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Assessing the productive performance of conservation agriculture (CA) has become a
major issue due to growing concerns about global food security and sustainability.
Numerous experiments have been conducted to assess the performance of CA under
various local conditions, and meta-analysis has become a standard approach in
agricultural sector for analysing and summarizing the experimental data. Meta-analysis
provides valuable synthetic information based on mean effect size estimation. However,
summarizing large amounts of information by way of a single mean effect value is not
always satisfactory, especially when considering agricultural practices. Indeed, their
impacts on crop yields are often non-linear, and vary widely depending on a number
of factors, including soil properties and local climate conditions. To address this issue, here
we present a machine learning approach to produce data-driven global maps describing
the spatial distribution of the productivity of CA versus conventional tillage (CT). Our
objective is to evaluate and compare several machine-learning models for their ability in
estimating the productivity of CA systems, and to analyse uncertainty in themodel outputs.
We consider different usages, including classification, point regression and quantile
regression. Our approach covers the comparison of 12 different machine learning
algorithms, model training, tuning with cross-validation, testing, and global projection
of results. The performances of these algorithms are compared based on a recent global
dataset including more than 4,000 pairs of crop yield data for CA vs. CT. We show that
random forest has the best performance in classification and regression, while quantile
regression forest performs better than quantile neural networks in quantile regression. The
best algorithms are used to map crop productivity of CA vs. CT at the global scale, and
results reveal that the performance of CA vs. CT is characterized by a strong spatial
variability, and that the probability of yield gain with CA is highly dependent on geographical
locations. This result demonstrates that our approach is much more informative than
simply presenting average effect sizes produced by standard meta-analyses, and paves
the way for such probabilistic, spatially-explicit approaches in many other fields of
research.

Keywords: machine learning, model performance, conservation agriculture, crop yield, Algorithm comparison

Edited by:
Xander Wang,

University of Prince Edward Island,
Canada

Reviewed by:
Georgia A. Papacharalampous,

Czech University of Life Sciences,
Czechia

Calogero Schillaci,
Joint Research Centre, Italy

*Correspondence:
Yang Su

yang.su@inrae.fr

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Environmental Science

Received: 10 November 2021
Accepted: 03 January 2022

Published: 08 February 2022

Citation:
Su Y, Zhang H, Gabrielle B and

Makowski D (2022) Performances of
Machine Learning Algorithms in

Predicting the Productivity of
Conservation Agriculture at a

Global Scale.
Front. Environ. Sci. 10:812648.

doi: 10.3389/fenvs.2022.812648

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8126481

ORIGINAL RESEARCH
published: 08 February 2022

doi: 10.3389/fenvs.2022.812648

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.812648&domain=pdf&date_stamp=2022-02-08
https://www.frontiersin.org/articles/10.3389/fenvs.2022.812648/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.812648/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.812648/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.812648/full
http://creativecommons.org/licenses/by/4.0/
mailto:yang.su@inrae.fr
https://doi.org/10.3389/fenvs.2022.812648
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.812648


