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Accurate acquisition for the positions of the waterlines plays a critical role in coastline extraction. However, waterline extraction from high-resolution images is a very challenging task because it is easily influenced by the complex background. To fulfill the task, two types of vision transformers, segmentation transformers (SETR) and semantic segmentation transformers (SegFormer), are introduced as an early exploration of the potential of transformers for waterline extraction. To estimate the effects of the two methods, we collect the high-resolution images from the web map services, and the annotations are created manually for training and test. Through extensive experiments, transformer-based approaches achieved state-of-the-art performances for waterline extraction in the artificial coast.
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INTRODUCTION
A coastline is the boundary between the dry and wet part in the coastal area when the high tide water is in the mean level Toure et al. (2018). The coastline is a critical geographic information source, and it is of great significance to autonomous navigation, coastal resource management, and protection of the environment Liu et al. (2013). Coastline extraction is a very challenging problem because it is obtained from a region not an instantaneous line. The waterline extraction is the precondition for computing the natural coastline, so the waterline extraction is very important and meaningful. The waterline is the instantaneous boundary between the land and sea. It can be extracted from the high-resolution images without other tools. In the artificial coast, the waterline can be considered as the coastline because the waterline is very slightly influenced by the tides.
With the development of satellite remote sensing technology, it supplies tons of high-resolution images of the coastal area, and they can be used for waterline extraction Roelfsema et al. (2013). Besides buying these remote sensing images directly from the remote sensing image providers, users can obtain many satellite map images freely from the web map services. All these data can be used for the waterline extraction.
The waterline extraction methods mainly include threshold segmentation methods, edge-based methods, object-oriented methods, active contour method, conventional machine learning methods, and deep learning methods. The threshold segmentation methods are intuitive methods that set a threshold value according to the image intensity to segment the land and water. Guo et al. (2016) proposed a method that utilized a normalized difference water index to segment water and land. Chen et al. (2019) used the components of the tasseled cap transformation to extract waterline information. Wernette et al. (2016) presented a threshold-based multi-scale relative relief method to extract the barrier island morphology from high-resolution DEM. These methods are handy and effective for the simple image segmentation task. In these methods, threshold selection is the key and difficult problem. In addition, the methods cannot deal with the images with occlusions or a complex background.
The edge-based methods utilize the distinctive edge feature from the abrupt transition. The common methods including Sobel, Roberts (Yang et al., 2018), Laplacian, and Canny operators (Lin et al., 2013; Paravolidakis et al., 2016; Ao et al., 2017; Widyantara et al., 2017; Paravolidakis et al., 2018) can be adopted to extract the waterline. Wang and Liu (2019) proposed a robust ridge-tracing method utilizing the statistical properties of the pixel intensities in the land and sea to detect the boundary. These methods are easy to detect clear, continuous boundaries. However, in the waterline images with a complex background, they are greatly affected by noise. The continuity of the extracted waterline is hardly guaranteed.
Object-oriented methods no longer use the pixel as the basic processing unit; instead, they use an object composed of homogeneous pixels (Gucluer et al., 2010; Rasuly et al., 2010; Bayram et al., 2017). Ge et al. (2014) presented an object-oriented multi-scale segmentation method using interpretation rule sets for automated waterline extraction from remote sensing imagery. Wu et al. (2018) used the object-oriented classification method to extract the waterline from Landsat images of Shenzhen city. These methods use higher level features to classify images, which can reduce the impact of fine texture characteristics on the results of image classification. However, in face of a large amount of information in high-resolution images, object-oriented classification methods may ignore some of the hidden useful information, and it is difficult to achieve the desired classification accuracy.
