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Urban ecological quality evaluation attracts more and more attention in urban land use and
ecosystem planning optimization due to continuity problems from rapid urbanization and
population growth. Remote sensing was always considering contribute to the evaluation.
However, accurate and efficient evaluation of urban ecological quality is being challenged,
as traditional remote-sensing-based methods were mainly based on low spatial resolution
data, pixel-based land cover classification, and vegetation condition factors, and ignored
object-oriented high spatial resolution classification and urban landscape pattern. Thus,
method for urban ecological quality evaluation based on high-resolution remote sensing is
greatly needed to support spatially explicit decision-making in urban planning. In this study,
a novel high-resolution remote-sensing-based method based on six ecological indicators
from vegetation conditions and landscape patterns was proposed to evaluate urban
ecological quality. The six ecological indicators were derived from high-resolution remote
sensing data using an object-oriented land cover classification. Factor analysis indicated
that the sensitivity of landscape patterns to ecological quality is relatively weaken.
Therefore, vegetation conditions and landscape patterns were used as two respective
variables to generate a linear evaluation model, with their weights calculated from the
loadings of factor analysis, to evaluation urban ecological quality. The results showed that
the proposed linear model, considering both vegetation conditions and landscape
patterns, is effective and trustworthy, and can provide more suitable support to urban
land use and ecological planning.
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1 INTRODUCTION

Urbanization in China has been an unforeseen major historical event over the past 40 years. The urban
population increased from 172.45 million in 1978 to 914.25 million in 2021, and the urbanization rate
increased from 17.9 to 64.7% during the same period (National Bureau of Statistics of China, 2021).
Due to the relaxation of population policies in China, the urbanization rate has shown an accelerating
tendency, and is predicted to surpass 70% by 2035 (Chinese Academy of Social Sciences, 2019).
However, the dramatic urbanization process poses great challenges to the ecological environment and
resources (Zhang et al., 2019), leading to various ecological issues including biodiversity reduction
(Elmqvist, 2013), lengthy drought (Kaufmann et al., 2007), heat island effect (Du et al., 2020), water
quality deterioration (Owen, 2010), atmospheric pollution (Sarrat et al., 2006), and disease spreading
(Allender et al., 2010). Shrinkage of ecological land and the resulting water shortage have become
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outstanding issues in highly urbanized cities such as Beijing, China
(Zhang et al., 2009). China implemented the “Green GDP” project
in 2007 to deal with the challenging ecological situation. Green
GDP suggests less urbanization and industrialization, and more
green space expansion in urban areas. Accordingly, Beijing
municipal government decided to limit residential and business
land, and developmore green space in the urban area to strengthen
the ecological conservation. Both growing ecological issues and the
effectiveness of policy optimization need to be considered for
understanding the impacts on urban residential suitability.
Therefore, the analysis of urban ecological quality is of greater
importance than ever in the rapid urbanization region.

A well-established approach is to use ecological indicators as
standardized tools to provide comparable and comprehensive
information of an urban area for urban ecological quality analysis
(Lakes and Kim, 2012). Urban ecological indicators are
quantitative and spatially continuous descriptions of ecological
conditions in urban environments. They reflect ecological
functions and ecosystem services such as groundwater
recharge, retention of contaminants, air purification, and
urban climate regulation (Henry and Dicks, 1987; Bolund and
Hunhammar, 1999; Eliasson and Svensson, 2003; Arlt and
Lehmann, 2005; Gómez-Baggethun and Barton, 2013).

Many urban ecological indicators have been developed for
evaluating urban ecological quality, ranging from qualitative to
quantitative, from physical based to remote sensing based, from
point to surface monitoring, and from intermittent monitoring to
continuous monitoring in the last 2 decades (Wang et al., 2017).
However, most of the existing indicators were developed using
local statistical data, labor-intensive field surveys, or visual
interpretation of aerial photographs, which are difficult to
collect, and often lack high quality spatial context (Cadenasso
et al., 2007). Therefore, there is a need to develop a high-
resolution cyberinfrastructure-based ecological indicator for
effective ecological planning (Rose et al., 2015).

A remarkable array of ecological measurements can be
derived from remotely sensed images that include habitats (or
land cover classifications) and their biophysical properties
(integrated ecosystem measurements) as well as natural and
human-induced changes across the landscape (Pettorelli
et al., 2014). Various automatic remote-sensing-based
methods have been developed to improve the efficiency of
urban ecological indicators. Behling et al. presented an
automatic remote sensing and GIS based system to
generate flexible and user-defined urban ecological
indicators. In their work, fourteen indicators were
developed based on hyperspectral remote sensing data and
its corresponding height information (Behling et al., 2015).
Xu developed a remote sensing based ecological index (RSEI),
which takes greenness, wetness, dryness and heat into
consideration. The four aspects were quantified by four
remote sensing indices: normalized difference vegetation
index (NDVI), normalized difference built-up and soil
index (NDBSI), wetness component of the tasseled cap
transformation (Wet), and land surface temperature (LST)
(Xu, 2013). However, a common issue exists in the current
remote-sensing-based ecological evaluation: the use of coarse

indicators from low-resolution remote sensing data, which
hindered the development of spatially detailed urban
ecological indicators.

On the other hand, current ecological indicators from
remotely sensed images mainly focused on the quantity of
urban ecological land and ignored their spatial patterns.
However, the spatial pattern is considered as one of the
most important factors that affect urban ecological quality
(Su et al., 2012; Zhou et al., 2012; Estoque and Murayama,
2013). For instance, landscape pattern strongly influences
ecological processes with respect to population persistence,
biodiversity, and ecosystem health. The ecological
consequences of urbanization can be observed and
described by the dynamic changes of regional landscape
through landscape metrics (Li et al., 2010; Peng et al.,
2016). Some studies have expounded the significant
functions of Urban Green Space (UGS) in urban life (Uy
and Nakagoshi, 2008). Landscape pattern assessment could
also infer potential ecological processes (Turner et al., 2001;
Botequilha Leitão and Ahern, 2002). These factors express the
ecological quality of UGS from different aspects, such as
biodiversity, physical and mental health, and visual and
amenity benefits (Harper et al., 2005; Fuller et al., 2007;
Gonzalez et al., 2010). Therefore, landscape pattern
assessment should be considered to derive more
comprehensive ecological quality assessment.

In light of the issues of existing studies on remote-sensing-
based urban ecological quality evaluation, the objective of this
article is to propose an innovative method to develop urban
ecological indicators using high resolution remote sensing
images. The proposed method takes both vegetation condition
and landscape pattern into consideration to evaluate the urban
ecological quality. The results are expected to greatly support
urban managers for better understanding of the importance of
urban ecological quality, and for more objective decision making
in urban planning.

