term nutrient retention
rather than a permanent continuous removal. Furthermore,
many studies apply one-dimensional designs based only on
VES width rather than considering all three dimensions of the
soil-vegetation space, ignoring important aspects related to
nutrient dynamics and retention efficiency. Thus, a
substantial share of the mainstream VFS research is
lagging behind recent scientific developments. However, it
is much more likely that monitoring or effectivity
studies—rather than more difficult to comprehend
theoretical research or complex modelling approaches—are
used as the basis for the recommendations provided by
agricultural authorities or agri-environmental funding
programmes. Guidelines on VFS designs are often further
simplified and only updated between funding periods. Thus,
those responsible for the implementation of VES receive little
guidance on designing up-to-date VFS, which also means that
many VES are far less efficient than they could be.

Here, we describe these issues in detail and discuss why they
need to be more deeply embedded into VFS management
science (Figure 1). Our focus is on phosphorus; nevertheless,
the presented core ideas also apply to other agricultural
pollutants.

Keeping Up with Phosphorus Dynamics

PRINCIPLES OF VFS DESIGN

A Holistic Approach on the Functional

Three-Dimensional VFS Space

Recent research has revealed a multitude of physical and bio-
geochemical processes that modify and transform biotic and
abiotic P forms between inputs and outputs (Stutter et al., 2009;
Weihrauch and Opp, 2018). Depending on the soil properties and
chemical gradients, P sorbs on and desorbs from soil particles,
precipitates and dissolves, shifting between various forms and
states along a solubility and bioavailability continuum.
Furthermore, plants and microbes release enzymes that can
degrade organic P into dissolved P fractions for uptake into
both the vegetative pool or soil microbial biomass (Roberts
et al,, 2012; Weihrauch and Opp, 2018). In VFS, this cycling
affects incoming P sources as well as native soil P. Consequently, P
that leaves a VFS may differ substantially from the original P inputs
in terms of chemical speciation, timing, or concentration
(Figure 2).

The science behind VFS stems from various disciplines and is
the basis of VES design recommendations. Ideally, this is an
iterative process in which studying and monitoring existing VFS
increases our understanding of VES functioning, which leads to
improved designs, and in turn, more effective VES, and so forth
(McGonigle et al., 2012). From a practitioner’s view, a VFS may
be regarded as a black box or as two separate compartments: one
below (the soil) and one aboveground (the vegetation). In fact, the
two compartments are closely interlinked and need to be
considered and managed together. Belowground, the storage
capacity of the soil for P can be substantial (Roy et al., 2017);
however, it is finite. Consequently, relying on retention and
storage to mitigate P pollution is unsustainable for long-term
functioning. Furthermore, the risk of (dissolved) P loss increases
with the degree of P saturation (DPS), which means that
considerable amounts may leach from VFS soils as they
become saturated (Pautler and Sims, 2000; Kleinman, 2017).
Therefore, the DPS should be kept low and P that has already
accumulated in the soil should be removed. By far the most
practical option is via removal of the aboveground vegetative
compartment, and with it the soil P that has been taken up by the
plants. To prevent a built-up of soil P and to ensure a sufficient P
removal by plant harvesting, we suggest a step-wise approach to
customised VFS designs. These should consider the amount of
incoming P from the agricultural system, the amount that can be
temporarily retained in the soil, and the amount that can be
removed by harvesting.

Estimating P Export Potential

Firstly, the source area for P that is supposed to be intercepted by
a VFS has to be identified; in most cases, this would be the field(s)
of the (sub-)watershed that drains into a VFS. This includes
collection and collation of general field and soil characteristics
(e.g., soil type, slope, area, topography), physico-chemical soil
parameters (e.g., texture, density, carbon content, nutrient
concentrations), and agronomic factors (e.g., cropping, tillage,
fertilisation). These parameters determine erosion and runoff
generation and are, thus, directly or indirectly linked to the
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FIGURE 2 | Diagram of the most important pathways and processes of phosphorus (P) dynamics that have to be considered in VFS design and research.
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potential nutrient export (Wang et al., 2014; Roberts and Israel,
2017).