The active contour methods can achieve better results for remote sensing images of waterlines with simple backgrounds, strong contrast, and continuous boundaries. Cao et al. (2016) proposed a new geometric active contour model for waterline detection from SAR images, which is adaptive to the speckle noises. Fan et al. (2016) proposed a level set approach with a particle swarm optimization algorithm for waterline automatic detection in SAR images. Elkhateeb et al. (2021) adopted a modified Chan–Vese method for sea–land segmentation, which is initiated by a superpixel-based fuzzy c-means automatically. In the study by Modava and Akbarizadeh, (2017), a waterline extraction method–based active contour for SAR images is proposed, in which the initial contour is obtained from a fuzzy clustering with spatial constraints. In the study by Liu C et al., (2016), the waterline is extracted hierarchically by the level set techniques from single-polarization and four-polarization SAR images. Liu et al. (2017) integrated an edge-based and a region-based active contour model in different scales to fulfill the waterline detection from SAR Images. Due to the characteristics of the active contour model method, the application of this method is feasible for waterline images with a simple background, strong contrast, and continuous boundaries. However, the iterative method inevitably produces a large amount of calculation, which restricts its efficiency.
Conventional machine learning methods distill useful information and hidden knowledge based on a variety of data to extract the waterline. Rigos et al. (2016) and Vos et al. (2019) used a shallow neural network to extract the shoreline from satellite images and video images, separately. Sun et al. (2019) built a superpixel-based conditional random field model to segment the sea and land area. Dewi et al. (2016) presented fuzzy c-means methods to detect positions of the coastline and estimate the uncertainty of the coastline change. Cheng et al. (2016) proposed a graph cut method to segment the sea and land, in which the seed points are achieved by a probabilistic support vector machine. Compared with the traditional waterline extraction method, the shallow neural network, clustering analysis technology, fuzzy logic technology, and support vector machine use intelligent means to find out frequent regular things from a large number of data information effectively. These methods can automatically and efficiently extract regular objects. However, for more complex objects in high-resolution images, the extraction accuracy is unsatisfactory. Some other traditional methods, such as the polarization method (Nunziata et al., 2016), wavelet transform method (Toure et al., 2018), region growing method (Liu Z et al., 2016), and decision tree algorithm (Wang et al., 2020) , are all influenced by noise and cannot process the high-resolution images easily.
In these years, deep learning methods have been rapidly developing with the quickly growing performance of computer hardware. Different from traditional machine learning, it can learn the characteristics of the target more accurately. Some convolutional neural network (CNN) methods are naturally introduced in waterline extraction by segmenting the land and sea. In the study by Liu et al., (2019), a simple CNN with multi-scale features and leaky rectified linear unit (leaky-ReLU) activation function is used for waterline extraction. Liu W et al. (2021) proposed an end-to-end lightweight multitask CNN without downsampling to obtain lakes and shorelines from remote sensing images. Shamsolmoali et al. (2019) adopted a residual dense UNet to facilitate the hierarchical features from the original images for sea–land segmentation. Tsekouras et al. (2018) presented a novel Hermite polynomial neural network to detect the shoreline at a reef-fronted beach. Cheng et al. (2017a) proposed a local smooth regularized deep CNN that can obtain the segmentation and edge results of the sea and land simultaneously. Cheng et al. (2017b) employed a multitasking edge–aware CNN for sea–land segmentation and edge detection simultaneously. Cui et al. (2021) presented a scale-adaptive CNN for sea–land segmentation, which fused multiscale information and emphasized the boundaries’ features actively. A sea–land segmentation approach utilizing the fast structured edge network and the waterline database was taken from the study by He et al., (2018). A novel UNet-like CNN was proposed for sea–land segmentation, and the network can be deeper, and the convergence can be faster based on local and global information (Li et al., 2018). Erdem et al. (2021) proposed a majority voting method based on different deep learning architectures to obtain shorelines automatically. Lin et al. (2017) presented a multi-scale end-to-end CNN for sea–land segmentation and ship detection, which can increase the receptive field while maintaining fine details. Even though the CNNs have achieved great performances, the limited receptive field affected the performance because of the structure of the CNN.
