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Agricultural drought disaster is a major natural disaster affecting economic and social
development. It is of significance to investigate the spatial–temporal pattern and the
dominant influence of natural and human factors on agricultural drought disasters for
drought hazard relief. In this study, Mann–Kendall test was adopted to explore the
evolution of agricultural drought disasters. Random forest algorithm, which integrates
feature importance and accumulated local effects plot, was applied to quantify the effect of
principal influencing factors on agricultural drought disasters. Results show that over the
period from 1950 to 2019, agricultural drought disasters in China have undergone
significant fluctuations. The spatial pattern of agricultural drought disaster tends to
decrease in severity from north to south. The total sown area of crops, precipitation,
effective irrigation area, domestic patent application authorization, and regional GDP are
the top 5 dominant factors influencing agricultural drought disasters. It also found that
agricultural drought disaster negatively correlates with precipitation, domestic patent
application authorization, and regional GDP, and the nonlinear response of agricultural
drought disaster to total sown area of crops and effective irrigation area can be basically
divided into two stages. In the first stage, with the increase of feature value, agricultural
drought disaster is also increasing. In the second stage, with the increase of feature value,
agricultural drought disaster is growing slow or just decreasing. The results can deepen the
understanding of agricultural drought disasters and provide scientific basis for drought
event monitoring, evaluation, and early warning.

Keywords: agricultural drought disaster, drought impacts, spatial–temporal pattern, influencing factors, human
activities, random forest, feature importance, ALE plots

1 INTRODUCTION

Drought is one of the most frequent natural hazards in the world (Schwalm et al., 2017). Compared
with other natural disasters, drought usually affects vast space with long period, and has great impact
on hydrology and ecosystem (Orth and Destouni, 2018). Drought may bring about the reduction of
soil moisture, river runoff, and crop yield; cause the degradation of river ecological function; and
even affect regional water, food, and ecological security. Drought is a major natural disaster affecting
economic and social development in China (Lv et al., 2011). From 2008 to 2018, the average area
affected by drought in China was 12.8 million hectares, with an average grain loss of 18.7 billion kg
(Ministry of Water Resources of China, 2019). In the context of global warming, agriculture
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production is affected by increasingly serious meteorological
disasters. It is quite important to carry out the research on
spatial–temporal pattern and evolution characteristics of
agricultural drought disasters in China, so as to reduce the
potential risk of drought hazard and formulate corresponding
measures (Yan et al., 2016; Dayal et al., 2018; Ni et al., 2019; Wu
et al., 2020; Zhao et al., 2020).

The selection of agricultural drought indicators is the basis of
agricultural drought analysis. Agricultural drought involves
atmosphere, soil, and crops. The commonly used indicators
include standardized precipitation index (SPI), standardized
soil moisture index (SSMI), water deficit index (WDI), crop
moisture index (CMI), and Palmer Drought Severity Index
(PDSI) (Cancelliere et al., 2006; Shah and Mishra, 2020; Tian
et al., 2022). Most of the aforementioned agricultural indicators
are composed of data of crop and soil (Hao et al., 2017;West et al.,
2019). They mainly consider disaster drivers and disaster
environment, without involving the actual loss of crops
directly after drought events. Effective agricultural drought
indicators should reflect the impacts of drought (Liu et al.,
2019). Li et al. (2019) analyzed the temporal and spatial
characteristics of drought in Heilongjiang, Jilin, and Liaoning
provinces based on the statistical data of crop sown area, drought-
affected area, drought-suffering area, area with no harvest, and
grain loss due to severe drought in Northeast China from 1949 to
2017. Wu et al. (2018) adopted drought-affected area rate as
drought risk index to establish the risk assessment and zoning
model for regional drought disaster based on Cloud Model and
Bootstrap Method (CMBM) in Anhui province.