INTRODUCTION

Increasing food production and its stability over time becomes
more difficult due to the negative effects of climate change on
agricultural systems (Renard and Tilman, 2019; Ortiz-Bobea
et al., 2021). The development of sustainable cropping
systems, such as conservation agriculture (CA), has been
proposed as a path to increase food security (Pradhan et al.,
2018), preserve biodiversity (González-Chávez et al., 2010; Page
et al., 2020), and increase the resilience of agriculture to climate
change (Kassam et al., 2009; Michler et al., 2019). Numerous
experiments have been conducted to compare the productivity of
different farming practices or cropping systems under a diversity
of soil and climate conditions. The wealth of experimental data
available offers an opportunity to identify the most efficient
practices and systems based on robust scientific evidence. In
this context, meta-analysis has become a standard method for
analysing experimental agricultural data and estimating mean
effect sizes as a way of summarizing the performances of cropping
systems. Specifically, several meta-analyses were conducted
during the past decade to estimate the average performances
of CA compared to CT (Pittelkow et al., 2015a; Pittelkow et al.,
2015b; Corbeels et al., 2020) showing conflicting results on the
relative performance of CA. Although meta-analysis is a powerful
tool to analyse large experimental datasets, this approach has
several limitations (Fitz-Gibbon, 1984; Eisler, 1990; Flather et al.,
1997). One of them is that while mean effect sizes can summarize
experiments conducted in contrasting conditions and account for
the average performance of a practice or system, they cannot
provide a detailed description of the variability induced by local
conditions (Walker et al., 2008; Goulding et al., 2011; Krupnik
et al., 2019). This is an important limitation for the analysis of
agricultural production because crop yields are highly dependent
on the local climate conditions (Pittelkow et al., 2015a; Pittelkow
et al., 2015b; Steward et al., 2018), soil characteristics (Holland,
2004; Govaerts et al., 2007; Farooq and Siddique, 2015), and
agricultural management practices (Scopel et al., 2013; Pittelkow
et al., 2015a; Pittelkow et al., 2015b; Farooq and Siddique, 2015;
Su et al., 2021a), which often vary in time and space. This makes it
hard for standard meta-analyses to provide accurate predictions
for a given geographical region.

To gain further insight and overcome this limitation, we define
a new approach to analyse large experimental agricultural
datasets based on standard machine learning algorithms.
These algorithms have proven their usefulness over the last
few years and are now widely used in numerous areas to
process and analyse complex, heterogeneous and high-
dimensional data (Schmidt et al., 2019). Here, we have relied
on these algorithms to develop a machine learning pipeline
(Figure 1) that standardizes the process of comparing the
performance of different cropping systems and mapping them
at the global scale. The proposed framework includes several steps
covering algorithms selection, model training, model tuning by
cross-validation, model testing, and global projection of results.
The value of this pipeline is illustrated using a recent global crop
yield dataset (Su et al., 2021b) comparing cropping systems under
CA systems (and their variants) and CT systems. Twelve different

machine learning algorithms (See Supplementary Table S1 for
the details) are applied to train for classification, regression and
quantile regression models. These models are used to analyse the
yield ratio of CA vs. CT (YieldCAYieldCT

), relative yield change
(YieldCA−YieldCTYieldCT

) and the range of relative yield change as a
function of climate variables, geolocations, soil characteristics,
crop management practices. The results are used to identify the
most suitable machine learning algorithms to assess the
performance of a range of no-tillage systems from continuous
and categorical data. The proposed pipeline can be easily adapted
to analyse land management systems in general or to compare
and identify suitable machine learning algorithms for other types
of datasets.

Moreover, we also developed a new evaluation metric for
quantile regression, error score (ES), which can assess the overall
model performance for the interval prediction ability for all
quantiles, rather than simply using the traditional prediction
interval coverage probability (PICP) that can only evaluate the
interval prediction ability for a specific prediction interval (1 − α).

METHODS

Dataset Establishment
The literature search was conducted in February 2020 using the
keywords ‘conservation agriculture or no-till or no tillage or zero
tillage and ‘yield or yield change’ in the websites ‘ScienceDirect’
and ‘Science Citation Index’. The details of the paper screening
and data collection procedure (Supplementary Figure S1) were
described in previous publications (Su et al., 2021a; Su et al.,
2021b). The final dataset includes 4,403 paired yield observations
for no tillage (NT) and CT under different farming practices for
eight major crop species, which were extracted from 413 papers
(published between 1983 and 2020). The experimental sites cover
50 countries from 1980 to 2017. This dataset contains both
numerical data (such as climatic conditions, year of NT
implementation) and categorical data (such as soil
characteristics, crop species and different farming practices).