2 STUDY AREA, DATA COLLECTION AND
PRE-PROCESSING

2.1 Study Area
In this study, Haidian District in Beijing, China (Figure 1), was
selected as the study area. The area is located in the northwest
part of Beijing city. It covers an area of 430.8 km2 and is
divided into 30 administrative sub-districts. The population of
the area amounted to 3.24 million by the end of year 2019,
while the production value reached 113.23 billion US dollars,
taking up 22.4% of the total value of Beijing (Bureau of
Statistics of Haidian District, 2020). Generally, the built-up
area occupies half of the southeast area while mountains
distribute in the west margin, with urban-rural fringe
located in between. Because of the tremendous population,
high industrial output and fragmented land use patches,
Haidian District becomes a suitable area to develop an
ecological quality evaluation method with both vegetation
conditions and landscape patterns considered.
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2.2 Remote Sensing Data and
Preprocessing
GaoFen-2 (GF-2) is a high spatial resolution remote sensing
satellite that was launched by China, on 19 August 2014. It
contains Panchromatic and Multi-Spectral (PMS) sensors
(PMS-1 and PMS-2 with the same band designations). The
band designation of GF-2 PMS is shown in Table 1. The
spatial resolution of the multispectral and panchromatic bands
is 4 and 1 m, respectively. Four GF-2 multispectral images,
acquired on 12 September 2015, were used to develop
ecological indicators in this study.

The multispectral data preprocessing includes radiometric
calibration, atmospheric correction, ortho-rectification and
mosaic. Radiometric calibration was used to convert digital
numbers to Top-Of-Atmosphere (TOA) reflectance using
parameters developed by the China Centre for Resources
Satellite Data and Application (http://www.cresda.com.cn).
Atmospheric correction is used to convert the TOA reflectance
to surface reflectance using a Fast Line-of-sight Atmospheric
Analysis of Spectral Hypertube (FLAASH)module. After that, the
images were visualized and orthorectified using ENVI 5.1
software. Lastly, four images were mosaicked.

3 METHODS

We propose a novel high-resolution remote-sensing-based
methodological framework to evaluate ecological quality of
Haidian District (Figure 2). The proposed framework consists
of four modules: 1) Generation of a fine-scaled ecological land
cover map using an object-oriented image classification method;
2) Derivation of vegetation parameters and landscape metrics

based on GF-2 multi-spectral data and land cover mapping; 3)
Evaluation of the ecological quality (EQ1) using factor analysis
and analysis of the contribution of vegetation and landscape to
ecological quality based on the loadings of six indicators. 4)
Development of a linear model combining both vegetation
condition and landscape pattern to evaluate the ecological
quality (EQ2).

3.1 Object-Oriented Land Cover
Classification
Object-oriented image classification is one of the most effective
methods to conduct land use/cover mapping using high spatial
resolution remotely sensed images. As compared with pixel-based
image classification, this method can remove salt-and-pepper
noise and generate more reliable and accurate results. In this
study, the GF-2 images were classified into various land cover
types. The results were then used as a basis for landscape metrics
calculation.

Object-oriented image classification involved three steps:
multi-scale segmentation, general classes creation, and
classification rules (Ramakrishnan, 2014). The segmentation
parameters were defined as follows: layer weights were all set to
equal, scale to 20, shape factor to 0.3, color to 0.7, and
compactness and smoothness to 0.5. Four classes (water,
vegetation, soil, and impervious surface) were created to
form class hierarchy. We chose the nearest neighbor
method as the classifier. Urban area surface is complex and
heterogeneous, so it is very difficult to identify all land cover
classes simultaneously. In this research, based on the
difference of pixel spectral heterogeneity, four classes were
identified. After that, water and vegetation were subdivided
further. Water was further divided into two sub-types, clean
water and turbid water. Vegetation was divided into two sub-
types: grassland, and forest/shrub. 50 sample regions of 100 m ×
100 m in size were randomly selected, and the land cover type of
these pixels within these sample regions were identified using visual
interpretation in order to assess the accuracy of land cover
classification.

3.2 Landscape Metrics Calculation
3.2.1 Definition of Urban Ecological Land
Ecological land patches are the basic units for landscape
metric calculation. Urban ecological land refers to the
land-use type that can provide ecosystem services. Its

FIGURE 1 | The study area of Haidian district overlaid on a mosaicked
GaoFen-2 true-color image and the location of Haidian District within Beijing,
China.

TABLE 1 | Spectral bands of GaoFen-2 (GF-2) Panchromatic/Multi-
Spectral (PMS).

GF–2 PMS

Band Wavelength (μm) Resolution (m)

1. Blue 0.450–0.520 4
2. Green 0.520–0.590 4
3. Red 0.630–0.690 4
4. Near Infrared 0.770–0.890 4
5. Pan 0.450–0.900 1
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definition has been involved in the land use classification system,
though has not yet been proposed as an explicit concept in
ecological planning (Peng et al., 2017). Li et al. has defined
urban ecological land as land “aimed at improving the quality
of life of people in cities, protecting important ecosystems and
habitats, maintaining and improving the natural and urban
artificial ecological unit, and stabilizing the urban ecosystem
services at a certain level.” (Li et al., 2009).

Vegetation areas and water bodies are conventionally
recognized as ecological lands, which are important to
ecosystem service. Barren land is inferior ecological land that
has potential to convert into vegetation, and is therefore also
considered part of ecological land in this study. The impervious
surface is not regarded as urban ecological land. Ecological land
patches were extracted from land cover maps based on GF-2
image in this study. Landscape metrics were calculated at the class
level for only urban ecological land.

3.2.2 Landscape Metrics Selection and Measurement
Landscape metrics have been extensively used for analyzing
spatial patterns and differentiating urban land uses (O’Neill
et al., 1991; Listopad et al., 2015). They can be calculated at
various levels of patch, class or landscape, quantifying different
aspects such as landscape composition and configuration. Many
landscape metrics are highly correlated; therefore, correlation
analysis should be performed in order to identify suitable metrics
which are not significantly correlated with each other. At the

same time, those metrics should represent as many aspects of
landscape pattern as possible. From the perspective of
heterogeneity level, landscape metrics are typically grouped
according to the aspect of landscape pattern measured, such as
area and edge metrics, shape metrics, core area metrics, contrast
metrics, aggregation metrics, and diversity metrics (McGarigal,
2015). On the basis of correlation analysis, diversity and
heterogeneity consideration, three landscape metrics,
i.e., percentage of Landscape (PLAND), edge density (ED), and
effective mesh size of ecological land (MESH), were selected as
ecological quality evaluation indices, and calculated at grid level.
Here, the grid size is defined as 100 m × 100 m, which is suitable to
analyze the landscape pattern for ecological quality evaluation.

PLAND is a landscape composition metric, and quantifies the
proportional abundance of ecological type in the landscape
(McGarigal, 2015). Higher PLAND values represent better
ecological quality. The PLAND is calculated as follows:

PLAND � Pi �
∑n
j�1

aij

A
(100) (1)

Pi = proportion of the landscape occupied by urban ecological
land patches type (class) i. aij = area (m2) of urban ecological land
patch ij. A = total urban ecological land area (m2).

ED was calculated as the sum of the lengths of all edge
segments of urban ecological land patches, divided by the total
landscape area (McGarigal, 2015). ED quantifies the
fragmentation and shape complexity of the ecological land
patches. Higher values of ED represent lower ecological
quality. The ED is calculated as follows:

ED �
∑m
k�1

eik

A
(10, 000) (2)

eik = total length (m) of edge in landscape involving urban
ecological land patches type (class) i, includes landscape boundary
and background segments involving patch type i. A = total urban
ecological land area (m2).