Drought is a natural phenomenon, but it is also widely affected
by human activities. For instance, hydrological drought may
occur downstream of a reservoir; diversion irrigation may
alleviate agricultural drought; long-term overexploitation of
groundwater for domestic and production water use may
cause ecological drought. Nowadays, human activities have
deeply affected water cycle and energy cycle, and the
influencing factors of agricultural drought disasters are
becoming more and more complex. It is necessary to identify
the influencing factors of agricultural drought disasters, screen
key disaster-causing factors, and explore the relationship between
agricultural drought disaster and various factors, to prevent and
control agricultural drought disasters (Yang et al., 2020). Many
researches have been carried out on driving factors of agricultural
drought disasters (Blauhut et al., 2016; Huang et al., 2015; Pang
et al., 2019; Zobeidi et al., 2021). Han et al. (2021) analyzed the
influencing factors of agricultural drought in Loess Plateau (LP),
and the result shows that significant increasing precipitation (p <
0.01) in the LP has not alleviated agricultural drought, whereas
significant increasing temperature (p < 0.01) is the direct factor
inducing agricultural drought, and the implementation of
vegetation restoration project further aggravates the risk of
agricultural drought. Hong (2017) calculated the information
transmission direction and intensity between different types of
drought indicators in Hanjiang River Basin, and analyzed the
regular pattern of drought propagation and evolution; the result
shows that the interaction between agricultural drought and
hydrological drought is quite close, showing a high degree of

synchronization. However, most of the previous studies on
drought are conducted for a river basin or a region rather
than the entire China (Huang et al., 2015; Cheng et al., 2017;
Wu et al., 2017; Dai et al., 2020), and influencing factors only
focus on natural attributes, with less consideration of the role of
human activities on drought disasters (Javadinejad et al., 2020).

The response of hydrological and agricultural systems to
meteorological conditions is nonlinear (Berghuijs et al., 2016;
Konapala and Mishra, 2016); it is one of the sticky points to
separate the role of individual natural or human factors and
clarify their driving mechanism on agricultural drought disasters.
As an algorithm that uses computers to imitate human learning,
machine learning can develop learning strategies, analyze
potential patterns, and predict target variables according to
existing data (Kohavi and Provost, 1998; Liu et al., 2019;
Apley and Zhu, 2016). In water cycle field, machine learning
algorithm can capture the nonlinear relationship between input
variables (e.g., precipitation, temperature) and output variables
(e.g., runoff), and apply the functional relationship to target
prediction (Nourani et al., 2014; Raghavendra and Deka,
2014). Although most machine learning algorithms cannot
directly quantify the internal mechanism of the model
behavior (Gupta and Nearing, 2015; Karpatne et al., 2017), the
emergence of interpretable methods can improve the
understanding of specific machine learning model or
prediction (Guidotti et al., 2019; Ji et al., 2019; Liu. W et al.,
2019). Based on interpretable methods, it is easier to quantify
feature importance, and clarify the dependency between input
features and output targets. Nowadays, machine learning
algorithms have been widely used in drought prediction (Liu
et al., 2018; Başakın et al., 2019; Shamshirband et al., 2020);
interpretable methods also began to rise in hydro-meteorological
area (Schwalm et al., 2017; Fienen et al., 2018; Koch et al., 2019),
but the application of the aforementioned emerging technologies
in the identification of key factors of agricultural drought
disasters is still limited.

The previous discussion suggests that limited research has
been conducted to investigate the dominant nonlinear influence
of natural and human factors on agricultural drought disasters
over China based on machine learning model. Therefore, the
main objectives of this paper are

1) To explore the spatial–temporal pattern and evolution
characteristics of agricultural drought disasters in China;

2) To identify the dominant natural and human factors and their
effects on agricultural drought disasters in China based on
machine learning model.

To achieve these aims, first, we selected drought-affected area
and drought-suffering area as the indexes indicating agricultural
drought disasters, and the spatial–temporal pattern and evolution
characteristics of agricultural drought disasters were presented
based on Mann–Kendall test. Second, an index system that
consisted of natural and human factors of agricultural drought
disasters with 22 indexes was established, and Random Forest
algorithm derived from 4 datasets of 2011–2019, 2004–2019,
1987–2019, and 1979–2019 were trained and tested to explore
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TABLE 1 | List of indicators; their data sources and brief description are provided

Indicator Data source Description Unit Time period

Drought-affected area China Statistical
Yearbook

The sown area with crop yield 10% or more lower than normal year due
to drought disaster

103 ha 1950–2020 (National
scale)
1979–2019
(Provincial scale)