Transformers, as the most advanced methods in the semantic segmentation, are migrated to compute vision tasks to solve the problem of long-distance dependence by the self-attention mechanism, which is the core of transformers. It determines the global contextual information of each item by capturing its interaction amongst all items. A vision transformer (ViT) is the first work that uses a pure transformer for image classification, which proves that the transformer can achieve the state-of-the-art (Dosovitskiy et al., 2021). It treats each image as a sequence of tokens and then feeds them to multiple transformer layers to make the classification. Subsequently, the dual intent and entity transformer (DeiT) (Touvron et al., 2021) further explores a data-efficient training strategy and a distillation approach for ViTs. The pyramid vision transformer (PVT) is the first work to introduce a pyramid structure in a transformer, demonstrating the potential of a pure transformer backbone compared to CNN counterparts in dense prediction tasks (Wang et al., 2021). After that, methods such as shifted windows (Swin) transformer (Liu Z et al., 2021), convolution transformers (CvT) (Xu et al., 2021), and twin transformer (Chu et al., 2021) enhance the local continuity of features and remove fixed size position embedding to improve the performance of transformers in dense prediction tasks. Segmentation transformers (SETRs) adopt the ViT as a backbone to extract features, achieving impressive performance in segmentation (Zheng et al., 2021). Following it, semantic segmentation transformers (SegFormer) achieved even better results later (Xie et al., 2021).
Therefore, we use the most advanced transformer methods to extract the waterline as an early exploration. This study mainly focuses on the process of extraction of the waterlines for artificial coasts and presents the early research for investigating the potential of transformers in waterline extraction from very high-resolution images.
The rest of the study has the following sections. Materials and Methods suggests details about the dataset and methodology. Results reports experimental results with a discussion. Finally, the conclusion section concludes and discusses future research directions.
MATERIALS AND METHODS
Dataset
For this research, we selected Tianjin, Zhoushan, Shanghai, and Shenzhen four ports as research areas, which are shown in Figure 1. The waterline images are collected from Mapbox (Mapbox, 2021), Google Maps (Google Maps, 2021), and Bing Maps (Microsoft, 2021) guided by OpenStreetMap (OSM) tiles. The images are in 18 levels in the map, and the initial resolution is 256 × 256. The ground sampling distance (GSD) is about 0.48 m. We combine each neighboring four tiles into a 512 × 512 image. A total of 600 images are chosen as the initial data, and the ground truths of waterlines are created by hand. We also augment it with the random rotation, flip, scale, contrast, brightness, and saturation to 6000 images. Among them, 3600 images are considered as the training set, 1200 images and 1200 images for validation and test, respectively. The images and corresponding annotations are indicated in Figure 2. To evaluate the effects of transformers, six CNN segmentation methods are introduced in the experiments.
[image: Figure 1]FIGURE 1 | Research area.
[image: Figure 2]FIGURE 2 | Dataset.
Methodology
SETR
SETR is an Encoder–Decoder architecture, as seen in Figure 3. SETR adopted a high resolution of local features extracted by a CNN and the global information encoded by transformers to segment pixels in an image. Because of quadratic model complexity of the transformer, flattening the whole image as a sequence makes a huge amount of computation. To speed up, an image is divided into 256 even patches, and then, each patch is flattened into a sequence for input separately.
[image: Figure 3]FIGURE 3 | Architecture of the SETR.
All the sequences are entered into the pure transformer-based encoder. Therefore, all the transformer layers have a global receptive field, which improve the limited receptive field problem from the CNN. There are 24 layers of transformers in the encoder, in which there are multi-head self-attention (MSA), multilayer perceptron (MLP), and layer normalization blocks residually connected.
The decoder is called the multi-level feature aggregation (MLA). Some feature representations from the transformer layers are first reshaped from 2D to 3D and then aggregated. A 3-layer convolution network downsamples the features at the first and third layer. To enhance the interactions of different levels of features, a top-down aggregation design is introduced. The fused feature is obtained via channel-wise concatenation after the third layer. At last, the outputs are upscaled by bilinear operation to the original resolution.
SegFormer
The architecture of SegFormer is depicted in Figure 4. The SegFormer consists of two main modules, encoder and decoder. An image as the input is first divided into patches in [image: image]. Then, these patches are imported to the hierarchical transformer encoder to obtain multi-level features. These multi-level features are passed to the MLP decoder to predict the segmentation mask at a [image: image] resolution, where H, W, [image: image] are the height, width of the image, and the number of categories in the image, respectively.
