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Current practices in wastewater management lead to inefficient recovery and reuse of
nutrients and can result in environmental problems. Source separation systems have been
shown to be an efficient way of recovering nutrients and energy from wastewaters, both in
rural and urban context. Studies on nutrient recovery potential and life cycle impacts of
source separation systems are mainly limited to small systems (for example a few
households) while the impacts of upscaling source separation to a regional level have
hardly been studied, especially in sparsely populated areas where the cost of the
connection to a main treatment plant is higher. This study examines the regional
nutrient balance of two source separation scenarios—black water separation and urine
diversion—and compares them to the existing conventional wastewater system. The
analysis comprises three sparsely populated regions of northern Finland and Sweden,
including rural, peri-urban and urban areas. In addition, climate impacts are assessed
based on existing life cycle assessment (LCA) studies. According to the results, by source
separation it is possible to achieve a significant increase in the recovery rate of phosphorus
(41–81%) and nitrogen (689–864%) compared to the conventional system. Depending on
the region up to 65% of the mineral phosphorus and 60% of mineral nitrogen fertilisers
could be theoretically replaced. Furthermore, the climate and eutrophication impacts
would decrease with the implementation of such systems, but an increase in acidification
may occur. However, even if the benefits of source separation systems are undisputed in
terms of nutrient recovery, the implementation of such systems would to a large extent
require an entire system change of the wastewater treatment sector and a wide paradigm
change towards a circular economy.
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1 INTRODUCTION

Nutrient recovery is one of the key drivers promoting
sustainability in wastewater management and the circular
economy (Hoffmann et al., 2020; Larsen et al., 2021a).
Wastewater contains, among other substances, phosphorus
and nitrogen, which are vital nutrients for food production.
Current practices in wastewater management lead to
inefficient recovery and reuse of wastewater-based nutrients
and can result in environmental problems such as
eutrophication, contribute to climate change, and undermine
global food security (Kjerstadius et al., 2017; Skambraks et al.,
2017; Wielemaker et al., 2018; Hoffmann et al., 2020; Öberg et al.,
2020). Instead of circulating nutrients in wastewater back to food
production, the need for nutrients is met by introducing more
mineral fertilizers to the system. The extensive mining of
phosphate rocks has led to the significant depletion of known
stocks, resulting in the inclusion of phosphate rock on the EU list
of critical raw materials (European Commission, 2017).
Moreover, the production of nitrogen fertilizers is responsible
for about 0.8% of global greenhouse gas emissions due to its high
energy consumption (Brentrup, 2009).

In Finland and Sweden, approximately 9,800 tonnes of
phosphorus (P) and 78,000 tonnes of nitrogen (N) reach
wastewater treatment plants annually (SYKE, 2019; SEI, 2020).
After treatment, around 4 and 5% of phosphorus and 34 and 40%
of nitrogen is left in the effluent and thus released to water bodies,
in Finland and Sweden respectively (Naturvårdsverket, 2018;
Dagerskog and Olsson, 2020; Lehtoranta et al., 2021a). Most
of the phosphorus and nitrogen removed from the wastewater in
physical, chemical and biological purification processes
accumulate in the sludge. However, only a small fraction of
the nutrients originally contained in the wastewater can be
found in plant-available form in the produced sludge
(Warman and Termeer, 2005). Currently, sludge-based
products are mainly used in landscaping, in relatively small
land areas but in large amounts, and only a small portion of
the nutrients end up being utilized by plants, resulting in “hot
spots” of nutrient and pollutant loads to waters (Valtanen et al.,
2015).

There are also safety concerns regarding the direct land spread
of sludge-based products, which decrease the willingness to
recycle wastewater nutrients and organic matter back to
agriculture (SEI, 2020). For example, there are uncertain risks
of soil, crop and water course contamination by pathogens, heavy
metals and micro-organic pollutants (e.g., pharmaceuticals and
personal care products, etc.) (Seleiman et al., 2020). The current
wastewater treatment methods are inadequate to remove them,
and part of the harmful substances end up in discharge water and
some are retained in the sludge (Magnusson and Norén, 2014;
Vieno, 2014; Talvitie et al., 2017; Vieno et al., 2018; Ylivainio
et al., 2020; Lehtoranta et al., 2021a).

However, the Finnish government aims at recycling
wastewater sludge-based nutrients mainly as fertilizers by 2030
(Ministry of Environment, 2019). In Sweden, the quality
assurance certification system REVAQ sets limits on key
pollutants and encourages wastewater treatment plants to

improve their sludge management approach in order to meet
certain quality standards (Dagerskog and Olsson, 2020). About
45% of the sludge produced in Sweden is REVAQ-certified and
both the Swedish Farmers Association and the Swedish Water
and Wastewater Association recommend its application in
farmland (Dagerskog and Olsson, 2020). Concerning nutrient
recovery targets, no specific legislation has yet been implemented
in Sweden, despite the existence of general goals and regulatory
instruments regarding resource conservation, reuse and recycling
(Swedish government, 1998). In general, to meet the targets,
wastewater treatment systems need to be developed to achieve the
safe recovery of nutrients and organic matter. The
implementation of new technologies, such as RAVITA and
NPHarvest (Rossi et al., 2018; Kaljunen et al., 2021), in
centralized wastewater treatment plants (WWTPs), could
result in even 1.3 times greater phosphorus recovery and three
times greater nitrogen recovery when compared with current
technologies, as well as decrease the accumulation of hazardous
substances (Lehtoranta et al., 2021a).

Apart from end-of-pipe solutions, source separation has
emerged as an efficient way of recovering wastewater-based
nutrients in both rural (Lennartsson et al., 2009; Malila et al.,
2019) and urban contexts (Nagy and Zseni, 2017; Turlan, 2019;
Lehtoranta et al., 2022). Municipal wastewater contains a mixture
of black water (containing faeces, urine and toilet paper) and grey
water (from kitchen appliances, showers, etc.). If the nutrient-rich
black water is not mixed with grey water and other nutrient-poor
waters (e.g., industrial wastewater, stormwater or infiltration and
inflow), the nutrients can be recovered more easily from highly
concentrated flows without being mixed with harmful substances,
originating from other sources than toilet water (Jönsson et al.,
2005; Tidåker et al., 2006b; Saliu andOladoja, 2021). For example,
grey water contains a large portion of the heavy metals found in
wastewater (Simha, 2021); and by separating the black water at
source the metal fraction input from the grey water is excluded.
Moreover, the concentrations of most metals in source-separated
black water are generally much lower than in sewage sludge, and
hence black water utilization is more effective in reducing metals
in agriculture (Tervahauta et al., 2014). However, the black water
fraction contains the majority of pathogens in wastewater and the
risk of pathogenic presence in the end products will depend on
the method used to treat the separated black water. Significant
pathogen inactivation can be achieved, for example, with urea
treatment (Nordin et al., 2009; Fidjeland et al., 2015) which has
been proven as a robust option for safe recycling of plant
nutrients, as well as thermophilic anaerobic digestion applied
to blackwater (Moerland et al., 2020) but also sewage sludge
(Zhao and Liu, 2019). In addition, urine contains the majority of
pharmaceuticals and hormones found in wastewater (Udert et al.,
2006), but for example, Viskari and others (2018) found that
apart from progesterone the concentrations of all extractable
pharmaceuticals and hormones in the soil fertilized with source-
separated urine remained below the detection limit (Viskari et al.,
2018). Nevertheless, the risk of harmful substances needs to be
further investigated and country specific conditions considered.