Model Training
A first series of models are trained to classify yield gain
(YieldCA or NT

YieldCT
> 1) versus yield loss (YieldCA or NT

YieldCT
< 1), namely

random forest (Ho, 1995) (RF), random forest with spatial
correlations (Rousset and Ferdy, 2014) (RF with spaMM),
gradient boosting (Friedman, 1999; Friedman, 2001) (GBM),
extreme gradient boosting (Friedman, 1999; Friedman, 2001;
Schmidhuber et al., 2018) (XGBOOST), artificial neural
networks with different number of hidden layers (Haykin,
1998; Bergmeir and Benítez, 2012) (ANNs), k-nearest
neighbours (Hastie et al., 2009) (KNN), support vector
machines (Cortes and Vapnik, 1995) (SVM), naïve bayes
(Hand and Yu, 2001; Hastie et al., 2009) (NB), and
generalized linear model (Nelder and Wedderburn, 1972)
(GLM). A second series of models are trained for
quantitatively predicting the ratio of relative yield change
YieldCA−YieldCT

YieldCT
, namely RF, RF with spaMM, GBM, XGBOOST,

ANNs, KNN, SVM, and GLM. Finally, a third series of models are
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trained to predict quantiles of this relative yield change, namely
quantile regression forest (Meinshausen, 2006) (QRF), quantile
regression gradient boosting (Friedman, 1999; Friedman, 2001)
(QRGBM), quantile regression neural networks (Cannon, 2011;
Cannon, 2018) (QRNN). Thus, these models predict the ranges of
relative yield change for different probability coverages.

As shown in Figure 1, all the models are trained based on 80%
of the dataset, while the rest 20% is used for model testing. And
these models are trained based on the model inputs that
describing climate conditions over crop growing seasons
(precipitation balance, minimum temperature, average
temperature, and maximum temperature), soil texture,
agricultural management practices (crop rotation, soil cover,
fertilization, weed and pest control, irrigation and CA/NT
implementation year) and location (latitude and longitude).

Note that CA is defined as NT with soil cover and with crop
rotation based on the FAO’s definition (Food and Agriculture
Organization of the United Nations FAO, 2021). The brief
description of algorithms and packages used were listed
Supplementary Table S1.

Model Tuning With 10-Fold
Cross-Validation
The hyperparameters of all the algorithms except GLM are
tuned by searching the hyperparameter space (grid search
(Chan and Treleaven, 2015), see Supplementary Table S2)
for the best score of 10-fold cross-validation. In detail, the
model performance under current setting of hyperparameters
is calculated from 10-fold cross-validation. In each fold of the

FIGURE 1 | Proposed machine learning pipeline for predicting the performance of cropping systems and comparing different algorithms.
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cross-validation, 90% of the training dataset are used to train
the model, and 10% of the training dataset is used to test the
model performance. This testing dataset is not overlapping in
each fold and covers the whole dataset after the cross-
validation. The cross-validation procedure was repeated for
all the hyper-parameters within the searching grid, after which
the hyperparameters that give the best performance are
selected for use in model testing stage. As for GLM, the
final model is selected with a stepwise algorithm (Venables
and Ripley, 2002) implemented using the step function (from
the ‘stats’ package, version 4.0.4 in R) run with AIC (Aho et al.,
2014).

In cross-validation, the performance of classification model is
assessed based on the area under the receiver operating
characteristics curve (AUC) (Fernández, 2018). AUC
corresponds to the probability that a classifier can rank a
positive instance (yield gain in this case) higher than a
negative one (yield loss). Thus, a higher AUC indicates a
superior classification performance by the model (Fernández,
2018; Su et al., 2021a). The performance of quantitative
predictions of relative yield change (YieldCA−YieldCTYieldCT

) is assessed
using the root-mean-square error (RMSE), which estimates the
differences between predictions and the observations. Lower
RMSE values indicate a better model (Carpenter, 1960).
Quantile regression models were assessed by comparing the
coverage probability (PICP) of the range of values defined by
the quantiles from α

2 and (1 − α
2) to its nominal target prediction

interval (1 − α) (Newcombe, 1998; Landon and Singpurwalla,
2008; Wang, 2008; Khosravi et al., 2010). Here we set
(1 − α) � 0.8, thus, the model with the PICP value closest to
0.8 is selected as the final model (see Supplementary Figure S2).