MESH focuses on the patch area of ecological land
(McGarigal, 2015). It represents the fragmentation degree,
patch area and segmentation. MESH is calculated as the sum
of the squared area of patches, divided by the total landscape area
(i.e., 10,000 m2). Higher values of MESH represent better
ecological quality. The MESH is calculated as follows:

MESH �
∑n
j�1
a2ij

A
( 1
10, 000

) (3)

aij = area (m2) of urban ecological land patch ij. A = total urban
ecological land area (m2).

3.3 Vegetation Parameters Calculation
Three ecological indicators, i.e., Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)
and Biomass (BIO) from GF-2 images were involved to quantify
vegetation condition.

FIGURE 2 | The framework of ecological quality evaluation using GF-2
remote sensing data.
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NDVI is used to determine the density of green vegetation on
the land by observing distinct colors (wavelengths) of the visible
and near infrared (NIR) sunlight reflected by the plants. The
NDVI is calculated as follows:

NDVI � NIR − Red

NIR + Red
(4)

where Red and NIR refer to the reflectance of red and near-
infrared bands in the GF-2 remote sensing data. NDVI values
range from minus one to plus one, and no green leaves gives a
value close to zero (NASA, 2017).

EVI improves sensitivity to high biomass regions and
improved vegetation monitoring capability through a de-
coupling of the canopy background signal and a reduction in
atmospheric influences (Huete et al., 1999). It has shown
significant improvements related to the analysis of
environments composed by dense vegetation (Matsushita
et al., 2007). According to the work of Liu and Huete, the EVI
is defined as (Liu and Huete, 1995):

EVI � G ×
NIR − Red

NIR + (C1 × Red − C2 × Blue) + L
(5)

where L is a soil adjustment factor, C1 and C2 are coefficients used
to correct aerosol scattering in the red band using the blue band,
Blue, Red, and NIR represent reflectance at the blue, red, and NIR
bands, respectively. In general,G = 2.5, C1 = 6.0, C2 = 7.5, and L =
1 (Huete et al., 1997). The formula can be written as follow:

EVI � 2.5 ×
NIR − Red

NIR + (6.0 × Red − 7.5 × Blue) + 1
(6)

BIO is the mass of living biological organisms in an area or
ecosystem at a given time. In remote sensing based methods,
empirical algorithms have been widely used to explore the
relationships between BIO and various vegetation indices
(Zhang, 2007). Kong et al. (2016) developed a single curve
regression model and multiple linear regression models for
estimating the BIO value of the grassland, and for forest and
shrub with R squared values of 71.9 and 52.8%, respectively (Kong
et al., 2016). Their work has been applied to the study area of
Fengning county of China, which has the similar vegetation cover
to Haidian district of Beijing. Therefore, Kong et al.’s biomass
estimation model was used in this research. Kong et al.’s model for
estimating BIO value of the grassland was defined as:

BIO � 0.272 × RVI + 0.083 (7)
where RVI refers to the Ratio Vegetation Index, the reflectance
ratio of NIR and Red band. The model for estimating biomass
value of forest and shrub is:

BIO � 3683.07 ×GNDVI − 2254.634 ×GBNDVI

− 1222.285 (8)
where GNDVI refers to Green Normalized Difference Vegetation
Index, and GBNDVI refers to Green and Blue Normalized
Difference Vegetation Index. GNDVI and GBNDVI can be
calculated using Equation 9, 10.

GNDVI � (NIR − Green)/(NIR + Green) (9)
GBNDVI � (NIR − (Green + Blue))/(NIR + (Green + Blue))

(10)
In order to quantify the ecological quality in the study area, all

selected vegetation parameters and landscape metrics were
standardized to the range of 0 and 1 based on the standard
deviation model.

3.4 Factor Analysis
In this study, factor analysis was used to determine the
relationships between the ecological indicators (input
variables) and output unobserved factors (urban ecological
quality/vegetation condition/landscape pattern). The important
output of the analysis is a table of factor loadings. Each item’s
loading represents how strongly the item is associated with the
underlying factor. The absolute value of loadings should be 0.7 or
higher to indicate the independent variables identified a priori are
represented by a factor. The mathematical form of the factor
analysis can be described as:

Y1 � β11F1 + β12F2 + ... + β1nFn + ε1
Y2 � β21F1 + β22F2 + ... + β2nFn + ε2

...
Yl � βl1F1 + βl2F2 + ... + βlnFn + εl

(11)

where Y1, Y2, . . . , Yl are the observed variables, F1, F2, . . . , Fn
are the underlying factors, and βln are loadings. For instance, β11
is called the loading of variable Y1 on factor F1. The error ε serve
to indicate that the hypothesized relationships are not exact. The
maximum likelihood estimation, one of the most commonly
used factor analysis procedures, was used in this paper to
estimate factor loadings.

In this study, the factor analysis was applied three times to
evaluation urban ecological quality from three aspects. First, the
factor analysis was conducted to assess the sensitivities of six
indicators to the overall ecological quality, and ecological quality
was used as an unobserved factor. A loading matrix of six
variables and a map of ecological quality were derived. Then,
vegetation condition and landscape patterns were optimized
using factor analysis, based on three vegetation parameters and
three landscape metrics respectively. Lastly, based on the
loading matrix, a linear function with two variables
(vegetation condition and landscape pattern) was developed
to provide more reliable evaluation of the ecological quality of
the study area. For easy comparison, all values derived from
factor analysis and linear model were normalized to the range of
0 and 1.

3.5 Linear Model
In order to present the contribution of landscape patterns more
rationally without neglecting the influence of both aspects, a
linear model was built to combine vegetation condition and
landscape pattern as two variables, with their weights
calculated from loadings of factor analysis.

Linear functions commonly arise from practical problems
involving variables x and y with a linear relationship, that is,
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obeying a linear equation. The linear model used in this paper is
deduced from the results of factor analysis, taking the form:

F � a ·X + b · Y
a + b

(12)

where a and b are mean factor loadings of vegetation parameters
and landscape metrics respectively, X and Y are two factors
representing vegetation condition and landscape pattern, and
F is the urban ecological quality.

According to the discussions on factor loadings of every
variable for the effect of ecological quality, a linear model was
built based on the six variable loadings and the output of
vegetation condition and landscape pattern. The result of
model calculation represents the more reasonable ecological
quality.

4 RESULTS AND ANALYSIS

4.1 Land Cover Classification
Land cover types in Haidian District, involving grassland,
forest, shrub, clean water, turbid water, barren soil, and
impervious surface were identified from GF-2 images
through object-oriented method (Figure 3). Accuracy
evaluation using randomly selected samples showed that the
overall accuracy of the classification reaches 84.1%, and the
Kappa coefficient (Consistency check index) is 0.72. Large
patches of forest/shrub and grassland are located in the
northwest, while patches of impervious surface locate
mostly in the highly urbanized east-southern regions.

4.2 Spatial Distribution of the Six Ecological
Indicators
The spatial distribution of the three vegetation parameters
showed similar patterns (Figure 4). Lower value patches
indicated lower productivities and poor ecological effects due
to poor vegetation coverage and low-level photosynthesis ratio.
Spatial distribution patterns of NDVI, EVI, and BIO are also
highly consistent among sub-districts (Figure 4D).