Within conventional wastewater treatment, most of the
nitrogen is removed in energy-intensive processes and part of
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the nitrogen is released into the atmosphere as nitrous oxide (a
very potent greenhouse gas). In addition, the removal of
phosphorus is based on chemical precipitation, and
consequently the phosphorus is in a poorly soluble form and
thus not easily available for plants (Tidåker et al., 2006b; Ylivainio
et al., 2020). Black water comprises only 15% of the whole
domestic wastewater volume (Motiva, 2020), but contains
about 90% of the nitrogen and 80% of the phosphorus
(Viskari et al., 2017; Saliu and Oladoja, 2021). Urine is even
more concentrated than black water, as it comprises less than 2%
of domestic wastewater volume and includes about 80% of the
total nitrogen and about half of the total phosphorus and
potassium (Jönsson et al., 2005). Thus, the separation of black
water enables highest nutrient recovery, but urine diversion
maximizes the amount of nutrients in the separated fractions
andminimizes the additional burden from faecal pathogens at the
same time (Viskari et al., 2021). Both black water and urine
separation systems therefore have great potential to increase
nutrient recovery and utilization as the nutrients are available
in a more soluble and contaminant-free form; however, the
unwanted occurrence of hormones and pharmaceuticals still
needs to be considered.

Finland and Sweden are both sparsely populated countries,
and their population density continues to decline further north.
Due to long distances, expanding the municipal sewage networks
is often not a technically and economically viable option.
Currently, about 15 and 12% of Finnish and Swedish
populations (respectively) are not connected to the sewage
network (Statistics Sweden, 2021a; Lapinlampi, 2021).
Furthermore, a significant part of the existing on-site
wastewater treatment systems is made up of septic tanks only,
thus failing to meet the legislated treatment requirements in
terms of BOD and nutrient removal (Swedish EPA, 2018;
Kallio, 2020). According to conservative estimates, some
114,000 properties in Finland (Kallio and Suikkanen, 2019)
and 175,000 properties in Sweden (Olshammar et al., 2015)
(figures include holiday homes) require immediate upgrades to
their on-site systems due to insufficient treatment. In general,
wastewater treated and discharged in non-sewered areas cause
higher load to water bodies than those treated in centralized
systems, thus they are a significant source of diffuse pollution
(Vienonen, 2007). In fact, wastewater from sparsely populated
areas and secondary residences is currently in Finland the second
most significant source of phosphorus load in water systems after
agriculture (Tattari et al., 2015). Despite the efforts to decrease
diffuse load, Finland did not achieve its nutrient reduction targets
set for 2021 (HELCOM, 2013; Räike et al., 2020). The
introduction of source separation systems in rural areas could
help reduce the load of organic matter, nutrients and pathogens
on receiving waters, as only grey waters would be treated on-site.
Another aspect is that smallWWTPs report difficulties in treating
sludge from septic tanks under their environmental permits due
to the increased load on their systems, leading to sludge being
transported longer distances to larger units (Tarkka and
Leppänen 2019). Moreover, considerable debts are reported in
both Finland (ROTI, 2021) and Sweden (Malm et al., 2013;
Hedström et al., 2016) related to the renovation of sewage

networks and WWTPs. Therefore, careful consideration is
needed to evaluate which solutions are worth implementing in
the future, i.e., expanding the network or implementing different
technologies for on-site sanitation.

In sum, the replacement of conventional and ineffective
treatment systems with source separation options in sparsely
populated areas offers a great opportunity to promote nutrient
recycling and thus sustainable sanitation. The aim of this work
was to examine the advantages and drawbacks of implementing
source-separating sanitation in northern Finland and Sweden.
This study estimates the potential of recovering nitrogen and
phosphorus from wastewater in rural and peri-urban areas. The
evaluation was based on defined scenarios for the implementation
of source separation systems where the characteristics of the
settlements in the region were considered. In addition, the
environmental impacts of source separation in the whole
region were assessed based on data reported in previous life
cycle assessment (LCA) studies. The impacts of black water and
urine diversion systems were compared to those of conventional
wastewater systems used in the regions studied. The findings of
this work are expected to improve the general understanding
regarding the potential and feasibility of source separation
systems in cold and sparsely populated areas of Nordic countries.

2 MATERIALS AND METHODS

2.1 Study Area
The study area includes three sparsely populated regions: Lapland
and North Ostrobothnia in northern Finland as well as
Norrbotten county in northern Sweden, which have a
population density of 1.9, 11.2 and 2.6 persons/km2,
respectively. By comparison, the population density in whole
Finland is 18, in Sweden 25 and, e.g., in France 123 persons/km2

(World Bank 2020). The division of the population between
urban and rural areas is quite similar (Table 1). Currently, the
share of the population not connected to the sewage collection
network is 22% in North Ostrobothnia, 24% in Lapland and 13%
in Norrbotten. Different types of on-site wastewater treatment
systems are used. Infiltration systems are generally used in
permanent dwellings, including infiltration beds (drain fields)
and sand filters. However, septic tanks without secondary
treatment still constitute the most common treatment method
in these areas. Urine or black water separation systems or dry
toilets are rare and mainly used in holiday homes (McConville
et al., 2017; Viskari et al., 2017; Kallio, 2020).

In Finland, about half of the sludge produced in centralized
wastewater treatment plants is used in landscaping and about
40% in agriculture (Konola and Toivikko, 2019), while in Sweden,
about 39% of the sludge produced is used in agriculture, and 42%
is used for landscaping and covering mine tailings (Statistics
Sweden, 2020c). However, sludge utilization rates vary
significantly among the regions under investigation. In North
Ostrobothnia more than 70% of the sludge produced is used in
agriculture, whereas in Lapland and Norrbotten, agricultural use
is non-existent (Konola and Toivikko, 2019; Statistics Sweden,
2020c). However, part of the sludge produced in Lapland is
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transported to North Ostrobothnia for further treatment and
utilization.

In general, sludge produced in on-site treatment systems
implemented in households outside the sewage network is
treated in central wastewater treatment plants. Long
transportation distances of relatively small amounts of sludge
pose challenges for logistics and sludge treatment. Cold climate
causes the sludge to freeze during transportation, leading to
additional expense in terms of heating energy to allow
treatment (Lauronen, 2017). Harsh winter conditions and low
precipitation also limit agriculture in the study area, with
activities mainly focusing on livestock farming. The thermal
growing season and long-term average precipitation are
slightly lower in Lapland and Norrbotten than in North
Ostrobothnia (Swedish Meteorological and Hydrological
Institute, 2017; Finnish Meteorological Institute, 2021; Swedish
Meteorological and Hydrological Institute, 2021) which results in
prominent differences in available crop areas (Table 1).

The study area was divided into urban, peri-urban and rural
areas based on current population estimates (Table 1). The urban
areas (42–47% of the population in the study area) are densely
populated areas with at least 15,000 inhabitants and high building
density, whereas peri-urban areas (11–12% of the population)
have lower population density and mainly consist of detached or
terraced houses. In urban and peri-urban areas, households are
100% connected to the sewage network. The rural areas consist of
areas where houses are connected (17–34%) or not connected
(13–24%) to sewage networks. Summer houses were not included
in the study due to the lack of available data. Moreover, the
implementation of source separation systems in urban areas was
not assessed in this study because retrofitting of such systems in

built-up areas is more difficult due to lack of space and costs, for
example (McConville et al., 2017; Hoffmann et al., 2020).
Retrofitting in semi-urban and rural areas is assumed to be a
more feasible alternative.