Secondly, climate and weather conditions have to be assessed.
As infiltration and runoff are related to soil water content, the
prevailing rainfall characteristics (i.e., intensity, duration, return
frequency) substantially impact runoff generation and the
occurrence of erosive events (Ries et al., 2020; Tiefenbacher
et al, 2021). Furthermore, seasonal aspects may lead to a
mismatch of runoff occurrence and P retention/uptake
potential of a VES. In cold climates, much of the annual
runoff occurs during snowmelt, at a time where soils are still
frozen, severely limiting interaction and exchange processes
necessary for P retention (Kieta et al.,, 2018; Vanrobaeys et al.,
2019). Consequently, climate and seasonality have direct
implications for VFS design. If most runoff is triggered by
extreme events or occurs outside of the growing season, VES
may even be largely ineffective, requiring the implementation of
additional countermeasures (e.g., retention ponds).

Taken together, the first two steps provide the data
necessary to estimate how often and to what extent a field is

expected to export sediment and water along with the amount
of particulate (PP) and dissolved P (DP) that is transported
with it. This should be further improved by using process-
orientated models to calculate runoff and erosion
characteristics (e.g., WEPP, Laflen et al., 1997; EUROSEM,
Morgan et al, 1998) or nutrient pathways (e.g., PhosFate,
Kovacs et al., 2008). The more reliably we can predict P
exports in space and time, the better we may be able to
design effective VFS.

Designing Custom VFS

In combination with the aforementioned examples,
mathematical models can also aid in VFS design and the
evaluation of VFS performance (e.g., VFSMOD, Munoz-
Carpena et al, 1999; REMM, Lowrance et al., 2000; SWAT,
Arnold et al., 2012). Models are purpose-designed tools to get
reasonable estimates of how much runoff, erosion, or nutrient
loadings a VFS would have to handle, as well as where and when
they most probably occur—making it possible to estimate the
required VFS dimensions and to design bespoke
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countermeasures. The models may be constantly adapted to
include important biogeochemical and mechanistic factors
concerning flow, sedimentation, and nutrient pathways.
However, despite their importance and long-time availability,
they are rarely used outside academia. More user-friendly
interfaces, together with easily comprehensible manuals/
tutorials could help to improve their adoption. A drawback
of current models is that they do not account for P accumulation
in the VFS soil.

To prevent a build-up of nutrients, their input and offset
must be balanced. Therefore, the nutrient removal potential of
the vegetation needs to be an integral part of VES design. The
amount of P that can be removed by harvesting is commonly
around 10-20 kg P ha™! a™! (Hoffmann et al., 2009; Hille et al.,
2019), but up to >100 kg P ha™' a™" if highly productive plants
are used. This ‘phytoremediation” may also be used to deplete
sites with high P saturation (Silveira et al., 2013). Moreover,
vegetation type (grasses, herbs, trees) impacts the nutrient
uptake rate and filter properties (Prosser et al., 2020).
Functional VFS are able to stop runoff and erosion before
they reach a water body, thus keeping PP and DP within
VES boundaries where they can be incorporated in the soil
matrix or solution, transformed and cycled, and taken up by the
vegetation. Infiltration capacity and contact time can be
optimised by selectively choosing plants with desirable
characteristics, such as deep roots, stiff-stems, or tall
vegetation forms—traits that have been shown to increase
infiltration, slow down runoff, or support sediment
deposition (Blanco-Canqui et al., 2004, Blanco-Canqui et al.,
2006; Wu et al, 2016). Improved infiltration increases the
volume of soil that comes into contact with runoff water and
takes part in P retention and cycling. Expanding the functional
soil volume could therefore relieve the P burden of the surface
layers, especially as subsoils commonly have lower P
concentrations and DPS, and thus high retention potential
(Pizzeghello et al., 2016; Habibiandehkordi et al., 2019).
Infiltration could be further enhanced by promoting a diverse
invertebrate community (Colloff et al, 2010). However, the
prevalence of an extensive macropore network and
preferential flow could potentially limit soil-runoff
interaction time and VFS nutrient mitigation efficacy
(Orozco-Lopez et al., 2018). Other limiting factors that need
to be considered are overbank flooding and the presence of a
seasonal water table (Sheppard et al., 2006; Fox et al., 2018).