The performances from cross-validation for all the models are
presented in Supplementary Table S3–5.

Model Testing
The performances of the trained models are determined using
an independent testing dataset including 20% of the total
number of data (Figure 1) using the criteria AUC (Fernández,
2018) and RMSE (Carpenter, 1960) for classification models
and regression models, respectively. For quantile regression
models, the prediction interval coverage probability (PICP)
can only represent the interval prediction ability of the model
at the range defined by the quantiles from α

2 and (1 − α
2)

(Newcombe, 1998; Landon and Singpurwalla, 2008;
Wang, 2008; Khosravi et al., 2010). To assess the overall
performance for all quantiles, we generalized this
approach by plotting PICP vs. its corresponding prediction
interval (1 − α) for (1 − α) ranging between 0 and 1,
then comparing the resulting curve to the reference line (1:
1 line). The error score (ES) is then defined by Eq. 1 and
can be written as the area between the curve of PICPs vs. (1 −
α) and the 1:1 line, divided by 0.5, which serves here
as a benchmark. This value of 0.5 is reached when the
PICP is independent from α. The criterion ES measures
the overall performance of the model over all quantiles.
Smaller ES values indicate better model interval prediction
ability.

Error Score � Area between the curve of PICPs vs. (1 − ∝ ) and 1: 1 line
0.5

× 100%

(1)

Interval scores (IS) (Gneiting and Raftery, 2007;
Papacharalampous et al., 2019) for (1 − α) � 0.5, 0.8 and 0.9
were also calculated for different quantile regression models to
cross-check the relevance of this new criterion (Supplementary
Figure S3). The interval score is defined by Eq. 2, where the upper
(u) and lower (l) endpoints are the predicted quantiles at levels α

2
and (1 − α

2), respectively. The first term of the IS indicates the
range of prediction interval, while the second and third terms are
the penalty scores added to this range when the observations are
outside the prediction interval. For a given (1 − α), a smaller IS
indicates a better model performance.

Interval Score �
(u − l) + 2

α
(l − x)1{x< l} + 2

α
(x − u)1{x> u} (2)

The final performances from model testing for all the models are
presented in Supplementary Table S3–5.

Global Projection
The algorithms with the best final model performance are used for
classification (yield gain vs. loss), for quantitative prediction (ratio of
relative yield change of CA vs. CT), and for computing intervals
(intervals of relative yield change ratios). Model outputs include the
probabilities of yield gain with CA for the classification models, the
relative yield change with CA for regressionmodels, and the 10th and
90th percentiles of relative yield change for the range regression
models. These outputs are mapped at the global scale with climate
data over the 1981–2010 time slice at a spatial resolution of
0.5° latitude × 0.5° longitude (average air temperature
(NOAA/OAR/ESRLPSL, 2020), maximum air temperature
(NOAA/OAR/ESRLPSD, 2020), minimum air temperature
(NOAA/OAR/ESRLPSD, 2020), precipitation (NOAA/OAR/
ESRLPSL, 2020), potential evapotranspiration (Miralles et al.,
2011; Martens et al., 2017)). As for the farming practices, we set
up CA as a combination of no tillage with crop rotation andwith soil
cover, and CT as a combination of tillage without crop rotation and
without soil cover. Both systems are incorporated with fertilizer
utilization and weed and pest control. All maps are generated with
MATLAB R2020a (Version 9.8.0.1451342). Details of model settings
for global projection and the sources of climate data and soil data are
listed in Supplementary Table S6.