Drought-suffering area China Statistical
Yearbook

The sown area with crop yield 30% or more lower than normal year due
to drought disaster

103 ha

Total sown area of crops China statistical
yearbook

The sown or transplanted area of crops on all land that should be
harvested by agricultural producers and operators

103 ha

Drought-affected area rate — The percentage of drought-affected area to total sown area of crops %
Drought-suffering area rate — The percentage of drought-suffering area to total sown area of crops %

Regional GDP China Statistical
Yearbook

The final result of production activities of all resident units in a region
during a year calculated according to the market price

108 yuan 1979–2019
(Provincial scale)

Total population China Statistical
Yearbook

The population on December 31 of each year 104 1979–2019
(Provincial scale)

Rural population China Statistical
Yearbook

Total population except urban population 104 1979–2019
(Provincial scale)

Total power of agricultural
machinery

China Statistical
Yearbook

The sum of rated power of all agricultural machinery 103 kW 1979–2019
(Provincial scale)

Net amount of agricultural chemical
fertilizer application

China Statistical
Yearbook

The amount of chemical fertilizer actually used for agricultural
production in a year

104 t 1979–2019
(Provincial scale)

Rural electricity use China Statistical
Yearbook

— 108 kW h 1979–2019
(Provincial scale)

Number of reservoirs China Statistical
Yearbook

— — 1987–2019
(Provincial scale)

Reservoir storage capacity China Statistical
Yearbook

Total storage volume below check flood level 108 m3 1987–2019
(Provincial scale)

Number of rural hydropower
stations

China Statistical
Yearbook

— — 2011–2019
(Provincial scale)

Effective irrigation area China Statistical
Yearbook

The cultivated land area with certain water source, relatively flat land,
supporting irrigation projects or equipment, and capable of irrigation in
normal years

103 ha 1979–2019
(Provincial scale)

Number of ordinary high school
graduates

China Statistical
Yearbook

Indicating the level of education in a region 104 1987–2019
(Provincial scale)

Domestic patent application
authorization

China Statistical
Yearbook

The scientific, technological, and design achievements with
independent intellectual property rights, indicating the level of science
and technology in a region

— 1987–2019
(Provincial scale)

Total book prints China Statistical
Yearbook

Indicating the level of cultural propagation in a region 108 1979–2019
(Provincial scale)

Total water resources China Water
Resources Bulletin

The total amount of surface and subsurface water produced by local
precipitation

108 m3 2011–2019
(Provincial scale)

Water production modulus China Water
Resources Bulletin

The ratio of total water resources to regional area in a year 104 m3/
m2

2011–2019
(Provincial scale)

Total water use China Water
Resources Bulletin

The gross water taken by various water users, including water
transmission loss

108 m3 2004–2019
(Provincial scale)

Agricultural water use China Water
Resources Bulletin

Including farmland irrigation water, forest and fruit land irrigation water,
grassland irrigation water, fish pond replenishment water, and livestock
and poultry water

108 m3 2004–2019
(Provincial scale)

Actual irrigation water use per mu of
cultivated land

China Water
Resources Bulletin

The average water use per mu in actual agricultural irrigation area m3 2011–2019
(Provincial scale)

Effective utilization coefficient of
farmland irrigation water

China Water
Resources Bulletin

The proportion of actual water demand for crop growth in irrigation
water

— 2011–2019
(Provincial scale)

(Continued on following page)
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the functional relationship between potential factors and
agricultural drought disasters. Finally, Gini importance,
permutation feature importance, and accumulated local effects
(ALE) plot were applied to identify principal factors and their
influence on agricultural drought disasters.

The remainder of the article is organized as follows: Section 2
provides an overview of study area and data sources, Section 3
presents the methods adopted in the study, Section 4 presents the
results, Section 5 discusses the findings and outlook, and finally
the article is concluded in Section 6.