In addition to vegetation, location and shape are essential
elements in VFS design. Generally, width is considered to be the
most critical variable in VFS performance. Consequently, many
studies dealing with VFS efficacy ignore other crucial dimensions
(see Prosser et al., 2020). Width is taken as a proxy for area,
assuming that length (i.e., along the field/VFS border) is fixed and
that depth is negligible. This ignores the role of subsurface layers
and functional soil volume, and implies that runoff is exported
uniformly across the entire field edge. It is, however, probable that
runoff is instead bundled at distinct locations, due to flow
convergence (Dosskey et al., 2002; Verstraeten et al., 2006). If
these concentrations always occur at similar positions (e.g.
thalweg), the VFS could be planned accordingly, e.g., wider at

Keeping Up with Phosphorus Dynamics

areas with concentrated flow and smaller at areas that receive
little runoff. Additionally, the vegetation could be adjusted; stiff
grasses can slow down runoff velocities and promote a more
evenly distributed flow through the VFS (grass barriers; Blanco-
Canqui et al., 2004). Also, improper maintenance and vegetation
aging have an effect on VES efficacy under concentrated flow
(Lambrechts et al., 2014).

Slope and tillage direction may divert runoff to field corners, in
which case L- or triangle-shaped VFS are advisable. Furthermore,
anthropogenic flow paths (e.g., off-field ditches or channels) may
bundle flowing off waters, or, due to local topography, runoff may
be exported at an edge that is not closest to the receiving water
body (Hosl et al, 2012). Both scenarios cause the runoff to
completely bypass a shore-parallel VFS, mandating a more
flexible placement of VFS where runoff and erosion actually
occur. Customised VES entail extra efforts for the farmers; it
may thus be necessary to increase the financial incentives or find
design compromises to ensure a high acceptance of non-standard
VES amongst practitioners. Finally, VFS design and shape could
also be linked to cropping. A farmer could adopt supplemental
measures when erosion-prone crops are cultivated, such as a
greater VFS extent, grass barriers, or contour cropping.

All these considerations are crucial for an effective P
management. Custom VFS designs as a function of local
conditions are highly advisable on both the field and
watershed scale (Jiang et al., 2020). However, many agri-
environmental programmes do not demand such adaptive
designs and recommend VES of a fixed shape, width, and
location instead (JRC, 2020). A more flexible approach with
more possibilities and options would certainly not only
increase the efficacy of VES in general but also the allocation
of appropriate funding schemes.

CONCLUSION AND OUTLOOK

There is a substantial delay of knowledge transfer from the
research front to VFS design, implementation, monitoring
and, ultimately, policy. In the United Kingdom, for instance,
there is no targeting of funding of VFS to water quality areas, no
bespoke variation of VES widths, and there are no resources for
monitoring. In Austria, grasslands may be eligible to be funded as
VFS by the agri-environmental programme OPUL if their nearest
part is within 50 m distance of surface water, have an average
width of 12 m, and are at the field edge that is closest to the water
(BMNT, 2015); no modelling, a-priori measurements, or
monitoring is required. Similar static, unsatisfactory conditions
are found across most European countries (JRC, 2020). Although
there is some promising progress in VES research, such as the
development of tools for mapping flow paths or the experimental
implementation of variable width buffers, these are often
incomplete or restricted to pilot projects (e.g., Shrivastav et al.,
2020).

VES designs are therefore often still unspecific and outdated,
especially regarding sustainability and long-term efficiency. We
suggest a step-wise approach to custom VES designs, leading to
VES that are effective and persistent. Based on local conditions
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rather than a one-type-fits-all scheme, this procedure is inevitably
more labour- and cost-intensive. Nonetheless, the substantial
variability in VFS performance—from 100% retention to net
nutrient release or completely ineffective VFS due to flow
bypass—is clearly not satisfactory and the ecological and
socio-economic cost/benefit ratio is far from what could
actually be achievable (Hoffmann et al., 2009; Stutter et al,
2021). The presented steps are a best-case scenario; however,
even following only a few of the recommendations would be an
improvement compared to standard VES designs (Figure 1).