Landscape metrics of the ecological land in Haidian District
were also calculated (Figure 5). PLAND (a) and MESH (c)
showed lower values in the southeastern area, indicating higher
level fragmentation of ecological land. Higher values of both
metrics can be observed in the northwest, indicating better
landscape pattern. ED (b) showed the opposite distribution
of PLAND (a) and MESH (c). Mean metrics at sub-district
scale reveal that PLAND and MESH values are highly consistent
while ED values are negatively correlated with them
(Figure 5D).

4.3 Urban Ecological Quality Evaluation
4.3.1 Results of Factor Analysis
Factor analysis was used in this study to analyze the relationship
between input variables (ecological indicators) and the output
unobserved factor. The results of three factor analyses correspond
respectively to levels of ecological quality, vegetation condition
and landscape pattern.

First, the output of unobserved factor was generated through
factor analysis with all six input variables. The weight of each
indicator was multiplied by its corresponding indicator value to
generate an overall ecological quality value (Figure 6). Here, the
urban ecological quality based on factor analysis with six
indicators is abbreviated as EQ1.

Likewise, two other maps were generated using factor analysis
(Figure 7), including the output unobserved factor of vegetation
condition based on three vegetation parameters, and the output of
landscape pattern using three landscape metrics as input.
Figure 7A is the map of vegetation condition levels.
Figure 7B is the map of landscape pattern levels. The hot
spots in Figure 7A, in red, show the areas that have poor
vegetation condition, and the hot spots in Figure 7B, in red,
refer to the areas that have the lower-level landscape patterns.

Figure 7C showed two curves with green and red representing
levels of vegetation condition and landscape pattern at sub-
district scale. Most sub-districts have higher vegetation
condition value than landscape pattern value, and only nine
are in opposite situation. It is also indicated that Qinglongqiao
has the biggest difference of 0.36 between values of vegetation
condition and landscape pattern.

Figure 8 illustrates the contribution of vegetation
condition and landscape pattern to urban ecological quality.
The comparison revealed that EQ1 values were more likely to
be consistent with those of vegetation condition, regardless of the
values of landscape patter. This indicates that EQ1 from the 6-
indicator factor analysis overlooked the contribution of landscape
pattern, and may represent biased ecological quality of the
study area.

FIGURE 3 | Land cover classification of Haidian District, Beijing.
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4.3.2 Results of the Linear Model
It is indicated by the factor analysis results that, landscape pattern,
one of themost important factors that affect urban ecological quality,
should be incorporated in a different way in the ecological evaluation
process. Therefore, this study adopted a linear model integrating
vegetation condition and landscape pattern with their respective
weights, instead of the 6-factor analysis. We take the average of the
absolute loading values as a weight. Then, ecological quality was
calculated based on the linear model which considers vegetation and
landscape with their respective weights.

4.3.2.1 The Weights of Vegetation and Landscape
Equation 13 in factor analysis gives the relationship between
ecological quality and the six observed variables (PLAND,
ED, MESH, NDVI, EVI, and BIO) with indicator loadings
shown.

PLAND � 0.884 × F1 + ε1
ED � −0.508 × F1 + ε2
MESH � 0.790 × F1 + ε3
NDVI � 0.993 × F1 + ε4
EVI � 0.955 × F1 + ε5
BIO � 0.878 × F1 + ε6

(13)

These loadings represent how strongly this indicator is associated
with the unobserved factor (EQ1). The importance of various
ecological indicators can be determined through comparison of
their loadings on ecological quality. PLAND, MESH, NDVI, EVI,
and BIO had positive loading values higher than 0.7, indicating that
those variables were positively correlatedwith EQ1 and therefore can
be used as important indicators to evaluate the ecological quality. On
the other hand, ED has a negative loading value, which indicates a
negative correlation between ED and ecological quality. The absolute
loading value of ED is lower than 0.7, showing weaker relationship
between ED and the factor compared to other indicators.

According to Equation 14, the weight of vegetation
condition 1) is 0.942, derived as the average of absolute
loadings of three vegetation parameters. The weight of
landscape pattern 2) is 0.727, the average of the absolute
loadings of three landscape metrics.

a � (0.878 + 0.993 + 0.955)/3 � 0.942
b � ( 0.884 + 0.508 + 0.790)/3 � 0.727

(14)

In the study, a linear combination model was adopted to
give ecological quality evaluation considering both
vegetation condition and landscape pattern. Here, the

FIGURE 4 | The spatial distribution of NDVI (A), EVI (B), and BIO (C) values, and sub-district-wise normalized indices (D).
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urban ecological quality based on linear model with the
wights of vegetation condition and landscape pattern is
abbreviated as EQ2. Vegetation condition and landscape
pattern from factor analysis (Figure 7) were used as two
separate sets in the model. Equation 15 shows the
relationship between ecological quality and the two
observed variables (vegetation condition X and landscape
pattern Y).

EQ2 � a ·X + b · Y
a + b

� 0.942 ·X + 0.727 · Y
1.669

(15)

4.3.2.2 Ecological Quality Map
Figure 9A showed the result of EQ2 in Haidian District using
the linear model. Compared to Figures 7A,B, there exists good
consistency between higher ecological quality and higher
vegetation level and reasonable landscape patterns. The
areas with high levels of ecological quality mostly present
good vegetation conditions and reasonable landscape
patterns. On the other hand, those areas with low levels of

ecological quality are mainly caused by unreasonable
landscape patterns combined with average levels of
vegetation conditions. The hot spots, in red, in Figure 9A
are the areas of poor ecological quality.

Figure 9B showed EQ1 from the factor analysis and EQ2 from
the linear model at sub-districts scale. EQ1 indicated that the
levels were more likely consistent with that of vegetation
condition. Comparisons found the levels of EQ2, which
considered both vegetation conditions and landscape patterns
is effective in evaluating urban ecological quality.

From the perspective of spatial variation of ecological quality,
it can be concluded that there exists a gradual change from better
quality in the northwest to worse in the southeast (Figure 9A).
The northwestern part of Haidian, including Xiangshan, Sujiaduo
and Wenquanzhen sub-districts has higher ecological quality.
Then the sub-districts to the east of the top three high level
ecological quality sub-districts, i.e., Shangzhuang, Xibeiwang and
Sijiqing, ranked in the second tier of higher ecological quality.

In the middle-eastern part, sub-districts have a medium level
of ecological quality. Southeastern part of Haidian district,
especially Yongdinglu, Zhongguancun, Beixiaguan, Haidian

FIGURE 5 | The spatial distribution of landscape metrics PLAND (A), ED (B), and MESH (C), and sub-district-wise normalized landscape metrics (D).
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and Beitaipingzhuang sub-districts, has lower level of ecological
quality. The other areas exhibited mixed ecological quality
patterns.

With that, Beijing government released a general city plan
for 2016 to 2035. The plan emphasizes on removing non-
capital functions and solving “big city disease”. It was also
mentioned that the green area of Beijing will grow from 41.6 to
44% by year 2020 (Beijing general plan (2016-2035)).
Northern region with the rich natural and human resources
is the expanding area of Zhongguancun Science Park. In
Haidian district overall development and planning,
northern region is considered as a tourist area and
ecological barrier, therefore urbanization is strictly under
control and hardly permitted in these areas.