2.2 Scenario Definitions and Assumptions
Two scenarios were defined and compared to a Reference System,
which reflects the current wastewater management practices in
northern Finland and Sweden (Figure 1). Due to the large size of
the studied regions and the diversity of operating WWTPs, the
defined Reference System and Scenarios have been streamlined.

Households were allocated into three groups based on
population density and sewage collection coverage. Urban
areas connected to the sewage network (“urban sewered”);
rural and peri-urban areas connected to sewage network
(“peri-urban sewered”); and rural areas not connected to the
sewage network (“rural non-sewered”). The Reference System
aims to describe the current wastewater management practices in
the studied regions: the totality of wastewater produced in “urban
sewered” and “peri-urban sewered” areas are treated in municipal
WWTPs. In the “rural non-sewered” areas, wastewater is treated
in on-site treatment systems (e.g., a sand filter) and the sludge
from the septic tank is transported toWWTPs for treatment. The
WWTPs were assumed to consist of the following treatment
stages commonly used in Finland and Sweden: pre-treatment,
primary sedimentation, activated sludge process (with
simultaneous precipitation) and sludge dewatering. Regarding
the sludge management practices, it was assumed that all the
sludge formed in WWTPs is treated at anaerobic digestion plants
and the solid fraction of the digestate is composted and utilised,
while the liquid fraction is circulated back to a WWTP for

TABLE 1 | Statistics for the study area including Lapland and North Ostrobothnia in Finland and Norrbotten in Sweden.

Lapland North
Ostrobothnia

Norrbotten References

Population 2019 177,161 412,830 249,537 Statistics Finland (2019); Statistics Sweden (2021b)
Percentage of the whole country 3 7 2.4 Statistics Finland (2019); Statistics Sweden (2021b)
Surface area (km2) 92,676 36,828 97,242 Statistics Finland (2019); Statistics Sweden (2020a)
Percentage of the whole country 30 12 24 Statistics Finland (2019); Statistics Sweden (2020a)
Population density (persons/km2) 1.9 11.2 2.6 Statistics Finland (2019); Statistics Sweden (2020b)
People living in urban area (%) 47 46 42 Statistics Finland (2019); Statistics Sweden (2021c)
People living in peri-urban area (%) 11 12 11 Statistics Finland (2019); Statistics Sweden (2021c)
People living in rural area (connected to
sewer) (%)

17 19 34 Statistics Finland (2019); Statistics Sweden (2021a)

People living in rural area (not connected to
sewer) (%)

24 22 13 Finnish Environment Institute (2019a); Finnish Environment Institute (2019b);
Statistics Sweden (2021a)

Crop area (ha) 2020 44,600 239,300 32,950 Statistics Sweden (2019a); Natural Resources Institute Finland (2021)
Use of mineral fertilisers, P (t/a) 137 996 100 Luostarinen et al. (2019); Statistics Sweden (2020d)
Use of mineral fertilisers, N (t/a) 2,220 12,672 900 Luostarinen et al. (2019); Statistics Sweden (2020d)
Use of wastewater sludge in agriculture
2018 (%)

5a >70 0 Konola and Toivikko (2019); Finnish Environment Institute (2021); Statistics
Sweden (2020c)

Sludge treatment 2019
Composting (%) 95 46 7b Finnish Environment Institute (2021)
Anaerobic digestion (%) 5 22 50b Finnish Environment Institute (2021)
Dewatering (%) 14 23b Finnish Environment Institute (2021)
Chemical treatment (%) 18 Finnish Environment Institute (2021)

aSludge is transported to North Ostrobothnia for digestion and utilization.
bFor Norrbotten, no accurate statistics were available. The shares of sludge treatment are based on the methods used in the eight municipalities in the region according to the information
published on their official municipal websites, in personal email correspondence and published reports like Vatten and Miljöbyrån i Sverige AB (2017).
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treatment (a common procedure in Finland and Sweden). Details
regarding sludge management activities in the study area are
provided in Table 1.

Scenarios 1 and 2 (Figure 1) were formulated to describe the
possible implementation of source-separating sanitation options
in peri-urban and rural areas. In urban areas, the conventional

FIGURE 1 | Flowcharts of reference system and the defined Scenarios 1 and 2. Solid lines represent the wastewater and wastewater-based nutrient flows in the
system. Dashed lines represent reject waters. The distribution of WWTPs sludge treatment in the three regions studied is presented in Table 1.
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system was assumed to remain (as a Reference System)
unchanged.

- Scenario 1 (black water separation), black water from “peri-
urban sewered” and “rural non-sewered” is source-separated
and treated at centralized anaerobic digestion plants. It was
assumed that both solid and liquid fractions resulting from
solid-liquid separation of digestate are utilized. Grey water
from “peri-urban sewered” households as well as sludge
produced in grey water treatment systems in “rural non-
sewered” households are treated at WWTPs instead of the
centralized anaerobic digestion plant, aiming to reduce the
amount of harmful substances in the nutrient-rich end
products. Grey water from “rural non-sewered” is treated
on-site with a septic tank followed by a sand filter.

- Scenario 2 (urine diversion), urine from “peri-urban
sewered” and “rural non-sewered” areas is collected by
using urine diverting toilets and treated centrally in local
facilities. Brown water (faeces, toilet paper and flushing
water) and grey water from “peri-urban sewered”
communities are treated at WWTPs as well as the sludge
produced in on-site systems used in “rural non-sewered”
households.

In both defined scenarios, untreated black water and sludge
produced in on-site treatment systems in “rural non-sewered” are
transported to WWTPs or centralized anaerobic digestion plants.

2.3 Data Collection and Analysis
Methodology
2.3.1 Nutrient Recovery Potential Calculations
The nutrient recovery potential of the Reference System and
defined Scenarios 1 and 2 were evaluated based on substance flow
analysis (SFA), which is a generic method to quantify flows and
stocks of substances (Van der Voet, 2002). The method has been
applied in several wastewater and nutrient recovery studies
(Breen, 1990; Fan et al., 1996; Puig et al., 2008; Tervahauta
et al., 2013; Khiewwijit et al., 2015; Venkatesean et al., 2016;

Hong et al., 2019; Cai et al., 2020). In this study, the nutrient
recovery potentials were calculated to describe the portion of all
nutrients discharged with the wastewater from the households in
the study area that have been recovered (Reference System) or
could be recovered (Scenarios 1 and 2). The main principle used
in the calculation is the mass balance, i.e., the inflow into the
system is equal to the outflows. The recovery potential of
nutrients (phosphorus and nitrogen), was calculated utilizing a
bottom-up approach, starting with nutrient excretion, wastewater
treatment and management, and finally storage of fractions. The
steps included in each scenario are presented in Figure 1 and the
factors used for nutrient recovery estimate in Table 3.

Calculations were made separately for the three groups:
“urban sewered”, “peri-urban-sewered” and “rural non-
sewered”. Furthermore, calculations regarding the three study
areas were also performed separately due to differences in
population densities and current sludge treatment and
utilization practices (described in Table 1). Specifically, the
fractions of volatile compounds and nutrients discharged from
treatment, processing and storage were determined by using
literature data on the nutrient recovery capacity of each
function (Table 3). The estimated nutrient recovery capacity
describes the amount of nutrients in the end products which
could be utilized in agriculture.