RESULTS

Random forest (RF), GBM, and XGBOOST show better
classification performance, with AUC values equal to 0.790,
0.786, 0.783, respectively, while the more traditional
algorithms GLM and NB have lower performance, with AUC
values of 0.644 and 0.647, respectively (Figure 2, Supplementary
Table S3). With ANN, the best classification accuracy was
obtained using two hidden layers, with an AUC value of 0.752
(Figure 2, Supplementary Table S3).
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The regression models achieved RMSEs larger than 0.25,
and R squared (R2) of all algorithms under 0.6 (Figure 3A,
Supplementary Table S4), revealing low to moderate
explanatory power. Among these algorithms, the best
performance is achieved by RF, with a R2 of 0.52, and a
RMSE of 0.25, while GLM has the worst performance, with
a R2 of 0.12, and a RMSE of 0.34 (Figure 3A, Supplementary
Table S4). Figures 3B,C show the scatterplot of observations
versus predictions of relative crop yield change from the RF
and GLM models, respectively. Predictions with GLM are
poorly related to observations, while RF is able to explain a
substantial fraction of the total variability.

For range regression models, different rankings are
obtained depending on whether outliers in the dataset were
included or not (Figure 4). With outliers included, the best
performance is obtained with QRF (ES � 1.73%), while
QRGBM performs better when the outliers were filtered (ES
� 1.38%). QRNN performs better with one than with two
hidden layers, but never outperforms QRF and QRGBM (with
ES equals to 5.35 and 15.69% without and with outliers,
respectively). The results of interval scores for different
prediction intervals (0.5, 0.8 and 0.9) also show that QRF
has the best performance among all algorithms
(Supplementary Figure S3). QRGBM has a relatively low
ES (Figure 4) and a relatively high IS (Supplementary
Figure S3A) when the outliers are included. This indicates
that, for QRGBM, the observations fall within the prediction
interval in expected proportions (i.e., 0.5, 0.8 and 0.9),
although relatively large errors can occur for data falling
outside the prediction interval.

The productivity of CA vs. CT systems for spring barley was
mapped at the global scale. To reveal the differences among
models, we mapped the probability of yield gain (Figures 5A,B)
and relative yield change (Supplementary Figure S4) of CA vs.
CT based on the results obtained with the best (RF) and the worst
(GLM) algorithms. Results obtained with both algorithms show
that - with fertilizer inputs and an appropriate control of weeds
and pests - the probability of yield gain with CA vs. CT is higher
than 0.5 in western North America, central Asia, and many
regions in the east and central Africa, while the probability is
lower in eastern North America and Europe (Figure 5A,
Figure 5B). However, there are many inconsistencies in the
predictions of the two algorithms in other regions. For
example, according to RF, the use of CA instead of CT would
most likely lead to yield loss (with a probability of yield gain
under 0.5) in south America, and in most regions within eastern
and southern Asia, while opposite results are provided by GLM in
those regions (Figure 5A, Figure 5B, respectively). This
contradiction reveals that the choice of an inappropriate
model (such as GLM, here) would lead to wrong conclusions,
highlighting the importance of the model selection step in our
procedure. This is confirmed by the relative yield changes of CA
vs. CT mapped with the RF and GLM models in Supplementary
Figure S4. According to RF, yield gains are expected when
shifting from CT to CA in western North America, central
Asia, and many regions in the east and central Africa, while
yield losses are predicted over most of Europe (Supplementary
Figure S4A). This is in line with the results from RF classification
model (Figure 5A). Conversely, according to the results of the
GLM regression model, yield gains are predicted in eastern North

FIGURE 2 | Comparison of different classification algorithms based on AUC. Plot (A) shows the AUC in the final testing step for the various algorithms after model
tuning. Plot (B) shows the ROC curve of the best (RF) and the worst (GLM) algorithms.
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America and Europe, while yield losses are predicted in central
Asia (Supplementary Figure S4B), which is not consistent with
the GLM classification model (Figure 5B) and RF models
(Figure 5A, Supplementary Figure S4A).

To describe the uncertainty associated with this projection,
we plotted the relative yield change of CA vs. CT that
corresponding to 10th and 90th percentiles (Figures 5C,D).
We show that there is 10% chance that the relative yield
change of CA vs. CT will be higher than 0.45 in western
North America, southern South America, eastern and central
Africa (Figure 5D), while there is 10% chance that relative yield
changes be lower than 0.35 in part of western North America,
central Asia, and northern China (Figure 5C). We also plotted
the differences between the 10th and 90th percentiles, and the
results show that the uncertainty in western North America,
central Africa, central Asia are relatively larger than other regions
(Supplementary Figure S5).