[image: Figure 4]FIGURE 4 | Architecture of the SegFormer.
In the encoder, an input image is one with a resolution of [image: image], and [image: image] is the channel number in the feature map [image: image]. A hierarchical feature map [image: image] with a resolution of [image: image] is obtained after each transformer block, where [image: image], and [image: image] is larger than [image: image].
The transformer consists of efficient self-attention, Mix-FFN, and overlap patch merging blocks. Efficient self-attention improves the computational efficiency of the self-attention. In the original multi-head self-attention process, each of the heads has the same dimension [image: image], where [image: image] is the length of the sequence, and C is the channel number. The self-attention is expressed as follows:
[image: image]
In the equation, dh is the dimension of the head. The computational complexity of this process is [image: image]. To alleviate it, the sequence K is reduced with a reduction ratio R. It is first reshaped into N/R×C·R and then simplified by a fully connected layer. Therefore, the new K has dimensions N/R×C. As a result, the complexity of the self-attention mechanism is reduced from [image: image] to [image: image].
ViT uses positional encoding (PE) to express the location information. It influences the test accuracy when the image resolution is not the same with that in the training because the positional code needs to be interpolated. To address it, Mix-FFN considers the effect of zero padding to leak location information, and a [image: image] convolution is used in the feed-forward network (FFN). Mix-FFN can be formulated as follows:
[image: image]
where [image: image] is the feature from the self-attention module. Mix-FFN mixes a [image: image] convolution and an MLP into each FFN. The Gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2020) is an activation function. [image: image] is the output of the Mix-FFN.
To preserve the local continuity around those patches, an overlapping patch merging process is used. K is the patch size, S is the stride between two adjacent patches, and P is the padding size. K = 7, S = 4, P= 3, and K = 3, S = 2, P= 1 are set to perform overlapping patch merging to produce features with the same size as the non-overlapping process.
The SegFormer incorporates a lightweight decoder consisting only of MLP layers. The proposed All-MLP decoder consists of four main steps. First, multi-level features from the encoder go through an MLP layer to unify the channel dimension. Then, features are upsampled to 1/4th and concatenated together. Third, an MLP layer is adopted to fuse the concatenated features. Finally, another MLP layer takes the fused feature to predict the segmentation mask.
The Proposed Method
In this section, we demonstrated a method used in the task of waterline extraction. The workflow is shown in Figure 5. The transformer first learns the coast features from the training samples. This step is the most time-consuming since most layers of the network are trained in this step. After the learning step, parameters of the model are convergent, and it can infer other new coast images for waterline extraction. Then, a binary mask of the coast is obtained from each input image; the waterline can be extracted from the mask easily. It is worth noting that the contours of the coast at the edges of the image should be excluded because this part is truncated when slicing image tiles.
[image: Figure 5]FIGURE 5 | Workflow of the proposed method.
Metrics
The proposed approaches are evaluated by precision, recall, F1-score, and IoU.
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Among them, the P and R stand for precision and recall, respectively; the true positive (TP) stands for the rightly extracted land area; the false positive (FP) represents the area mistaken as the land; the false negative (FN) means omitted land pixels. In our study, the reference land images are drawn manually. Precision and recall are contradictory in most cases. To address this, comprehensive metrics F1 (F1) and IoU (IU) are employed commonly. Inference time is defined as the average segmentation’s time using our test data. The floating-point operations (Flops) represent the computation of the model, and it is a metric for the computational complexity.
RESULTS
Experiment Setting
The proposed transformers were developed under MMsegmentation (MMSegmentation, 2020) by PyTorch (Paszke et al., 2017). Training and testing were performed with eight NVIDIA TITAN Xp GPUs and one NVIDIA TITAN Xp GPU, respectively. In our experimental dataset, there are 3600 images for training, 1200 images for validation, and 1200 images for testing. All the annotations are manually annotated. The resolution of all images is 512 × 512. The SETR uses a learning rate value of 10–3, the number of iterations is 160,000, and the weights are pretrained on ImageNet-21K. The SegFormer was tested using a learning rate value of 10–6, the number of iterations is 40,000, and the weights are pretrained on ImageNet-1K. The other compared methods are all run in 40,000 iterations.