The amount of nutrients produced per person in Finland and
Sweden used in this study are presented in Table 2. Data
regarding the composition of urine and faeces was taken from
Jönsson et al. (2005), whose values are smaller than those in the
Government Decree on Treating Domestic, 2011, to avoid the
overestimation of available nutrients. However, data from the
Government Decree (209/2011) was used for grey water, and
therefore the reported values are more conservative than those
reported by Jönsson et al. (2005). Nitrogen fractions contained in
urine were assumed to be soluble, i.e., ammonium nitrogen. In
order to simplify the calculations, it was assumed that all excreted
nutrients end up in wastewater management systems, and no
nutrient losses were assumed to occur. However, to reduce the
risk of overestimating the nutrients produced, it was assumed that
children and teenagers excrete 50% less urine and 30% less faeces

TABLE 2 | Amount of nutrients produced annually by a person in Finland and Sweden, taking into consideration the contribution of children and teenagers in the general
population.

Fraction P (kg/a/person) N (kg/a/person) NH4-N (kg/a/person)

Finland
Urine 0.30a 3.7a 3.7
Faeces 0.17a 0.52a 0.05b

Grey water 0.15c 0.37c 0.09a

Total (Finland) 0.63 4.59 3.84

Sweden
Urine 0.20a 3.55a 3.55
Faeces 0.14a 0.51a 0.05b

Grey water 0.15c 0.37c 0.09a

Total (Sweden) 0.49 4.42 3.69

aJönsson et al., 2005.
bSimha and Ganesapillai, 2017.
cGovernment Decree on Treating Domestic Wastewater in Areas Outside Sewer Networks (209/2011).
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than adults (Laak, 1974; Almeida et al., 1999; Karak and
Bhattacharyya, 2011). The share of children and teenagers
amongst the total population was defined as 15.8% in Finland
(Statistics Finland, 2019) and 23.3% in Sweden (Statistics Sweden,
2021d).

Regarding management and processing practices of
wastewater-based fractions, a literature review and findings
from previous studies (e.g., Malila et al., 2019; Lehtoranta
et al., 2021a; Lehtoranta et al., 2021b; Lehtoranta et al., 2022)
were utilized to define the baseline of nutrient recovery (in
percentages) of different treatment methods and technologies
(Table 3) for the whole study region which comprises several
facilities of different sizes. Therefore, the same nutrient recovery
values were applied for Finnish and Swedish regions, as the
wastewater characteristics and sludge treatment processes are
similar in both countries. The baseline of nutrient recovery
describes the typical values in northern Finland and Sweden.
However, some treatment methods are not currently in use and
the variation within the processes (such as solid-liquid
separation) is high. This caused difficulties in defining the
baseline. Therefore, variations in nutrient recovery efficiency
were used in these processing practices to account for
uncertainties in baseline values (shown in parentheses in
Table 3). For example, several techniques are available for
urine treatment, such as the Vuna process, NPHarvest,
membrane technologies, Sanitation 360 and ammonia
stripping (e.g., Etter et al., 2015; Mönkäre et al., 2016;
Marttinen et al., 2017; Kaljunen et al., 2021; Simha et al.,
2021). None of these technologies are currently implemented
on a large scale in the regions studied, but if urine diversion were
more common, it would be more likely that several parallel
technologies would be applied. Thus, an average value was
defined for the baseline, and the variation in recovery rates
linked to these technologies were considered in the uncertainty
analysis. In practice, the calculations were performed separately,

first using the baseline values and then performing uncertainty
analysis using the minimum and maximum values presented in
Table 3 (recovery variations for different technologies).

For black water, the nutrients in both the liquid and solid
fractions of the digestate were taken into account in the
calculations, but no further processing was considered. During
anaerobic digestion, part of the organic nitrogen is mineralised to
the soluble form (NH4-N) (Table 3) (Magdoff and Chromec,
1977). For sewage sludge digestion, a conversion value from the
literature was used, but if the same value was applied for black
water separation, the NH4-N would exceed the amount of total
nitrogen (total-N) contained in the fraction because the ratio of
NH4-N and total N is already high. Since no appropriate
literature data was found, it was assumed that mineralization
rises the NH4-N recovery potential to 110% (compared to 130%
for digestion of sewage sludge). Therefore, 98% of the total-N in
black water separation was assumed to be in soluble form after
anaerobic digestion.

2.3.2 Other Environmental Indicator Calculations
Climate change, eutrophication and acidification impacts were
estimated for the Reference System and scenarios based on
emission factors determined and reported in previous life cycle
assessment (LCA) studies of Malila et al. (2019) and Lehtoranta
et al. (2022). These emission factors were used for urban, peri-
urban and rural areas separately (Table 4). The reported values
were used due to their relevance in terms of study design and
regional assumptions. However, there are some differences
within the system boundaries and selected technologies to
the system boundaries defined in this study that need to be
considered.

Lehtoranta et al. (2022) studied the environmental impacts of
source separation in the new sustainable city district of
Hiedanranta, Finland. The analysis covered the whole
Hiedanranta city district (26,000 inhabitants and 6,510 jobs)

TABLE 3 | Phosphorus, nitrogen and ammonium nitrogen (in percentages) recovered from the input material of different treatment processes. Variation range is shown in
parentheses.

Treatment process P %
(recovered)

N %
(recovered)

N (soluble) %
(recovered)

References

Septic tank (sludge) 15 (5–25) 10 (5–15) 3 Olshammar et al. (2015); Malila et al. (2019)
WWTP (sludge) 96 36 22 Malila et al. (2019); SYKE (2019)
Dewatered sludge 40 40 30 Møller et al. (2002); Hjorth et al. (2010); Luostarinen et al. (2019)
Anaerobic digestion (solid and
liquid fraction)

100 100 130 (114–161)a Magdoff and Chromec (1977)

Solid-liquid separation of digestate
(solid fraction)

71 (40–90) 32 (17–60) 20 (15–30) Wäger-Baumann (2011); Al Seadi (2013); Borowski and Weatherley
(2013); Ruuhela (2017); Luostarinen et al. (2019); Malila et al. (2019)

Solid-liquid separation of digestate
(liquid fraction)

29 (10–60) 68 (40–83) 80 (70–85) Wäger-Baumann (2011); Al Seadi (2013); Ruuhela (2017); Malila et al.
(2019)

Sludge composting/chemical
treatment + composting

100 30 (25–50) 2 Myllymaa et al. (2008); Ruuhela (2017)

Digestate/dewatered sludge
storage (non-covered)

100 90 84 IPCC (2006); EMEP/EEA (2016); Grönroos et al. (2017); (emission factors
for bovine manure were applied)

Urine/liquid fraction storage
(closed tank)

90 (80–100) 95 95 Karlsson and Rodhe (2002); Maurer et al. (2006)

Urine/liquid fraction central
treatment

95 (90–100) 90 (80–100) 90 (80–100) Marttinen et al. (2017); Etter et al. (2015); Mönkäre et al. (2016); Kaljunen
et al. (2021); Simha et al. (2021)

aFor WWTP sludge. For black water sludge it was assumed to be 110.
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and its wastewater management. In the conventional system
(Reference System), the wastewater is treated in Sulkavuori
WWTP, which applies the latest WWTP technologies without
additional efforts to improved nutrient recycling. The sludge
from the WWTP is digested, composted and utilized in
agriculture replacing the use of mineral fertilizers. For source
separating systems, grey water in the first scenario and grey water
and faeces in the second scenario were treated at the Sulkavuori
WWTP. Black water treatment was assumed to be carried out at a
local AD plant at Hiedanranta and the reject water was assumed
to circulated back to the AD unit in accordance with current
practices in Finland. The surplus biogas produced in the black
water scenario was assumed to be upgraded for transport fuel
replacing the use of fossil fuels. The digestate from local AD plant
and WWTP sludge treatment were assumed to be used as
fertilizers, replacing mineral fertilizers. In urine diversion
systems, urine was assumed to be hygienized, collected and
transported for field application, where its use replaced the use
mineral fertilizers. No sophisticated treatment technologies for
urine or sludge processing were assumed.