5 DISCUSSION

5.1 Vegetation Plays the Decisive Role for
Ecological Quality
Over the past several decades, vegetation has been identified as an
important contributor to urban environment and ecological
service. Urban vegetation can contribute to quality of life at
the most fundamental level through biodiversity protection,
water quality levels, and maintenance of ecological processes
and life-support systems (Carne, 1994). Interactions between
vegetation and ecological quality were described by
experiments (Fennessy et al., 2002; Pu et al., 2008; Giménez
et al., 2017) or by models (Rajabov, 2009; Giménez et al., 2016;
Kuipers et al., 2016). In this research, vegetation played a key role

in ecological evaluation as shown by factor analysis results.
Equation 14 showed that the three vegetation parameters
(NDVI, EVI, and BIO) have positive and much higher loading
values. This is consistent with the work that other researchers
have done (Aksoy, 2010; Kuipers et al., 2016). Among the three
vegetation parameters, NDVI represents the richness of
vegetation and plays the decisive role for ecological quality,
resulting in a push to improve urban environments by
planting more trees and grass.

5.2 Landscape Metrics Contribute Less but
Are Indispensable to Ecological Quality
Landscape structure has an important influence on a wide range of
ecological patterns and processes, and landscape metrics are
common tools to assess these relations under the matrix-
corridor-patch model (Forman, 1995; Turner et al., 2001).
Landscape patterns become increasingly crucial in ecological
quality evaluation in urban areas because of the gradually
fragmented ecological land. The importance of landscape
patterns was underestimated as shown in the 6-indicator
factor analysis results, while actually landscape metrics such
as patch size, patch shape and distribution of urban ecological
land play a decisive role in defining their ecological and
landscape functions (Kong et al., 2007).

In light of this issue, the study evaluated ecological quality based
on two separate groups of indicators, e.g., vegetation parameters and
landscape pattern. Factor analysis was performed separately to
generate their ecological effects, and then a linear combination
model was used to evaluate ecological quality integrating the
effects of both indicator groups. In this way can landscape
metrics provide proper contribution to ecological quality
evaluation. The results are expected to emphasize the
contribution of landscape pattern to urban ecological quality in
future studies. These can help decision-makers better understand
cause and effect relationships between the influencing factors and
urban ecological quality.

Figure 10 shows three maps of vegetation condition (a),
landscape pattern (b), and EQ2 (c) of Qinglongqiao sub-district.
In Figure 10A, the hot spots in the left-bottom indicated the area
with extremely poor vegetation condition. However, Figure 10C
showed that the ecological quality is not in the lowest level in the
same area. This result was caused by the quite good landscape
pattern with green color (Figure 10B). Therefore, the method
proposed in this study synthesizes together landscape metrics and
vegetation parameters in a reasonable way, and is expected to result
in more convinced ecological results.

Furthermore, landscape metrics have been used to assess
ecological patterns and processes. In this study, higher PLAND
and MESH, and lower ED represent better ecological quality.
PLAND and MESH have positive influence while ED has
negative one. Thus, patch size and shape present the
fundamental landscape indicator in assessing the urban
ecological quality. For example, a connected green network
has higher amenity value than smaller and fragmented ones. It
can enhance the amenity values of green spaces and provide
more choices to residents (Jim and Chen, 2003). Although ED

FIGURE 6 | Map of ecological quality (EQ1) using six-indicator-based
factor analysis in Haidian district.
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has the least weight, it also can contribute to the complexity of
patch edge and consequently the interactions between green
spaces and ecological quality according to edge effect (Harper
et al., 2005).

5.3 Advantages and Limitations of the
Proposed Method
Remotely sensed images, especially high spatial resolution
images provide several advantages in ecological land
mapping and quantitative evaluation of ecological quality.
Object-oriented image classification can provide highly
accurate land cover map that can be used to generate
ecological indicators with reliable accuracy, especially when
meter level spatial resolution images were involved. The
proposed method described the detailed differences of
ecological quality at regional scales, which account for the
spatial heterogeneity in evaluating urban ecological quality.

The shortage of the method lies in the spatial scale of the
evaluation. Vegetation parameters can be derived from high
spatial resolution images and UAV (Unmanned Aerial Vehicle)
based remote sensing techniques. However, landscape metrics were
calculated at a grid pixel level, which causes a coarser spatial
resolution of the landscape metrics than vegetation parameters.
Due to the availability of data, remote sensing-based vegetation
and landscape indicators were considered in this study. Other
indicators, e.g., air quality, vegetation diversity could be discussed
in future work.

5.4 Policy Optimization by Combining
Ecological Land Spatial Pattern
Increasing the area of ecological land (such as water bodies and
especially vegetation) is a traditional way to improve ecological
quality. With the rapid increase of population and expansion
of built-up area, ecological land faces a growing risk of

FIGURE 7 | Map of Vegetation condition (A), Landscape pattern (B), and the sub-district-wise values in Haidian district (C).
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fragmentation. Therefore, the ecological quality evaluation
method proposed in this paper, could provide decision-
makers and the general public with specific information on
the current status of vegetation condition and their spatial
pattern, from the ecological quality view. Urban ecological
quality could be enhanced through spatial pattern
optimization as well as ecological land area expansion.

Figure 11 showed three lines with different colors to
represent the levels of EQ2, vegetation condition and
landscape pattern for each sub-district in Hiadian District.

Xiangshan has the highest ecological quality level due to the
most reasonable landscape pattern and the best vegetation
condition, while Yongdinglu has the lowest. Either poor
vegetation or unreasonable landscape patterns can result in
low levels of ecological quality. The sub-districts with lower
ecological quality can be potentially improved through
optimization of the landscape pattern of ecological land or
improvement of vegetation vigor. Hence, efficient policies to
either improve vegetation vigor, increase vegetation area, or
optimize spatial pattern could be drawn from Figure 11. For

FIGURE 8 | Ecological quality (EQ1), vegetation condition and landscape pattern derived from factor analysis at sub-district scale.

FIGURE 9 | Results of ecological quality evaluation (EQ2) with the linear model (A), comparison to results with two methods (B).
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19 sub-districts including Zhongguancun, which have higher
vegetation condition value than landscape pattern value, the
better way to improve the ecological quality of those areas is to
make the landscape pattern more reasonable.
Correspondingly, for the other nine sub-districts including
Qinglongqiao, which have higher landscape pattern value than
vegetation condition value, improving the vegetation
condition of ecological land is considered a better solution
to achieve higher ecological quality of this area.

Another result shown in Figure 11 is that ecological quality is
greatly affected by landscape pattern in those sub-districts with
lower levels (score_VEG <0.4) of vegetation condition. Due to
building protection and cultural tradition, it is difficult to
improve vegetation condition in the above-mentioned sub-
districts. Therefore, improving the level of landscape pattern is
an effective way to make ecological quality better.

With the “ecological city” initiative launched as an integral
part of Beijing and local government strategy, a plan is developed
to build a compound ecological security pattern, according to the

actual situation of Haidian district, The revealed performances
and pattern of ecological quality will be useful to understand
vegetation condition and landscape pattern as the sensitive
influencing factors of ecological environment, and to improve
urban land use and ecology management decisions. In the
northern regions with mountains and wetlands, vegetation
conditions need to be maintained and improved. However, in
the southern regions with built-up land, ecological land patches
are smaller and more fragmented. The better way to improve
ecological quality is to optimize the landscape pattern instead of
vegetation condition.