Experimental Results
Qualitative Results
The results of the eight methods are displayed in Figure 6. From the results, we can see that PSPNet-UNet, DeepLabV3-UNet, and SETR cannot obtain good results in Image 1, Image 4, and Image 6. A large area in the land is missed, and the fine dock structure is not extracted in all the three methods. For the CNN methods, the methods with the ResNet101 backbone are better than the methods with HRNet, and the methods with the UNet backbone achieve the cheapest results. Only the methods with ResNet101 and HRNet extract the small striped object in Image 6, but no methods can avoid the influence of the ship. In Image 8, only the FCN-ResNet101 and DeepLabV3-ResNet101 gain terrific results. Other CNNs get a lot of false-positive or false-negative parts. For the transformer methods, the SegFormer achieves very nice results in all the images, especially for the fine structures. In contrast, the SETR can also extract the large object effectively in Image 3, but it struggles to the small and thin objects in Image 6 and Image 8. Overall, DeepLabV3-ResNet101, FCN-ResNet101, FPN-ResNet101, and SegFormer are all outstanding, and PSPNet-UNet, DeepLabV3-UNet, and SETR are relatively weak.
[image: Figure 6]FIGURE 6 | Results of all methods in comparison.
We can see in Figure 7, the SETR cannot extract the fine objects in Image1, Image 3, and Image 4. The dock and infrastructure are all not complete in the three images. It hardly finds the land area near the boundary in Image 2 and Image 3. The connection part in the dock is neglected, and the shape of the harbor is not regular due to the incomplete extraction in Image 2. There are missed land pixels near the frame in Image 3. For large objects, it can perform well, although the edges are not kept fine in Image 1, Image 3, and Image 4.
[image: Figure 7]FIGURE 7 | Results of SETR.
Figure 8 depicts the results of SegFormer results. We can see that it correctly segments nearly all the pixels. It can even keep the details of objects well, especially in Image 1 and Image 3. The spindly parts in Image 1 and Image 3 are all fine and unmistakable. The integrity and differentiation are impressive. The minor complaints are the small leaks near the edges in Image 1, Image 3, and Image 4 and the small holes in Image 2. The SegFormer can extract the land features so good that the waterline can be extracted completely and accurately.
[image: Figure 8]FIGURE 8 | Results of SegFormer.
Quantitative Results
All the experimental methods are reported in Table 1. For the CNN methods, the models with ResNet101 achieved best results. Among them, the DeepLabV3 is the best with 0.9056 in precision, 0.8814 in recall, 0.8674 in F1, and 0.8169 in IoU. The FCN and FPN with the backbone of ResNet101 also reach or approach 0.9 in precision, 0.88 in recall, 0.86 in F1, and 0.81 in IoU. By comparison, the methods with UNet get lowest scores. PSPNet with UNet has the least scores, with the precision 0.8298, F1 0.8333, and IoU 0.7632. The performances of DeepLabV3 with UNet are slightly higher than that of PSPNet with UNet. The FCN with HRNet48 is moderate, which achieves 0.8964 in precision, 0.8766 in recall, 0.8581 in F1, and 0.8052 in IoU.
TABLE 1 | Comparison for all the methods in metrics.
[image: Table 1]For the vision Transformer methods, we can see that the SegFormer reaches the precision 0.9121, recall 0.9104, F1-score 0.8883, and IoU 0.8439, respectively, which prove its accurate and robust performance to segment the land and sea. SETR gets the lowest scores in all metrics. The scores match the results in Figures 6, 7; it cannot acquire the ideal land area, and the shapes are very incomplete.