SHAP dependence plot (Roth, 1988) was generated with
respect to two control variables: the precipitation balance
(PB � precipitation - evapotranspiration) (Steward et al., 2018;
Su et al., 2021a; Su et al., 2021b; Su et al., 2021c) and the number
of years since the switch to no tillage (NTyear). This is an
alternative to partial dependence plots (PDP), and a means to
assess how PB and NTyear would affect the performance of
CA. While PDPs show average effects, the SHAP dependence
plot also shows the variance on its y-axis. The results show that

a relatively lower PB or a longer period of no tillage
implementation is likely to improve the performance of
CA compared to CT (Supplementary Figures S6, S7,
respectively).

DISCUSSION

In this study, we trained a broad set of machine learning (ML)
models for different purposes: classification, quantitative
prediction, and range prediction. This is the first time that
12 ML algorithms are implemented and compared in an
application dealing with a major, global issue for agriculture.
And we developed a new evaluation metric for quantile
regression, the error score, based on the traditional coverage
probability of a specific prediction interval, which enables us to
assess the overall interval prediction ability for all quantiles and
the interval prediction ability is for each prediction interval. It is a
more accurate and comprehensive evaluation metric than
coverage probability in evaluating and comparing quantile
regression models.

Here we produced global maps obtained with the most
accurate algorithms, which reveal a strong geographical
variation (Sun et al., 2020; Su et al., 2021a; Su et al., 2021c) of
the probability of yield gain with CA, and of the predicted relative
yield change resulting from its adoption over convention tillage.

FIGURE 3 | Comparison of different regression algorithms based on RMSE. Plot (A) shows the RMSE in the final testing step for the various algorithms after model
tuning. The number after ANN indicates the number of hidden layers in the neural networks. Plots (B,C) are the scatterplots of observations and predictions of relative
crop yield change from the best (RF) and the worst (GLM) algorithms, respectively. All the models were trained with the training dataset in which the outliers (data points
outside the 95% confidence interval) were filtered.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8126486

Su et al. Machine Learning Algorithms in Agriculture

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 4 |Comparison of different range regression algorithms based on ES. Plot (A) shows the error score in the final testing step for the various algorithms after
model tuning. Plots (B) and c show the actual coverage rates for all the prediction intervals of the best (QRF) and worst algorithm (QRNN2). The number after QRNN
indicates the number of hidden layers in the quantile regression neural networks. All the models were trained both with and without the outliers (outside 95% confidence
interval) in the original dataset filtered to check if the algorithms can handle outliers.

FIGURE 5 |Global projection obtained with the algorithms of classification and quantile regression. Plots (A,B) show themaps of probability of barley yield gain with
CA vs. CT based on the best classification (RF) and the worst (GLM) algorithms, respectively. Regions with a probability of yield gain lower than 0.5 are highlighted in red.
Plots (C,D) show the maps of relative yield change with CA vs. CT under 10th and 90th percentiles, respectively, based on QRF algorithm. There was a 90% chance that
the relative yield change will be higher than the ratio shown on the map in plot c, and conversely a 10% chance that the relative change will be lower.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8126487

Su et al. Machine Learning Algorithms in Agriculture

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


This result shows that the mere presentation of an average effect
size - as often done in standard meta-analyses - does not provide
sufficient information on the performance of one cropping system
compared to another. Contrary to standard meta-analyses, our
approach can be used to describe the variability of this relative
performance and to identify geographical areas where one cropping
system outranks the other with a higher spatial resolution. This is an
important advantage in a context where the choice of cropping
systems should be adapted to the local context to provide optimal
performance. Here, the global maps generated from our machine
learning approach reveal that CA can be competitive in western
North America and central Asia, in particular in dry regions, where
CA tends to have better performance (Supplementary Figure S6).
The result is consistent with recent studies (Pittelkow et al., 2015a;
Pittelkow et al., 2015b; Su et al., 2021a), and related to the fact that no
tillage and soil cover can reduce soil evapotranspiration (O’Leary and
Connor, 1997; Nielsen et al., 2005; Page et al., 2020) and increase the
water holding ability (Liu, 2013), which help the crops coping with
agricultural drought, thus, potentially increasing the crop yield and
CA competitiveness in dry regions.