Malila et al. (2019) investigated the environmental impacts
of source separation in Finnish rural areas. In the study, the
conventional system was defined as a system in which
wastewater from all households was treated together in one
on-site three-chamber septic tank followed by a sand filter.
Sludge removed from the septic tank was transported to the
WWTP for further treatment followed by digestion and
composting. The compost was assumed to be utilized in
landscaping and no avoided impacts were assumed. In the
blackwater separation system (Scenario 1), urine and faeces
were collected together with a vacuum toilet system to
minimize the water consumption and the need for
transportation. The blackwater was transported to a local
anaerobic digestion plant from which the dry fraction of the
digestate was used as fertilizer, replacing the use of mineral
fertilizers. The liquid fraction was assumed to be circulated
back to the process. Greywater was treated similarly as
wastewater in the Reference System. In the urine separation
system, urine and faeces were collected separately with a
separating dry toilet. The collected urine was stored in a
closed tank on the property and transported to the field

once a year to be used as fertilizer. Faeces were composted
in a composter and the compost used at the property.
Nutrients from urine and faeces replaced the use of mineral
fertilizers. Greywater was treated similarly as in the black water
system.

The differences in system boundaries compared to the
nutrient recovery potential system boundaries used in this
study are as follows; Lehtoranta et al. (2022) did not take the
nutrient recovery potential of reject water flows from blackwater
treatment processes into account as it was assumed that the reject
water was circulated back to the process. In the nutrient recovery
potential calculations of this study, the reject water from
blackwater digestion was assumed to be utilized as such.
Therefore, the nutrient recovery obtained in this study is
higher than in the case where nutrients of the reject flows are
not recovered. This results in underestimation of avoided impacts
from fertilizer use compared to system boundaries in this study.
On the other hand, if the nutrients of the rejects are utilized, it
might in practice require the introduction of a new type of
technology (not considered in the LCA studies), which in turn
often consumes more energy reducing climate benefits.
Furthermore, Malila et al. (2019) considered dry toilets instead
of separating water toilets in urine diversion system. Also, the
study assumes that the separated urine is stored and used in
agriculture, and no sophisticated nutrient recovery technologies
(such as presented in this study, Table 3) are applied. Moreover,
in blackwater separation, the treatment and nutrient potential of
reject water in AD plants were excluded from the study. In both
studies, the whole life cycle including built infrastructure (such as
pipes, toilets, treatment plants), the use of the system (energy
consumption, direct emissions), transportation of fractions,
treatment and nutrient recovery, storage of fractions, field
application of fractions and substitutions of energy and
mineral fertilisers (total soluble nitrogen and 60% of total
phosphorus according to Finnish environmental compensation
system) was considered, but the end-of-life was excluded. The
emission factors for climate change (CO2 eq.), eutrophication
(PO4 eq.) and acidification (SO2 eq.) were presented in a per
person per year unit. The LCA data used are presented in more
detail in the respective papers (Malila et al., 2019; Lehtoranta
et al., 2022).

TABLE 4 | Emission factors for climate change (CO2 eq.), eutrophication (PO4 eq.) and acidification (SO2 eq.) based on Lehtoranta et al. (2022) for peri-urban areas andMalila
et al. (2019) for rural areas.

CO2 eq./a/person PO4 eq./a/person SO2 eq./a/person

Urban and peri-urban areas
Reference System 54.6 0.4 0.2
Scenario 1 (black water separation) 12.8a 0.1 0.6a

Scenario 2 (urine diversion) 15.5 0.2 0.4

Rural areas
Reference System 57.3 1 0.2
Scenario 1 (black water separation) 63.9a 0.1 0.5
Scenario 2 (urine diversion) 54 0.2 1.78

aValue does not consider the nutrients recovered from the liquid fraction of the anaerobic digestion.
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3 RESULTS AND DISCUSSION

3.1 Nutrient Recovery Potential
According to the results obtained, the implementation of source
separation systems can lead to more efficient nutrient recovery in
the studied regions. Both phosphorous and nitrogen recovery
potentials increased significantly in Scenarios 1 and 2 in
comparison to the Reference System (Figure 2). The total
phosphorus (P) recovery potential of the Reference System
was 164 tonnes P/year in total (Figure 2; Table 5). From
these, only a relatively small fraction (3.9%) derived from the
“rural non-sewered” areas while the “peri-urban sewered”
contributed with ca 45%. In the Reference System, the
potential in rural areas is low due to on-site treatment, where
most of the nutrients are discharged and accumulate in the soil, as
only 15% remains in the sludge transported to the WWTP (see
Table 3). The phosphorus recovery potential of Scenarios 1 and 2
were 297 tonnes P/year and 233 tonnes P/year respectively mostly
due to increased recovery in rural non-sewered areas. Therefore,
the phosphorous recovery potential could increase significantly
(41–81%) if source separation systems were to be implemented in
the peri-urban and rural areas of the regions studied. In addition,
the phosphorus recovered in the Reference System is chemically
bonded (mostly to Fe and Al from the coagulation chemicals used
in the study area) with low plant availability (Ylivainio et al.,
2020). On the other hand, the phosphorus recovered in
Scenarios 1 and 2 is of better quality for agricultural use
with 44–62% present in plant-available form in northern
Finland and 51–74% in northern Sweden. A fraction of the
phosphorus in source separated urine and blackwater, will
precipitate in plant available form either spontaneously or due
to chemical additions used in treatment technologies (such as
magnesium or calcium) (Harder et al., 2019; Larsen et al.,
2021b). Moreover, the amount of harmful substances like
metals in sludge recovered from source separation systems
is lower than in sludge from centralised systems (Jönsson et al.,
2005; Tidåker et al., 2006b; Viskari et al., 2018; Saliu and
Oladoja, 2021). This can potentially increase the social
acceptance of wastewater-based nutrients in agriculture,
although the presence of pharmaceuticals and hormones are
often regarded as limiting factors, even though it has been
suggested that they are likely to be degraded during the
growing season (Viskari et al., 2018).