2 STUDY AREA AND DATA SOURCES

The paper selects China (excluding Hong Kong Special
Administrative Region, Macao Special Administrative Region,
and Taiwan Province) and its 31 provinces as the study area, and
collects the annual data of 24 indicators at national or provincial
spatial scale (Table 1). For national spatial scale, there are three
indicators including drought-affected area, drought-suffering
area, and total sown area of crops, whose data source is China
Statistical Yearbook, with time scale from 1950 to 2020. For
provincial scale, all the 24 indicators are included, but the time
scale of different indicators is different, with the longest from
1979 to 2019 and the shortest from 2011 to 2019. Among the 24
indicators, data of 16 indicators of drought and social economy
such as drought-affected area, regional GDP, and total book
prints number are from China Statistical Yearbook; data of six
indicators of water resources such as total water resources, total
water use, and actual irrigation water use per mu of cultivated
land are from China Water Resources Bulletin; data of two
indicators including precipitation and temperature are from
China Climate Bulletin and ERA5 (Hersbach et al., 2019).
Previous studies indicated that ERA5 data have good
suitability to China, which could reasonably depict regional
difference of hydrological cycle elements (Su et al., 2020;
Zhang et al., 2021; Zhou et al., 2021). However, we found that
there is still a certain bias between original ERA5 products and in
situ observations. We therefore corrected temperature and
precipitation of the original ERA5 data by using bias
correction method. It is found that the corrected ERA5
products are consistent with observations (Supplementary
Figure S1).

Some data are missing for the 4 indicators of drought-affected
area, drought-suffering area, number of reservoirs, and reservoir
storage capacity. Among them, data of drought-affected area and
drought-suffering area from 1967 to 1969 at national spatial scale are
missing, and there are varying degrees of missing data for each

province in each year. To ensure authenticity and objectivity, the
paper does not deal with the missing data in drought-affected area
and drought-suffering area. Data of reservoir number and reservoir
storage capacity in 1999 are missing, and the arithmetic average
values of 1998 and 2000 are used for interpolation.

3 METHODS

3.1 Mann-Kendall Test
Among all the trend analysis methods for time series,
Mann–Kendall test is a method recommended by the World
Meteorological Organization and widely used around the world.
As a nonparametric test method, Mann–Kendall test is an
effective tool to diagnose the trend of a data sequence, which
does not need data series to follow a specific distribution, and is
not affected by sample values, distribution types, and a few
outliers either. Mann–Kendall test has the advantages of
relatively simple calculation, high degree of quantification, and
wide detection range. It is widely used in the analysis of
hydrological data series. The mathematical fundamentals of
Mann–Kendall test are as follows:

For time series x1, x2, . . . , xn, dual number p is calculated by

p � ∑n−1
i�1 ∑n

j−i+1sgn(xj − xi) (1)

where sgn(xj − xi) � { 1 if xj − xi > 0
0 if xj − xi ≤ 0

}.
Then, τ, Var (τ), and U are calculated based on p:

τ � 4p
n(n − 1) − 1 (2)

Var(τ) � 2(2n + 5)/9n(n + 1) (3)
U � τ

Var(τ)1/2 (4)

When the value of statistic U is positive, it indicates that the
time series shows an upward trend, otherwise the time series
shows a downward trend. Taking the significance level as 95%,
U0.05 equals ±1.96. If |U|≥1.96, then the trend of the time series is
significant, otherwise the trend of the time series is not significant.

3.2 Random Forest Model
Random Forest (RF) is a statistical learning theory proposed by
Breiman (2001). Compared with other machine learning
algorithms, Random Forest is insensitive to multicollinearity,
robust to missing data and unbalanced data, does not need
data preprocessing, and can provide reasonable prediction
results for nonlinear relationships. It is one of the best

TABLE 1 | (Continued) List of indicators; their data sources and brief description are provided

Indicator Data source Description Unit Time period

Air temperature China Climate Bulletin,
ERA5

Mean annual air temperature °C 1979–2019
(Provincial scale)

Precipitation China Climate Bulletin,
ERA5

Mean annual precipitation mm 1979–2019
(Provincial scale)
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algorithms for processing high-dimensional data based on
machine learning.

Random Forest is a collection of decision trees, each of which
is slightly different from another. Random Forest repeatedly
extracts samples from the training set, and the unselected
samples constitute the out-of-bag data. Each training sample
set is used to construct a decision tree. During the growth of a
decision tree, features are randomly selected at each node, and the
error of a decision tree is estimated according to the data out of
bag. The prediction result of a RF algorithm is the mean value of
the prediction result of each decision tree, and the prediction
accuracy of a RF algorithm is estimated by the average prediction
accuracy of each decision tree. The model construction process is
as follows:

1) Split the whole data set into training set (75%) and test set
(25%) randomly.