Our comparative analysis shows that, RF has the best
performance for both classification and quantitative prediction,
followed by GBM, XGBOOST, ANNs, SVM, and KNN, while
GLM and NB have the worst performance compared to other
algorithms. The reason why RF and GBM perform better is likely
linked to the type of data used for model training. As many
agricultural datasets, our dataset includes both quantitative and
categorical features. RF, GBM, SVM are able to handle such
heterogeneous features, while ANNs, KNN, XGBOOST work
usually better with numerical and homogeneous inputs (Ali et al.,
2019; Zhou, 2021). Converting categorical features to numerical will
also increase the number of feature inputs, it will dramatically
increase the computational time for, e.g., ANNs (Nataraja and
Ramesh, 2019). Moreover, the numerical features in our dataset
are in very different scales, it is necessary to normalize them for
ANNs and KNN to reduce effects of disparate ranges (Sarle et al.,
1991; Han et al., 2011; Ali et al., 2019). Concerning SVM, it gives
poor performance with large dataset (Nataraja and Ramesh, 2019).
Finally, VB and GLM are often inaccurate when the data are
heterogeneous and when the responses are non-linear (Nataraja
and Ramesh, 2019). Other studies from agriculture-related sectors
also reported similar trend in the performance of machine learning
algorithms. For example, Cao et al. (2021) reported that RF had
better performance than ANNs in wheat yield prediction. Rahmati
et al. (2020) revealed that RF had better classification ability than
SVM when predicting agricultural droughts in Australia. Dubois
et al. (2021) reported that RF and SVM had better quantitative
prediction ability than ANNs for forecasting soil moisture in the
short-term. In other fields, Uddin et al. (2019) unveiled that in
disease detection, RF had the highest chance to show excellent
classification capability (with an AUC over 0.8), followed by SVM,
NB, ANNs, KNN. However, RF is not systematically ranked first in
previous studies (Bozdağ et al., 2020; Schwalbert et al., 2020; Khanam
and Foo, 2021) and the performance of different algorithms may
shift depending on the type of applications and data provided. It is
therefore essential to evaluate a range of different candidate

algorithms for each application, and not to systematically rely on
the same approach. Our methodological framework appears very
useful in this context because it allows the comparison of several
algorithms on an objective basis.

Concerning interval prediction, it is reported that the
performances of quantile regression algorithms often vary
depending on the quantiles considered (Newcombe, 1998;
Wang, 2008; David et al., 2018; He et al., 2020; Córdoba et al.,
2021). This highlights the importance of evaluating these
algorithms for a wide range of quantiles. In this perspective,
the new evaluation metric we developed for quantile regression -
error score (ES) - is meaningful and can be used to assess any
quantile regression model over the whole range of quantiles.
This criterion can be used to select or tune algorithms performing
over a large range of quantiles and not only for specific quantile
values.

In this study, we prove that the experimental data collected
from published studies can be used to conduct more complex
analyses via machine learning techniques (such as the random
forest algorithm) than those done in standard meta-analyses,
usually based on linear models. The maps created from the
machine learning pipeline we proposed here provides detailed
geographical information about the performance of one
agricultural system compared to a reference baseline, and this
pipeline can be easily adapted to analyse a diversity of outcomes
or land management systems. These may involve the effects
of crop management practices on soil organic carbon
dynamics, greenhouse gas emissions, biodiversity, etc. for
different types of cropping systems, such as organic agriculture
or agroforestry, and thus provide valuable information on the
local performance of sustainable farming practices together with a
global perspective.
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