In the Reference System, the total nitrogen recovery potential
in northern Finland and Sweden was 195 tonnes N/year
(Figure 2; Table 5), from which 24% was in readily plant-
available (soluble) form as most of the soluble nitrogen is lost
in treatment processes. The nitrogen recovery potentials of
Scenarios 1 and 2 were substantially higher (689–864%
respectively) than the Reference System. This high increase in
nitrogen recovery is a consequence of practices that aim to
recover nitrogen from all wastewater fractions (i.e., reject
waters from AD and urine), rather than losing it in gas
emissions to the atmosphere (activated sludge process,
composting) or circulating it back to the process with reject
water. Moreover, the fraction of soluble nitrogen contained in the

total N was also higher (average 93%), reflecting the substantial
potential for recovery of easily plant-available nitrogen. In
addition, it is important to highlight that the “urban sewered”
areas contributed only 5–6% of the total N recovery potential in
Scenarios 1 and 2 which once again reflects the significant
potential of source separation in peri-urban and rural areas. In
order to increase the recovery of (soluble) nitrogen in urban areas
(Reference System), the nutrients contained in reject from
anaerobic digestion plants could be recovered with new
technologies. However, the application of recovered nutrients
was not included in the results of nutrient recovery potential. It is
worth noting that soluble nitrogen evaporates easily as ammonia,
and to retain the high potential of soluble nitrogen in recovered
end products, nutrients need to be stored and applied to fields in
accordance with good practices to minimize evaporation.

There were no significant differences in nutrient recovery
potential among the three regions studied, as populations are
largely distributed in the same way between urban, peri-urban
and rural areas. However, measurable differences were observed. In
Norrbotten, the proportion of the population in peri-urban areas
(45%) was higher than in Lapland (28%) and in North
Ostrobothnia (31%) (Table 1). This resulted in higher nutrient
recovery potentials from peri-urban areas in theNorrbotten region.
However, the total nutrient recovery potential of Norrbotten and
North Ostrothnia regions were very similar (Table 5).

FIGURE 2 | Recovery potential of phosphorus (A) and nitrogen (B) (P/N
tonnes/year) including the three studied regions in northern Finland and
Sweden.
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Based on the estimated nutrient recovery potential (average)
of Scenarios 1 and 2, wastewater-derived nutrients could replace
38–49% of mineral phosphorus fertilizers used in Lapland,
13–17% in North Ostrobothnia and 49–65% in Norrbotten
(Table 5). In the case that soluble nitrogen would replace the
use of mineral nitrogen fertilizers in agriculture, source
separation could cover 13–16% of the need for mineral
nitrogen in Lapland, 5–7% in North Ostrobothnia and
50–60% in Norrbotten. However, it is important to note that,
despite the substantial phosphorus recovery potential from
wastewater in the Reference System, in reality this potential is
not realized as sewage sludge is not currently used in agriculture
(mostly used in landscaping) in Lapland and Norrbotten. If
nutrient recovery measures are implemented and recovery
improves in the regions studied, policy measures will be
essential to ensure nutrient recycling back to agriculture. The
final products with a high fertilizer value could be used in or near
production areas to reduce the environmental impacts of
transportation. However, due to the short growing season in
the studied regions, longer transportation could allow their
application in other areas where the climate is not a limiting
factor. The resulting benefits and trade-offs in that context would
need to be studied further.

Regarding the reliability of estimated nutrient recovery
potentials, the range of minimum and maximum rates of
nutrient recovery potentials (percentages) from different
treatment processes and residual streams were used to indicate
the variance of technologies (Table 3, Table 5). The results
showed that variation is largest among nitrogen recovery in
the Reference System, where the total N recovery would result
in 24% lower or 57% higher recovery compared to the average
value used. The high variation is a consequence of the high
variability observed in solid-liquid separation technologies and
sludge composting (Table 3) and the fact that liquid fractions are
circulated back to the processes in the Reference System. Instead,
the variation is lower in the two proposed scenarios because the
nutrients in liquid fraction are considered a resource: Scenario 1,
min. −0.4%, maximum, +1.5%; and Scenario 2, min. −11%,

maximum, +14%. For phosphorus recovery, the variation in
the Reference System is min. −26%, max. +12%, for Scenario
1, min. −16, max +5% and for Scenario 2, min. −26, max. +14%.

Source separation systems can become a critical part of
resource-efficient wastewater management as they offer an
opportunity to improve the safety and reusability of recovered
nutrients. Blackwater separation (Scenario 1) can potentially
recover slightly more nutrients than urine diversion since it
recovers nutrients both in urine and faeces (Table 5). In
addition, black water separation also provides the opportunity
to recover organic matter and the utilization of other feedstocks
for anaerobic digestors (not considered in this study). For
example, kitchen waste can be collected and treated
anaerobically together with black water to produce energy in
the form of biogas and digestate (residual) for fertilizer use,
increasing the nutrient and energy recovery potential even
further.

Urine diversion can be feasible in rural areas, especially if it is
treated on-site to decrease the volume for collection and
transportation (e.g., Malila et al., 2019; Turlan, 2019). In peri-
urban areas, the collection of urine might require a separate
sewage system or on-site treatment also aiming at reducing the
need for transportation. Practical issues related to urine diversion
also occur, e.g., urine forms struvite spontaneously, which might
clog pipes and pose a risk to the functioning of collection and pre-
treatment systems (Doyle and Parsons, 2002; Altinbas et al., 2009;
von Bahr and Kärrman, 2019).

3.2 Environmental Indicators
The environmental impacts of the Reference System and defined
scenarios in the regions studied was estimated based on values
reported by Lehtoranta et al. (2022) for urban and peri-urban
areas and by Malila et al. (2019) for rural areas (Table 4).

3.2.1 Climate Change Impacts
The estimated climate change impacts of the Reference System
(Figure 3) were 9,700 tonnes of CO2 eq./year in Lapland,
22,800 tonnes of CO2 eq./a in North Ostrobothnia and 13,700

TABLE 5 | Phosphorus and nitrogen recovery potential in the studied regions. The average followed by maximum and minimum values (in parentheses) regarding the
recovery potential of different treatment processes and residual streams. Extracted from available studies (Table 3) and compared to the use of mineral fertilizers.

Lapland North Ostrobothnia Norrbotten Total

Phosphorus recovery from wastewater (tonnes/year)

Reference System (potential) 35 (32–37) 94 (79–106) 35 (25–42) 164 (136–184)
Reference System (used in agriculture) 1.7 (1.6–1.8) 66 (54–74) 0 67.7 (56.6–75.8)
Scenario 1 (black water separation) 67 (62–69) 165 (146–175) 65 (56–69) 297 (264–313)
Scenario 2 (urine diversion) 52 (47–57) 132 (111–150) 49 (39–58) 233 (196–265)
Use of mineral P 137 996 100 1,233

Nitrogen recovery from wastewater (tonnes/year)
Reference System (potential) 28 (22–48) 104 (80–165) 63 (47–92) 195 (150–305
Reference System (used in agriculture) 1.4 (1.1–2.4) 73 (56–116) 0 74.4 (57.1–118.4
Scenario 1 (black water separation) 382 (381–389) 927 (919–950) 571 (569–572) 1880 (1872–1909)
Scenario 2 (urine diversion) 354 (274–357) 846 (668–846) 512 (413–524) 1,539 (1,357–1760)
Use of mineral N 2,220 12,672 900 15,792
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tonnes of CO2 eq./year in Norrbotten. The implementation of
source separation Scenarios 1 and 2 would result in 23.8 and
25.6% lower generation of CO2 eq./year (respectively) than in
the Reference System in the three regions (Figure 3).

The effect of source separation on climate change impacts
was strongest in the Norrbotten region. This is due to the fact
that 45% of the population in Norrbotten live in peri-urban
areas with lower emission factors than in rural areas (see
Table 4). In the North Ostrobothnia and Lapland regions,
the respective figure is 28–31%. Altogether, rural areas
contributed 20% of the CO2 eq. emissions in the Reference
System, 30% in Scenario 1 and 26% in Scenario 2. About 34%
of the climate change impacts are derived from peri-urban
areas in the Reference System, and 10–13% from Scenarios 1
and 2 respectively. The highest share of CO2 eq. emissions
originated from households in urban areas (45–60%).