2) The training set is used to construct the RF model, and the
best parameters of the model are determined based on
network search and cross-validation. The accuracy of RF
algorithm output mainly depends on three parameters: a)
the number of trees (n_estimators) to grow in the forest, b)
the maximum number of randomly selected features
(max_features) at each node, and c) the maximum depth
of each tree to grow (max_depth). In this paper, we
randomly resampled different combinations of parameter
sets with max_features ranging from one to total variables
considered, and max_depth ranging from one to ten to
avoid overfitting. Besides, we set n_estimators to 1,000 as
suggested by Hengl et al. (2018) and Probst et al. (2017).
Determination coefficient R2 is adopted to measure the
model training accuracy and then select the optimal
parameters of the RF model. Calculation details are as
follows:

FIGURE 1 | Temporal variation of agricultural drought disasters in China from 1950 to 2020. (A) Drought-affected area and drought-suffering area. (B) Drought-
affected area rate and drought-suffering area rate.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8206155

Deng et al. Agricultural Drought Pattern and Factors

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


R2 � ⎡⎢⎢⎣ cov(yi, ypred)
σ(yi) · σ(ypred)⎤⎥⎥⎦

2

(5)

where yi is the actual value in the validation set and ypred is the
predicted value of a RFmodel in the validation set. R2 is between 0
and 1; the optimal value of R2 is 1. Generally, R2 greater than 0.6
would point to a model with good predictive power.

3) The test set is used to evaluate the generalization ability of the
established RF model, and R2, root mean square error
(RMSE), and percent bias (PBIAS) are adopted to be the
evaluation index. Calculation details are as follows:

RMSE �
���������������
1
n
∑n

i�1[yi − ypred]2√
(6)

PBIAS � 100 ×
∑n

i�1(yi − ypred)∑n
i�1yi

(7)
where n is the number of samples in the test set.

RMSEmeasures the average distance between predicted values
and actual ones. The optimal value of RMSE is 0, with low-
magnitude values indicating accurate model simulation.

PBIAS measures the average tendency of predicted values
larger or smaller than their actual ones. The optimal value of
PBIAS is 0, with low-magnitude values indicating accurate model
simulation. Positive values represent underestimation bias,
whereas negative values represent overestimation bias.

In this paper, Sklearn package in Python is used to realize the
construction and verification of RF model.

3.3 Feature Importance
Two kinds of methods including Gini importance and
permutation feature importance are adopted to filter out the
significant features of target variables.

3.3.1 Gini Importance
Gini coefficient calculates the amount of probability of a specific
feature that is classified incorrectly when selected randomly.
Supposing there are K categories, the probability of i category
is Pi, then the expression of Gini coefficient is

Gini(P) � ∑K

i�1Pi(1 − Pi) � 1 −∑K

i�1P
2
i (8)

Gini coefficient reflects the impurity at a node in a decision
tree. Each time a particular feature is used to split a node, the Gini

coefficient for the child nodes are calculated and compared with that
of the original node. If the reduction is large, it shows that the feature
at the node has a great impact on the decision tree. The importance
of a feature is computed as the normalized total reduction of the Gini
coefficient brought by that feature in a Random Forest, and the sum
of Gini importance of all features is equal to 1. In this paper, Sklearn
package in Python is used to realize the Gini feature importance.

3.3.2 Permutation Feature Importance
Permutation feature importance, introduced by Breiman (2001) for
Random Forests, measures the increase in the prediction error of the
model after we permuted the feature’s values. Features with higher
importance value likely have higher dominant control. Permutation
feature importance provides a highly compressed, global insight into
the model’s behavior. Detailed algorithm turns to Fisher et al. (2019)
and Molnar (2021). In this paper, eli5 package in Python is used to
realize permutation feature importance.