6 CONCLUSION

This paper proposed a novel method to evaluate urban
ecological quality integrating vegetation condition and
landscape pattern metrics from remotely sensed images. The
paper gives more reliable ecological quality mapping in Haidian

FIGURE 10 | Maps of vegetation condition (A), landscape pattern (B), and EQ2 (C) of Qinglongqiao sub-district.

FIGURE 11 | The normalized results of landscape pattern levels, vegetation condition levels and ecological quality.
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District, Beijing, China. The following conclusions can be drawn
in the study.

• High-resolution remote-sensing-based method enables the
development of ecological indicators with high spatial
accuracy, thus better describing the detailed differences of
ecological quality at regional scales, and could account for the
spatial heterogeneity in evaluating urban ecological quality.

• Landscape patterns should be considered in the ecological
evaluation process. Ecological quality evaluation based on
only vegetation condition factors, e.g., NDVI, EVI, and
BIO, cannot reflect the reality in Haidian District, Beijing,
leading to the situation that areas with high levels of
vegetation condition are more likely to be associated
with higher level ecological quality, regardless of the
landscape pattern level. This revealed the big
shortcoming of the evaluation for neglecting the
fragmentation of the ecological land and against the
common sense of ecological quality.

• Ecological quality evaluation integrating vegetation
condition factors and landscape metrics, e.g., PLAND,
ED, and MESH, could result in more reliable and
effective estimation. Areas with high levels of vegetation
condition and reasonable landscape pattern lead to higher
ecological quality results. On the other hand, those areas
with low levels of ecological quality are mainly caused by
unreasonable landscape patterns combined with below-
average levels of vegetation condition.

• Ecological quality evaluation based on vegetation condition
factors and landscape metrics could result in more spatially
specific ecological quality level, and reflect the spatial variation
in the study area. Analysis of the ecological quality evaluation
results found that there exists a gradual degradation of

ecological quality from the northwest to the southeast
along, consistent with the intensified urbanization.

• Ecological quality is greatly affected by landscape pattern
when the levels of vegetation condition is below 0.4. For
optimization of ecological quality in those sub-districts, the
government could make great efforts to improve landscape
pattern such as creating more small patches of green space
or water bodies, as well as strengthening the greening
pattern of the built-up area.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because Only used for scientific research where the study area
is Beijing, and people are restricted to students and researchers
in China. Requests to access the datasets should be directed to
HH, huanghp@aircas.ac.cn.

AUTHOR CONTRIBUTIONS

HH conceived and designed the experiments, conducted the data
analysis and wrote the manuscript; QL developed the
methodology; YZ performed the experiments; QL and YZ
edited the manuscript.

FUNDING

This research was funded by National Key R&D Program of
China (2017YFB0503800).

REFERENCES

Aksoy, Y. (2010). Examining the Ecological Quality of Küçükçekmece District
Parks in Istanbul in Terms of Permeability and Natural Vegetation. Ekoloji 19,
181–189. doi:10.5053/ekoloji.2010.7422

Allender, S., Lacey, B., Webster, P., Rayner, M., Deepa, M., Scarborough, P., et al.
(2010). Level of Urbanization and Noncommunicable Disease Risk Factors in
Tamil Nadu, India. Bull. World Health Organ. 88 (4), 297–304. doi:10.2471/blt.
09.065847

Arlt, G., and Lehmann, I. (2005). Ecosystem Land Service Method System–Analysis
and Evaluation of Urban Areas in Dresden. IÖR.

Behling, R., Bochow, M., Foerster, S., Roessner, S., and Kaufmann, H. (2015).
Automated GIS-Based Derivation of Urban Ecological Indicators Using
Hyperspectral Remote Sensing and Height Information. Ecol. indicators 48,
218–234. doi:10.1016/j.ecolind.2014.08.003

Bolund, P., and Hunhammar, S. (1999). Ecosystem Services in Urban Areas. Ecol.
Econ. 29, 293–301. doi:10.1016/s0921-8009(99)00013-0

Botequilha Leitão, A., and Ahern, J. (2002). Applying Landscape Ecological
Concepts and Metrics in Sustainable Landscape Planning. Landscape Urban
Plann. 59, 65–93. doi:10.1016/s0169-2046(02)00005-1

Bureau of Statistics of Haidian District (2020). National Economic and Social
Development Statistical Bulletin of Haidian District in 2019. Beijing, China:
Haidian District Government.

Cadenasso, M. L., Pickett, S. T. A., and Schwarz, K. (2007). Spatial Heterogeneity in
Urban Ecosystems: Reconceptualizing Land Cover and a Framework for

Classification. Front. Ecol. Environ. 5, 80–88. doi:10.1890/1540-9295(2007)5
[80:shiuer]2.0.co;2

Carne, R. J. (1994). “Urban Vegetation: Ecological and Social Value,” in
Proceedings of the 1994 National Greening Australia Conference, 4–6.

Chinese Academy of Social Sciences (2019). The 17th Report on the Competitiveness
of Chinese Cities.

Du, H., Zhou, F., Li, C., Cai, W., Jiang, H., and Cai, Y. (2020). Analysis of the
Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island
in Rapid Urbanization, a Case Study of Shanghai, China. Sustainability 12 (3),
1–17. doi:10.3390/su12031171

Eliasson, I., and Svensson, M. K. (2003). Spatial Air Temperature Variations and
Urban Land Use - a Statistical Approach. Met. Apps 10, 135–149. doi:10.1017/
s1350482703002056

Elmqvist, T. (2013). Urbanization, Biodiversity and Ecosystem Services : Challenges
and Opportunities : A Global Assessment : A Part of the Cities and Biodiversity
Outlook Project. Springer.

Estoque, R. C., and Murayama, Y. (2013). Landscape Pattern and Ecosystem
Service Value Changes: Implications for Environmental Sustainability
Planning for the Rapidly Urbanizing Summer Capital of the Philippines.
Landscape Urban Plann. 116, 60–72. doi:10.1016/j.landurbplan.2013.
04.008

Fennessy, M. S., Gernes, M., Mack, J. J., and Wardrop, D. H. (2002). Methods
for Evaluating Wetland Condition: Using Vegetation to Assess
Environmental Conditions in Wetlands. Washington, DC:
Environmental Protection Agency, Office of Water. EPA-822-R-02-020
U.S. 2002.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 76560413

Huang et al. Ecological Quality Assessment Remote Sensing

mailto:huanghp@aircas.ac.cn
https://doi.org/10.5053/ekoloji.2010.7422
https://doi.org/10.2471/blt.09.065847
https://doi.org/10.2471/blt.09.065847
https://doi.org/10.1016/j.ecolind.2014.08.003
https://doi.org/10.1016/s0921-8009(99)00013-0
https://doi.org/10.1016/s0169-2046(02)00005-1
https://doi.org/10.1890/1540-9295(2007)5[80:shiuer]2.0.co;2
https://doi.org/10.1890/1540-9295(2007)5[80:shiuer]2.0.co;2
https://doi.org/10.3390/su12031171
https://doi.org/10.1017/s1350482703002056
https://doi.org/10.1017/s1350482703002056
https://doi.org/10.1016/j.landurbplan.2013.04.008
https://doi.org/10.1016/j.landurbplan.2013.04.008
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Forman, R. T. T. (1995). Some General Principles of Landscape and Regional
Ecology. Landscape Ecol. 10, 133–142. doi:10.1007/bf00133027

Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H., and Gaston, K. J.
(2007). Psychological Benefits of Greenspace Increase with Biodiversity. Biol.
Lett. 3, 390–394. doi:10.1098/rsbl.2007.0149

Giménez, M. G., de Jong, R., Della Peruta, R., Keller, A., and Schaepman, M. E.
(2017). Determination of Grassland Use Intensity Based on Multi-Temporal
Remote Sensing Data and Ecological Indicators. Remote Sensing Environ. 198,
126–139.