In total, the results of this study showed that the emissions of
CO2-eq. could decrease by 18–32%, depending on the region, if
source separation systems were implemented both in rural and
peri-urban areas. However, the results indicate a risk of increased
climate impacts in sparsely populated rural areas if source
separation (both urine diversion and black water) systems are
implemented, but substantially lower emissions for peri-urban
areas. Moreover, the separation of black water caused higher
climate impacts compared to the urine diversion. This is because
in the areas with urine diversion (rural areas), using the dry toilet
reduced the transportation and treatment of brown and grey
water at WWTP.

The results obtained depend on the boundaries used and the
assumptions made in the background data (Malila et al., 2019;
Lehtoranta et al., 2022). For example, the recovered nutrients
were assumed to decrease the need for mineral fertilizers. The
production of mineral nitrogen fertilizers is energy-intensive and
causes greenhouse gas emissions of about 3.67 kg CO2 eq./kg N
(Brentrup et al., 2016). Replacing the use of mineral fertilizers
with the recovered nitrogen would directly save 5.3–6.4 tonnes of
greenhouse gas emissions annually. Source separation also
enables energy production, which contributed significantly to
the environmental performance of Scenario 1, particularly

because it was assumed to replace the use of fossil fuels. The
production of biogas could be even higher if local biogas plants
would for example, enhance the collection and digestion of
kitchen waste. Moreover, the background data for the urine
diversion did not include any advanced treatment. If the
processing of urine (or blackwater) would have been included,
the climate change impacts would have been higher for Scenario 2
due to increased energy consumption.

The system boundaries of the LCA in both peri-urban and
rural context did not include the nutrient potential of reject
waters of black water digestion to replace mineral fertilizers.
Thus, the avoided impacts are underestimated regarding the
nutrient recovery potential. The potential to reduce climate
impacts, as the utilization of the nutrients in the reject water
replaces the use of mineral fertilizers has proven to be high
(Lehtoranta et al., 2022). However, the potential benefits in terms
of energy and substituted mineral fertilizers might not be
achieved if the use of mineral fertilizers is not reduced in the
same proportion (IPCC, 2014). Furthermore, the future
development of an emission factor for mineral fertilizers will
have a significant impact on avoided emissions.

One of the main contributors to climate change in source
separation systems is on-site emissions, which are highly
uncertain due to a lack of research data, especially on the cold
climatic conditions in the Nordic regions. In sparsely populated
areas, some studies indicate that long transport distances have a
significant impact on climate emissions (Lehtoranta et al., 2014),
but according to Turlan (2019), the results show the opposite.
However, the impact of transporting black water, for example,
can be minimized by using a low-flush or vacuum toilet in black
water separation (Lehtoranta et al., 2014) or on-site treatment for
urine to reduce volume. In conventional wastewater treatment,
the largest contributions originate from purification processes
aiming at nutrient and organic matter removal.

3.2.2 Eutrophication Impacts
The total eutrophication impact of the Reference System was
estimated to be 435 tonnes of PO4 eq./year (Figure 4). By
implementing source-separation systems in peri-urban and rural
areas, eutrophication impacts can be decreased by 46–54% in
Lapland, 45–54% in North Ostrobothnia and 41–52% in
Norrbotten for Scenarios 1 and 2 respectively. The reduction in
eutrophication results from the improvements in rural on-site
wastewater systems and improved nutrient recovery and reuse.
The total eutrophication impact of the three regions was 44%
lower in Scenario 1 and 53% lower in Scenario 2 when compared
to the Reference System. The highest reduction in the eutrophication
impacts due to the implementation of source separation was observed
in rural areas (80 and 87% Scenarios 1 and 2, respectively).

The results obtained agree with most available reports stating
that source separation systems have lower eutrophication impacts
when compared to conventional systems (Tidåker et al., 2006a;
Spånberg et al., 2014;Malila et al., 2019; Lehtoranta et al., 2022). On
the other hand, Kjerstadius et al. (2016) estimated that freshwater
eutrophication was higher for source separation systems (mainly
due to nutrient extraction in the ammonia stripper) but lower than
the conventional system for marine eutrophication. However,

FIGURE 3 | Climate change impact (tonnes CO2 eq./year) of Reference
System and defined source separation Scenarios 1 and 2 as well as the
contribution of urban, rural and peri-urban areas.
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eutrophication impacts rely heavily in several agricultural pressures
and the physical attributes of the catchments (Dupas et al., 2015),
and therefore the LCA results should be viewed critically (Morelli
et al., 2018). A scenario modeling of the catchment area would
further contribute to the evaluation of the eutrophication impacts
of source separation in regional level.

3.2.3 Acidification
The total acidification impact of the three regions was 168 tonnes of
SO2 eq./year (Figure 5) for the Reference System. If implemented,
the source separation scenarios would increase acidification impacts
(101% for Scenario 1 and 190% for Scenario 2) in comparison to the
Reference System, with the largest contributors being the ammonia
emissions from storage and field application of sludge in black water
and urine scenarios (Malila et al., 2019; Lehtoranta et al., 2022).
Ammonia emissions from sewage sludge application and storage are
low because there is little soluble nitrogen left in the composted dry
fraction of sewage sludge.

The increased risk of acidification in source separation systems
has also been recognized in other studies (Tidåker et al., 2006a;
Spånberg et al., 2014). The results show that the urine diversion
has the highest risk of acidification. However, the background
data of LCA (Malila et al., 2019; Lehtoranta, et al., 2022) do not
consider any sophisticated nutrient recovery or spreading
technologies which could potentially decrease the impacts.
Also, the black water scenario (Scenario 1) does not include
the potential of nutrients in reject water (Lehtoranta et al., 2022),
which results in lower acidification than Scenario 2. To ensure
that ammonia evaporation is kept to a minimum, the urine and
black water must be processed further and appropriate storage
and spreading practices should be used (Webb et al., 2005).

3.3 Overall Considerations
It is important to highlight that LCA and LCA-based studies
(such as the work reported here) are dependent on the study
boundaries, assumptions and available data. Such studies often
differ in the design of the scenarios, system boundaries and
functional units. Region-specific data and assumptions, such as
electricity mix used in the region, can also have significant effects.

The results on emissions can differ greatly depending on the
treatment techniques for the different fractions, or the inclusion
of fertilizer production, field and land application of waste
fractions and replacement of nutrients on farmland, for example.

In this study, previous studies were applied to create a
streamlined analysis that highlights the potential of source
separating systems in Nordic regions. Although the results show
significant potential in decreasing the overall environmental impacts,
it is clear, that many factors affect the benefits achieved and their
realization. Moreover, Lehtoranta et al. (2022) stated that the
environmental impacts of source separation are highly related to
the planning and design of the systems as well as the policymeasures
supporting it. Literature reports from previous LCA studies on
source separation systems reveal substantial variations in the
estimated climate impacts. While some studies report that source
separation systems have lower carbon footprints than conventional
wastewater treatment (Spångberg et al., 2014; Kjerstadius et al., 2017;
Lehtoranta et al., 2022), others show the opposite (Thibodeau et al.,
2014) or no difference (Tidåker et al., 2006a). It is therefore evident
that an LCA tailored specifically to the sparsely populated Nordic
region, would bring added value.