3.4 Accumulated Local Effects Plot
Accumulated local effects plot describes how features influence
the prediction of RF model on average, which can present the
nonlinear response of target variables to features. Compared with
partial dependence plots (PDPs), ALE plots can still work when
features are correlated. In addition, the value at each point of the
ALE curve is the difference to the mean prediction, which makes
their interpretation clearer. In this paper, we repeated the ALE
algorithm in Monte Carlo simulation with 100 replicates, where
on each replicate we generated a new training data set and refit
the RF model with the same best parameters. Detailed algorithm
turns to Grömping (2020) and Molnar (2021). In this paper,
alepython package in Python is used to realize ALE plot.

4 RESULTS

4.1 Spatial-Temporal Pattern of Agricultural
Drought Disasters
4.1.1 Temporal Evolution
The temporal variations of drought-affected area and drought-
suffering area, drought-affected area rate and drought-suffering
area rate over the years from 1950 to 2020 are shown in Figure 1.

TABLE 2 | Statistics of drought-affected area rate and drought-suffering area rate
based on Mann–Kendall test in 1950–1980, 1981–2000, and 2001–2020

Stage Item Statistics

Mean (%) SD Cv U

1950–1980 Drought-affected area rate 13.19 7.56 0.57 3.16a

Drought-suffering area rate 4.72 3.56 0.75 2.61a

1981–2000 Drought-affected area rate 17.12 4.56 0.27 0.84
Drought-suffering area rate 8.44 3.44 0.41 1.3

2001–2020 Drought-affected area rate 10.35 5.76 0.56 −4.48a

Drought-suffering area rate 5.51 3.60 0.65 −4.54a

aMeans passing the significance test with a significance level of 5%.

FIGURE 2 | Frequency curves of drought-affected area and drought-
suffering area in China.
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It can be seen that drought-affected area and drought-suffering
area, drought-affected area rate and drought-suffering area rate
fluctuate since 1950, which can be roughly divided into three
stages: 1950–1980, 1981–2000, and 2001–2020. By calculating the
statistics of the time sequences of drought-affected area rate and
drought-suffering area rate (Table 2), it can be found that the
national multi-year average drought-affected area rate and
drought-suffering area rate are 13.19 and 4.72% in 1950–1980,
17.12 and 8.44% in 1981–2000, and 10.35 and 5.51% in
2001–2020. Compared among the three stages, the national
multi-year average drought-affected area rate and drought-
suffering area rate are the largest in 1981–2000, which are
about 1.3 times and 1.8 times as large as those in 1950–1980,
and 1.7 times and 1.5 times as large as those in 2001–2020. The
variation coefficients of drought-affected area rate and drought-
suffering area rate are 0.57 and 0.75 in 1950–1980, 0.27 and 0.41
in 1981–2000, and 0.56 and 0.65 in 2001–2020. Compared among
the three stages, the variation coefficients of drought-affected area
rate and drought-suffering area rate are the smallest in
1981–2000. This indicates that the agricultural drought
disasters in 1950–1980 and 2001–2020 are relatively gentle,
but the interannual variation is relatively large; the agricultural
drought disasters in 1981–2000 are relatively heavy, but the
interannual variation is relatively small. The U statistics
derived from the Mann–Kendall test of drought-affected area
rate and drought-suffering area rate are 3.16 and 2.61 in
1950–1980 with significant upward trend, 0.84 and 1.3 in
1981–2000 with non-significant upward trend, and −4.48 and
−4.54 in 2001–2020 with significant downward trend. Compared
among the three stages, the downward trend is the most obvious

in 2001–2020. In the past decade (2011–2020), drought-affected
area rate and drought-suffering area rate have been decreasing
continuously, with an average drought-affected area rate of 6.26%
and an average drought-suffering area rate of 2.82%.

The frequency curves of drought-affected area rate and
drought-suffering area rate are shown in Figure 2, and the
frequency characteristic values are shown in Table 3. The
variation of frequency curves of drought-affected area rate and
drought-suffering area rate is overall gentle, but the variation of
rare drought (p < 10%) is relatively heavy. For drought-affected
area rate, there is a probability of 50% greater than 14.29%, 10%
greater than 21.88%, and 5% greater than 24.37%. For drought-
suffering area rate, there is a probability of 50% greater than
5.49%, 10% greater than 10.83%, and 5% greater than 12.47%.
Under the probability of 50%, the value of drought-affected area
rate is about 2.6 times as large as that of drought-suffering area
rate, while under the probability of 10%, the value of drought-
affected area rate is only about 2.0 times as large as that of
drought-suffering area rate. This indicates that with the increase
of drought intensity, it is more likely to evolve into a drought
disaster of high impact with crop yield 30% or more lower than
normal year. The years 1961, 2000, 1960, 2001, and 1959 are the
5 years with the highest drought-affected area rate in China from
1950 to 2020. Also, 2000, 2001, 1961, 1997, and 1994 are the
5 years with the highest drought-suffering area rate in China from
1950 to 2020. The reduction of grain yield in these years was over
5%, up to 11.5% (Zhang et al., 2008).