VES need to be appropriately designed to counter high
nutrient dynamics, i.e., their P retention and removal potential
has to meet actual P inputs in space and time. Accordingly, the
scientific evaluations of VFS have to account for the resulting
heterogeneity in VFS and the vertical (e.g., infiltration,
preferential flow, root zone) and lateral aspects (e.g., flow
concentration, subsurface interflow) that affect VFS
performance, e.g., by sampling along transects and depth
profiles, or the inclusion of subsurface flow in runoff/erosion
experiments (Weihrauch, 2019; Prosser et al., 2020). Different P
forms along the solubility/bioavailability continuum are of
different (ecological) concern and require the wuse of
appropriate measurement techniques to adequately assess the
most relevant P species. The complex bio-geochemistry of VFS
and internal P cycling and transformation processes complicate
an a priori estimation of P export risks. To be able to counter
unforeseen developments and ensure long-term efficacy and
protection of surface waters, VES should also be monitored, as
is common practice for other environmental mitigation measures
(Wortley et al, 2013). Furthermore, VFS models should be
improved by incorporating factors such as flow concentrations
and diversions (Fox et al., 2010; Hénault-Ethier et al., 2017),
preferential flow pathways (Guertault et al., 2021), or nutrient
accumulation in the soil.

The success of VES relies heavily on the willingness of farmers
to implement them—and their acceptance will rise and fall with
the costs and benefits that come with VFS (Chapman et al., 2019).
Trade-offs between environmental interests and agricultural
production and a potential mismatch of the goals and
motivations of the stakeholders involved (i.e., scientists, policy-
makers, farmers) may hinder the implementation of VFS. A fair
and balanced mix of regulatory (e.g., legislation, directives) and
economic levers (e.g., subsidies, incentive payments) is probably
the most promising approach (McGonigle et al., 2012). Within
such a framework, national and regional agricultural authorities
should provide the resources and expertise to put forth site-
specific solutions and corresponding VFS specifications that can
be used as a sound basis for consultation with farmers.
Furthermore,  agricultural  authorities  could  select
representative sites for a given region that are monitored in
detail and can be used to develop improved VES designs in
line with local characteristics. An intensified pro-active informing
of authorities on new approaches and technologies and a closer

Keeping Up with Phosphorus Dynamics

collaboration of scientists and consultants could further bridge
the gap between the state-of-knowledge and the state-of-
implementation (Fox et al., 2021).

We want to stress that the most appropriate approach to
address the root problem—excess P in agricultural systems—is
via an improved P management and the prevention of a build-up of
nutrients in the field in the first place. If this is not possible or
insufficient, implementing VES is an efficient, eco-friendly, and
cost-effective method for nutrient retention and removal (Lovell
and Sullivan, 2006; Jabtoriska et al., 2020) that should be considered
over more technical solutions (e.g., filters, chemical amendments,
P-sorbing materials; Habibiandehkordi et al., 2015; Cooke et al.,
2021). In many cases, a VES will make up one part of a larger
conservation scheme, or one link in a chain of measures (e.g.,
“designed multicomponent buffer zones”, “3D buffer zones”,
Stutter et al. (2019), Stutter et al. (2020); “integrated buffer
zones”, Zak et al. (2019)). Such measures can also tackle other
environmental issues such as biodiversity or carbon sequestration,
enrich the landscape, or provide additional income for the farmer
(Stutter et al., 2012; Uggeldahl and Olsen, 2019; Cole et al., 2020).
This multifunctionality and the ability to address several problems
at once should be seen as a strong asset of VES—creating ample
reasons for agricultural authorities to promote their use and
increase compensation schemes.

Since their introduction, VES have evolved from simple
nutrient containers to multi-dimensional entities with an
increasingly complex inner life (Weihrauch, 2019). Our
obligation is to face these new arising challenges and
communicate their implications to those responsible for the
implementation.
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