Overall, the assessment of the climate impacts of regional
source separation systems would require a systematic and more
comprehensive analysis of life cycle impacts, especially the
impacts on soil and land use, which are typically excluded
from LCA studies due to incomplete methods and uncertain
impact assessments (Brandão et al., 2013; Petersen et al., 2013;
Arzoumanidis et al., 2014; Soimakallio et al., 2015; Celestina
et al., 2019). In general, nutrient recycling leads to an
improvement in environmental performance by decreasing
the need for mineral fertilizers and helping to restore the
organic matter content of soil, which improves soil structure
and micro-organism activities and diminishes nutrient leaching
(Liang et al., 2017; Wiesmeier et al., 2019). Furthermore, any
changes in nutrient recovery and sludge production and
processing affects the carbon balance of the region. The
impacts of harmful substances on soil biota and carbon
sequestering is not well known and requires more research so
that their effects can be included in LCA studies. Overall, the

FIGURE 5 | Acidification (tonnes SO2 eq./year) impacts of Reference
System and defined source separation Scenarios 1 and 2 as well as the
contribution of urban, rural and peri-urban areas.

FIGURE 4 | Eutrophication (tonnes PO4 eq./year) impacts of Reference
System and defined source separation Scenarios 1 and 2 as well as the
contribution of urban, rural and peri-urban areas.
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role of soil microbes in the carbon cycle is still poorly
understood (Liang et al., 2017; Chenu et al., 2019).

However, in order to exploit the nutrient recovery potential at a
regional level, more research on environmental impacts is needed.
Moreover, a feasibility study on the most relevant technologies for
northern climatic conditions would be of great interest. Also, for
example, the impact of transportation is significant in sparsely
populated areas with long distances (Lehtoranta et al., 2014). In
order to assess the transport distances required for separate
collection and the need for new regional treatment facilities, the
issue should be addressed through comprehensive regional logistics
modeling. Thus, the question of sludge treatment in centralized
versus decentralized plants is essential. A systemic change in
wastewater treatment and nutrient recovery requires significant
investments and readiness for legislative changes (McConville
et al., 2017; Viskari et al., 2021). According to some studies, life
cycle costs are lower in source separation than in a conventional
centralized system (Wood et al., 2015; Schoen et al., 2017), especially
if compensations from produced energy and fertilizers are
acknowledged (Xue et al., 2016; Lehtoranta et al., 2022).
Operating and maintenance costs are lower when compared with
other on-site systems (Vidal et al., 2019), but in some urine diversion
cases, investment costs are higher than in centralized wastewater
treatment systems (Lennartsson et al., 2009; Lehtoranta et al., 2022).
However, the life cycle cost of source separation should be studied
and compared to the possible improvements and investments
needed in municipal WWTPs. This would clarify the context and
scale in which source separation would be an economically and
environmentally viable alternative (McConville et al., 2017).

Although this study concentrated on rural and peri-urban areas,
the urban solutions are necessary to consider when looking at the
comprehensive picture of the circular economy in the water supply
and sanitation sector. There are several development projects
implementing source-separation in urban environment (Stowa,
2014; Lennartsson and Kvarnström, 2017; Skambraks et al., 2017;
Lennartsson et al., 2019; Gomez et al., 2020). Experiments in small-
scale source separation projects can enable a shift to large-scale design
and implementation (Bisschops et al., 2019). However, the
implementation of source separation systems is hindered by several
problems, which are related to administrative issues, weakness of the
interchange between knowledge development and entrepreneurial
activity, and responsibilities (Lennartsson et al., 2017; Lennartsson
and Kvarnström, 2017; McConville et al., 2017; Lehtoranta et al.,
2021b).

This study focused on sparsely populated areas. It is important to
note that source separation could reduce the diffuse pollution load of
households’ on-site wastewater treatment systems. Due to long
distances, the expansion of sewage networks are not economically
feasible. Furthermore, the amount of septic tank sludge collected and
treated in municipal WWTPs would be decreased. In cold winter
conditions on-site wastewater treatment systems do not always work
ideally due to reduced biological activity (Luostarinen et al., 2007;
Kauppinen et al., 2014; Kinnunen et al., 2021; Vidal et al., 2021).
Source separation has partially addressed this problem, as only grey
waters are left for on-site treatment.

Source separation itself does not increase recycling it only
allows for more efficient recycling of nutrients. Thus, to realize

the potential, we need policy support for the agricultural use of
wastewater-based nutrients, rather than wasting them on
landscaping, whether they come from fractions separated from
sewage sludge or source separation. The implementation of
source separation systems would, to a large extent, require an
entire system change of the wastewater treatment sector. Among
water experts, nutrient recovery is acknowledged as a highly
significant aspect of the circular economy, but the probability of
realisation is perceived as low (Laitinen et al., 2019). Water
services, as an essential communal infrastructure service, is
rather conventional and rigid in terms of change (Heino,
2016). While rational planning and conventional habits prevail
in the education and management of water services (Innes and
Booher, 2010; Kurki, 2016), management problems have become
increasingly interconnected with political and social domains
(Teisman et al., 2013; Linton and Budds, 2014). Thus, in order
to exploit the potential of source separation, technical and
monetary investments are not sufficient, but there is a need
for a wide paradigm change towards the circular economy in
the water services sector.

4 CONCLUSION

This study showed that in sparsely populated areas such as northern
Finland and Sweden, implementing source separation both in rural
and peri-urban areas would significantly increase the potential for
nutrient recovery from wastewaters and reduce the overall climate
and eutrophication impact of wastewater management, but lead to
increase in acidification. In addition, our findings show that the role
of rural and peri-urban areas are important in promoting the circular
economy of wastewater management. Moreover, the careful design
and planning are essential to achieve environmental benefits. Based
on the results obtained, the following can be stated:

- The implementation of source separation systems can lead
to more efficient nutrient recovery in the studied regions.

- Both phosphorous and nitrogen recovery potentials
increased significantly in Scenarios 1 (black water
separation) and 2 (urine diversion) in comparison to the
Reference System (centralized wastewater treatment).

- Phosphorus recovery potential could increase significantly
(41–81%) if source separation systems were to be
implemented in peri-urban and rural areas of the regions
studied. In addition, the phosphorus recovered in Scenarios
1 and 2 would be of better quality for agricultural use, with a
higher percentage in plant-available form.

- The nitrogen recovery potentials of Scenarios 1 and 2 were
substantially higher (689–864%, respectively) than the
Reference System. Moreover, the fraction of soluble
nitrogen (easily plant available) contained in the total N
was also higher.

- Black water separation (Scenario 1) can potentially recover
slightly more nutrients than urine diversion (Scenario 2).

- Depending on the region, about 13–65% of the mineral
phosphorus and 5–60% of mineral nitrogen fertilizers could
be replaced with recovered nutrients.
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- The implementation of source separation Scenarios 1 and 2
would result in 23.8 and 25.6% lower generation of CO2 eq./a
(respectively) than the Reference System in the three regions.

- The total eutrophication impact of the three regions was
44% lower in Scenario 1 and 53% lower in Scenario 2 when
compared to the Reference System.

- The total acidification impact in the study area was 101%
higher in Scenario 1 and 190% higher in Scenario 2.

Although the benefits of a source separation system are clear,
their implementation would, to a large extent, require a systemic
change in the wastewater management sector and a wide
paradigm change towards the circular economy.
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