Giménez, M. G., Della Peruta, R., de Jong, R., Keller, A., and Schaepman, M.
E. (2016). Spatial Differentiation of Arable Land and Permanent
Grassland to Improve a Land Management Model for Nutrient
Balancing. IEEE J. Selected Top. Appl. Earth Observations Remote
Sensing 9, 5655–5665.

Gómez-Baggethun, E., and Barton, D. N. (2013). Classifying and Valuing
Ecosystem Services for Urban Planning. Ecol. Econ. 86, 235–245.

Gonzalez, M., Ladet, S., Deconchat, M., Cabanettes, A., Alard, D., and Balent, G.
(2010). Relative Contribution of Edge and Interior Zones to Patch Size Effect on
Species Richness: An Example for Woody Plants. For. Ecol. Manage. 259,
266–274. doi:10.1016/j.foreco.2009.10.010

Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders,
S. C., et al. (2005). Edge Influence on forest Structure and Composition in
Fragmented Landscapes. Conservation Biol. 19, 768–782. [CrossRef]. doi:10.
1111/j.1523-1739.2005.00045.x

Henry, J. A., and Dicks, S. E. (1987). Association of Urban Temperatures with Land
Use and Surface Materials. Landscape Urban Plann. 14, 21–29. doi:10.1016/
0169-2046(87)90003-x

Huete, A., Justice, C., and Leeuwen, W. (1999). MODIS Vegetation Index (MOD
13) Algorithm Theoretical Basis. Document Version 3.

Huete, A., Liu, H. Q., Batchily, K., and van Leeuwen, W. (1997). A
Comparison of Vegetation Indices Over a Global Set of TM Images for
EOS-MODIS. Remote Sensing Environ. 59, 440–451. doi:10.1016/s0034-
4257(96)00112-5

Liu, H. Q., and Huete, A. (1995). A Feedback Based Modification of the NDVI to
Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci.
Remote Sensing 33, 457–465. doi:10.1109/36.377946

Jim, C. Y., and Chen, S. S. (2003). Comprehensive Greenspace Planning
Based on Landscape Ecology Principles in Compact Nanjing City,
China. Landscape Urban Plann. 65, 95–116. doi:10.1016/s0169-
2046(02)00244-x

Kaufmann, R. K., Seto, K. C., Schneider, A., Liu, Z., Zhou, L., and Wang, W.
(2007). Climate Response to Rapid Urban Growth: Evidence of a Human-
Induced Precipitation Deficit. J. Clim. 20, 2299–2306. doi:10.1175/
jcli4109.1

Kong, F., Li, X., and Bai, Y. (2016). The Estimation of Aboveground Vegetation
Carbon Storage Based on GF-1 WFV Satellite Images in Fengning County.
Resour. Sci. 38, 1054–1064.

Kong, F., Yin, H., and Nakagoshi, N. (2007). Using GIS and Landscape Metrics in
the Hedonic Price Modeling of the Amenity Value of Urban Green Space: A
Case Study in Jinan City, China. Landscape Urban Plann. 79, 240–252. doi:10.
1016/j.landurbplan.2006.02.013

Kuipers, H. J. G., Netten, J. J. C., and Hendriks, A. J. (2016). Explaining
Ecological Quality by Using Variable Vegetation Densities in Hydrological
Modelling. Aquat. Bot. 133, 38–44. [CrossRef]. doi:10.1016/j.aquabot.2016.
05.008

Lakes, T., and Kim, H.-O. (2012). The Urban Environmental Indicator “Biotope
Area Ratio”-An Enhanced Approach to Assess and Manage the Urban
Ecosystem Services Using High Resolution Remote-Sensing. Ecol. Indicators
13, 93–103. doi:10.1016/j.ecolind.2011.05.016

Li, F., Wang, W., Zhang, X., Wang, R., and Zhao, D. (2009). Urban Ecological Land
and its Optimization of Service Function. China Population. Resour. Environ.
19, 343–347.

Li, Y., Zhu, X., Sun, X., and Wang, F. (2010). Landscape Effects of Environmental
Impact on Bay-Area Wetlands Under Rapid Urban Expansion and
Development Policy: A Case Study of Lianyungang, China. Landscape
Urban Plann. 94, 218–227. doi:10.1016/j.landurbplan.2009.10.006

Listopad, C. M. C. S., Masters, R. E., Drake, J., Weishampel, J., and Branquinho, C.
(2015). Structural Diversity Indices Based on Airborne LiDAR as Ecological

Indicators for Managing Highly Dynamic Landscapes. Ecol. Indicators 57,
268–279. doi:10.1016/j.ecolind.2015.04.017

Matsushita, B., Yang, W., Chen, J., Onda, Y., and Qiu, G. (2007). Sensitivity of the
Enhanced Vegetation index (EVI) and Normalized Difference Vegetation index
(NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest.
Sensors 7, 2636–2651. doi:10.3390/s7112636

McGarigal, K. (2015). Spatial Pattern Analysis Program for Categorical and
Continuous Maps. Fragstats Help 4, 2. [CrossRef].

NASA (2017). Measuring Vegetation (NDVI & EVI): Normalized Difference
Vegetation Index. NDVI.

National Bureau of Statistics of China (2021). Press Conference on the Operation of
the National Economy in 2021. Chinese Government 2022.

O’Neill, R. V., Gardner, R. H., Milne, B. T., Turner, M. G., and Jackson, B. (1991).
Heterogeneity and Spatial Hierarchies, Ecological Heterogeneity. Springer,
85–96.

Owen, D. (2010). Urbanization, Water Quality, and the Regulated Landscape.
Social ence Electronic Publishing.

Peng, J., Xie, P., Liu, Y., and Ma, J. (2016). Urban Thermal Environment Dynamics
and Associated Landscape Pattern Factors: A Case Study in the Beijing
Metropolitan Region. Remote Sensing Environ. 173, 145–155. doi:10.1016/j.
rse.2015.11.027

Peng, J., Zhao, M., Guo, X., Pan, Y., and Liu, Y. (2017). Spatial-Temporal Dynamics
and Associated Driving Forces of Urban Ecological Land: A Case Study in
Shenzhen City, China. Habitat Int. 60, 81–90. doi:10.1016/j.habitatint.2016.
12.005

Pettorelli, N., Laurance, W. F., O’Brien, T. G., Wegmann, M., Nagendra, H., and
Turner, W. (2014). Satellite Remote Sensing for Applied Ecologists:
Opportunities and Challenges. J. Appl. Ecol. 51, 839–848. doi:10.1111/1365-
2664.12261

Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R. I., and Anderson, G. L. (2008).
Using Classification and NDVI Differencing Methods for Monitoring Sparse
Vegetation Coverage: A Case Study of Saltcedar in Nevada, USA. Int. J. Remote
Sensing 29, 3987–4011. doi:10.1080/01431160801908095

Rajabov, T. (2009). “Ecological Assessment of Spatio-Temporal Changes
of Vegetation in Response to Biosphere Effects in Semi-Arid
Rangelands of Uzbekistan,” in Land Restoration Training Programme
(Reykjavik, Iceland). http://www.unulrt.is/static/fellows/document/
rajabov_t.pdf.