4.1.2 Spatial Pattern
The spatial distribution of the average drought-affected area rate
and drought-suffering area rate from 1979 to 2019 in China is
shown in Figure 3, and we can see that on the whole, drought-
affected area rate and drought-suffering area rate in northern
China are higher than those in southern China. In southern
China, the southeast coastal provinces have the lowest drought-
affected area rate and drought-suffering area rate. In Northern
China, drought-affected area rate and drought-suffering area rate
of Beijing, Tianjin, and Xinjiang are relatively low. The top five

TABLE 3 | Frequency characteristic value of drought-affected area and drought-
suffering area in China

Possibility 75% 50% 25% 10% 5%

Drought-affected area rate 8.22 14.29 18.42 21.88 24.37
Drought-suffering area rate 3.29 5.49 8.86 10.83 12.47

FIGURE 3 | Spatial distribution of multi-year average agricultural drought disasters. (A) Drought-affected area rate. (B) Drought-suffering area rate.
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provinces with the highest drought-affected area rate are Shanxi
(32.86%), Inner Mongolia (28.88%), Liaoning (24.5%), Gansu
(24.33%), and Shaanxi (22.41%). The top five provinces with the
highest drought-suffering area rate are Inner Mongolia (18.15%),
Shanxi (17.21%), Gansu (14.04%), Liaoning (13.47%), and
Shaanxi (12.33%). The two collections of provinces are exactly
the same and all of them are located in northern China.

Scatter plots of drought-affected area rate and drought-
suffering area rate against sown area proportion are shown in
Figure 4. Here, sown area proportion refers to the percentage of
sown area of crops in a province in the total sown area of crops in
China, which can reflect the contribution of agricultural
production of a province to the whole country. The lines
represent the 50% quantile of drought-affected area rate,
drought-suffering area rate, and sown area proportion, which

is 14.29, 5.49, and 2.93%, respectively. Among the four quadrants,
the first quadrant indicates that agricultural drought disasters are
relatively serious and sown area of crops accounts for a high
proportion of the country. The second quadrant indicates that
agricultural drought disasters are relatively serious but sown area
of crops accounts for a low proportion of the country. The third
quadrant indicates that sown area of crops accounts for a low
proportion of the country and agricultural drought disasters are
relatively light. The fourth quadrant indicates that sown area of
crops accounts for a high proportion of the country but
agricultural drought disasters are relatively light. Therefore, the
provinces located in the first quadrant need to be paid enough
attention. As we can see from the figure, seven provinces
including Inner Mongolia, Gansu, Jilin, Shaanxi, Hebei,
Heilongjiang, and Shandong account for a high proportion of

FIGURE 4 | Agricultural drought disasters against sown area proportion. (A) Drought-affected area rate. (B) Drought-suffering area rate.

FIGURE 5 | Spatial distribution ofU statistic derived fromMann–Kendall test of agricultural drought disasters. (A) Drought-affected area rate. (B) Drought-suffering
area rate.
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sown area and high drought-affected area rate. Ten provinces
including Inner Mongolia, Jilin, Shaanxi, Hebei, Heilongjiang,
Shandong, Yunnan, Hubei, Hunan, and Henan account for a high
proportion of sown area and high drought-suffering area rate.