The floating-point operations (Flops) represent the model complexity. Table 1 shows that the DeepLabV3 models occupy more computing power, followed by SETR and PSPNet. The FCN, FPN, and SegFormer use the least resource in all the methods. Specially, the DeepLabV3-ResNet101 consume the largest computing units, and the SegFormer is the most resource-saving. For the inference time, except the FCN-HRNet48 and SETR with 0.77 and 0.32, other methods are all under 0.3 s. The FCN with ResNet101, FPN with ResNet101, and SegFormer can even infer an image in 0.2 s. FCN-ResNet101 is the fastest method in inference.
DISCUSSION
Performance Analysis of the Superior CNNs
In the six CNN methods, the networks with the backbone of ResNet101 are the best extractors, and they occupy the top three for accuracy. It is followed by the HRNet48, and the UNet is the last. In ResNet101, the convolution layers are very deep, and the features are connected with residual blocks. It can keep more detail features and avoid gradient vanishing by this way. Meanwhile, this ResNet101 uses dilated convolution to increase the receptive field, which makes it more powerful. The HRNet generates high-resolution and low-resolution parallel subnetworks. It can merge the high-resolution features and low-resolution features through the different stages by connecting the multi-resolution parallel subnetworks. Therefore, it can obtain rich high-resolution and low-resolution representations. The best header is DeepLabV3 because it achieves the best scores when different methods use the same backbone of UNet or ResNet101. In DeepLabV3, the atrous spatial pyramid pooling (ASPP) adds a series of atrous convolutions with different dilated rates to increase global contextual information. Global average pooling (GAP) also combines image-level features. These all make the DeepLabV3 outstanding.
Performance Analysis of the Superior Transformer
In the two vision transformers, the SETR obtain F1 with 0.8018 and IoU with 0.7268, and the SegFormer achieves 0.8883 in F1-score and 0.8439 in IoU. The SegFormer wins the SETR in accuracy completely. It can also be seen from the Figures 7, 8, the SETR cannot extract the integrated and continuous structures in Image 2 and Image 3, and the SegFormer can extract nearly the whole and accurate structures. In SETR, the feature maps after the transformer layers are in the same size, and in the SegFormer, it generates multi-level feature maps. The different scales of feature maps include the high-resolution coarse features and low-resolution fine-grained features, so it can adapt to large and small object extractions. At the same time, the decoder in the SegFormer is made up of only MLP, which is lighter and has a larger effective field than traditional CNN encoders. These all make the SegFormer perform better than the SETR. On the other side, the SETR has more computational complexity with 212.4 GFLOPs than the SegFormer with just 51.83 GFLOPs. The huge amount of computation of the SETR is from the self-attention in the transformer. Because the computational complexity of self-attention is O(N2), N is the length of the input sequence. The SegFormer uses the efficient self-attention which reduces the computational complexity by some transforms. Therefore, the SegFormer is much easier to compute.
The Most Robust Method
The top CNN DeepLabV3 and the transformer SegFormer are all very competitive. However, the vision transformer SegFormer is superior to DeepLabV3 in precision, recall, F1, and IoU. It also has a smaller complexity and shorter inference time. The limited receptive field in DeepLabV3 requires the ASPP module to enlarge the receptive field, but the model inevitably becomes heavy. The SegFormer benefits from the non-local attention in transformers and enjoys a larger receptive field. The transformer integrates with the MLP decoder an can produce both highly local and non-local attention by adding fewer parameters. These all make the SegFormer more efficient and lighter in waterline extraction.
CONCLUSION
We propose a new method based on the vision transformers for the waterline extraction by sea–land segmentation. Two transformers, the SegFormer and SETR, are adapted to segment and identify land pixels by a custom dataset from satellite maps. The performances of the two transformers are compared with other state-of-the-art CNN methods, PSPNet, DeepLabV3, FCN, and FPN. The SETR with a pure transformer structure, as an early comer to image segmentation, achieves a nearly equivalent performance compared with the developed CNN methods. More surprisingly, the latter method, the SegFormer outperforms state-of-the-art CNN methods and demonstrates an extraordinary ability to segment land pixels under different conditions. For future work, we hope to improve the method in accuracy and robustness, though it has achieved a fairly good performance.
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