Ramakrishnan, P. (2014). An Approach to Classify the Object from the Satellite
Image Using Image Analysis Tool. IJIRST 1 (4), 2349–6010.

Rose, R. A., Byler, D., Eastman, J. R., Fleishman, E., Geller, G., Goetz, S., et al.
(2015). Ten Ways Remote Sensing Can Contribute to Conservation.
Conservation Biol. 29, 350–359. doi:10.1111/cobi.12397

Sarrat, C., Lemonsu, A., Masson, V., and Guedalia, D. (2006). Impact of Urban
Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 40,
1743–1758. doi:10.1016/j.atmosenv.2005.11.037

Su, S., Xiao, R., Jiang, Z., and Zhang, Y. (2012). Characterizing Landscape
Pattern and Ecosystem Service Value Changes for Urbanization Impacts at
an Eco-Regional Scale. Appl. Geogr. 34, 295–305. doi:10.1016/j.apgeog.
2011.12.001

Turner, M. G., Gardner, R. H., O’neill, R. V., Gardner, R. H., and O’Neill, R.
V. (2001). Landscape Ecology in Theory and Practice. Springer.
[CrossRef].

Uy, P. D., and Nakagoshi, N. (2008). Application of Land Suitability Analysis and
Landscape Ecology to Urban Greenspace Planning in Hanoi, Vietnam. Urban
For. Urban Green. 7, 25–40. doi:10.1016/j.ufug.2007.09.002

Wang, Z., Li, J., Yang, Y., Li, H., Wu,M.,Wang, K., et al. (2017).Quantitative Assess
the Dynamic Change of Urban Ecological Environment Based on Remote
Sensing—A Case Study in Yixing City, Jiangsu Province. Journal of Ningxia
University.

Xu, H. (2013). A Remote Sensing Urban Ecological Index and its Application. Acta
Ecologica Sinica 33, 7853–7862.

Zhang, C. L., Chen, F., Miao, S. G., Li, Q. C., Xia, X. A., and Xuan, C. Y. (2009).
Impacts of Urban Expansion and Future Green Planting on Summer
Precipitation in the Beijing Metropolitan Area. J. Geophys. Res. 114,
D02116. doi:10.1029/2008jd010328

Zhang, F., Wang, Y., Ma, X., Wang, Y., Yang, G., and Zhu, L. (2019). Evaluation of
Resources and Environmental Carrying Capacity of 36 Large Cities in China

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 76560414

Huang et al. Ecological Quality Assessment Remote Sensing

https://doi.org/10.1007/bf00133027
https://doi.org/10.1098/rsbl.2007.0149
https://doi.org/10.1016/j.foreco.2009.10.010
https://doi.org/10.1111/j.1523-1739.2005.00045.x
https://doi.org/10.1111/j.1523-1739.2005.00045.x
https://doi.org/10.1016/0169-2046(87)90003-x
https://doi.org/10.1016/0169-2046(87)90003-x
https://doi.org/10.1016/s0034-4257(96)00112-5
https://doi.org/10.1016/s0034-4257(96)00112-5
https://doi.org/10.1109/36.377946
https://doi.org/10.1016/s0169-2046(02)00244-x
https://doi.org/10.1016/s0169-2046(02)00244-x
https://doi.org/10.1175/jcli4109.1
https://doi.org/10.1175/jcli4109.1
https://doi.org/10.1016/j.landurbplan.2006.02.013
https://doi.org/10.1016/j.landurbplan.2006.02.013
https://doi.org/10.1016/j.aquabot.2016.05.008
https://doi.org/10.1016/j.aquabot.2016.05.008
https://doi.org/10.1016/j.ecolind.2011.05.016
https://doi.org/10.1016/j.landurbplan.2009.10.006
https://doi.org/10.1016/j.ecolind.2015.04.017
https://doi.org/10.3390/s7112636
https://doi.org/10.1016/j.rse.2015.11.027
https://doi.org/10.1016/j.rse.2015.11.027
https://doi.org/10.1016/j.habitatint.2016.12.005
https://doi.org/10.1016/j.habitatint.2016.12.005
https://doi.org/10.1111/1365-2664.12261
https://doi.org/10.1111/1365-2664.12261
https://doi.org/10.1080/01431160801908095
http://www.unulrt.is/static/fellows/document/rajabov_t.pdf
http://www.unulrt.is/static/fellows/document/rajabov_t.pdf
https://doi.org/10.1111/cobi.12397
https://doi.org/10.1016/j.atmosenv.2005.11.037
https://doi.org/10.1016/j.apgeog.2011.12.001
https://doi.org/10.1016/j.apgeog.2011.12.001
https://doi.org/10.1016/j.ufug.2007.09.002
https://doi.org/10.1029/2008jd010328
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Based on a Support-Pressure Coupling Mechanism. Sci. Total Environ. 688,
838–854. doi:10.1016/j.scitotenv.2019.06.247

Zhang, H. (2007). Applications of RS Technology in Forest Biomass Research.
World For. Res. 20, 30–34.

Zhou, T., Wu, J., and Peng, S. (2012). Assessing the Effects of Landscape Pattern on
River Water Quality at Multiple Scales: A Case Study of the Dongjiang River
Watershed, China. Ecol. Indicators 23, 166–175. doi:10.1016/j.ecolind.2012.
03.013

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huang, Li and Zhang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 76560415

Huang et al. Ecological Quality Assessment Remote Sensing

https://doi.org/10.1016/j.scitotenv.2019.06.247
https://doi.org/10.1016/j.ecolind.2012.03.013
https://doi.org/10.1016/j.ecolind.2012.03.013
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	A High-Resolution Remote-Sensing-Based Method for Urban Ecological Quality Evaluation
	1 Introduction
	2 Study Area, Data Collection and Pre-Processing
	2.1 Study Area
	2.2 Remote Sensing Data and Preprocessing

	3 Methods
	3.1 Object-Oriented Land Cover Classification
	3.2 Landscape Metrics Calculation
	3.2.1 Definition of Urban Ecological Land
	3.2.2 Landscape Metrics Selection and Measurement

	3.3 Vegetation Parameters Calculation
	3.4 Factor Analysis
	3.5 Linear Model

	4 Results and Analysis
	4.1 Land Cover Classification
	4.2 Spatial Distribution of the Six Ecological Indicators
	4.3 Urban Ecological Quality Evaluation
	4.3.1 Results of Factor Analysis
	4.3.2 Results of the Linear Model
	4.3.2.1 The Weights of Vegetation and Landscape
	4.3.2.2 Ecological Quality Map


	5 Discussion
	5.1 Vegetation Plays the Decisive Role for Ecological Quality
	5.2 Landscape Metrics Contribute Less but Are Indispensable to Ecological Quality
	5.3 Advantages and Limitations of the Proposed Method
	5.4 Policy Optimization by Combining Ecological Land Spatial Pattern

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