The trend of drought-affected area rate and drought-suffering
area rate with time of each province was estimated based on
Mann–Kendall test (Figure 5). The drought-affected area rate of
all provinces presents a downward trend with time. Heilongjiang,
Jilin, Liaoning, Inner Mongolia, Ningxia, Gansu, Qinghai,
Xinjiang, Hubei, and Yunnan show a non-significant
downward trend, mainly distributed in northeast China and
northwest China. The rest of the provinces show a significant
downward trend. The drought-suffering area rate of Xinjiang and
Qinghai presents a non-significant upward trend with time, while
the drought-suffering area rate of the other 29 provinces presents
a downward trend with time. Heilongjiang, Jilin, Liaoning, Inner
Mongolia, Ningxia, Gansu, Hubei, Anhui, Jiangxi, Fujian, and
Yunnan show a non-significant downward trend, mainly
distributed in northeast China, northwest China, and
provinces in the middle and lower reaches of the Yangtze
River. The rest of the provinces show a significant
downward trend.

4.2 Analysis on the Influencing Factors of
Agricultural Drought Disasters
4.2.1 Index System
Agriculture drought disasters, impacted by many natural factors
and human activities, are a complicated system. To explore the

principal influencing factors and their effect on agriculture
drought disasters, it is necessary to select operational indexes
comprehensively and construct scientific multi-hierarchy index
systems. Generally, agricultural drought disasters are affected by
natural and human factors.

Natural factors are mainly divided into meteorological
conditions and water resources conditions, including
temperature, precipitation, total water resources, and water
production modulus, which reflects the basic hydrothermal
conditions of agricultural production in a region.

Human factors are mainly divided into 4 aspects: basic socio-
economic conditions, agricultural development, water
conservancy conditions, and water saving consciousness. Basic
socio-economic conditions include three indexes, regional GDP,
total population, and total water use, which represent the
comprehensive socio-economic capacity in a region.
Agricultural development includes six indexes, rural
population, total sown area of crops, total power of
agricultural machinery, net amount of agricultural chemical
fertilizer application, agricultural water use, and rural
electricity use, which shows the basic conditions of agricultural
production in a region. Water conservancy conditions include six
indexes, number of reservoirs, reservoir storage capacity, number
of rural hydropower stations, effective irrigation area, actual
irrigation water use per mu of cultivated land, and effective
utilization coefficient of farmland irrigation water, which
indicates the development and utilization level of water
resources and the ability of drought prevention and reduction
in a region. Water saving consciousness includes three indexes,

TABLE 4 | Index system of influencing factors of agricultural drought disasters

Index system Data series

Abbr Primary Secondary Tertiary 1979–2019 1987–2019 2004–2019 2011–2019

F1 Natural
factor

Meteorological conditions Air temperature 1 1 1 1
F2 Precipitation 1 1 1 1
F3 Water resources conditions Total water resources 0 0 0 1
F4 Water production modulus 0 0 0 1

F5 Human
factor

Basic socio-economic
conditions

Regional GDP 1 1 1 1
F6 Total population 1 1 1 1
F7 Total water use 0 0 1 1
F8 Agricultural development Rural population 1 1 1 1
F9 Total sown area of crops 1 1 1 1
F10 Total power of agricultural machinery 1 1 1 1
F11 Net amount of agricultural chemical fertilizer

application
1 1 1 1

F12 Agricultural water use 0 0 1 1
F13 Rural electricity use 1 1 1 1
F14 Water conservancy conditions Number of reservoirs 0 1 1 1
F15 Reservoir storage capacity 0 1 1 1
F16 Number of rural hydropower stations 0 0 0 1
F17 Effective irrigation area 1 1 1 1
F18 Actual irrigation water use per mu of cultivated land 0 0 0 1
F19 Effective utilization coefficient of farmland irrigation

water
0 0 0 1

F20 Water saving consciousness Number of ordinary high school graduates 0 1 1 1
F21 Domestic patent application authorization 0 1 1 1
F22 Total book prints 1 1 1 1

Total — — — 11 15 17 22
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number of ordinary high school graduates, domestic patent
application authorization, and total book prints, which
indirectly reflect the level of education, scientific research, and
cultural propagation in a region, respectively.

Thus, an index system of influencing factors of agricultural
drought disasters with 22 indexes was established (Table 4). Due
to the limited time length of some indexes obtained from data
sources (Table 1), a total of four datasets have been integrated.
Dataset of 2011–2019 has the shortest time length (9 years), but
contains all the 22 indexes. Dataset of 2004–2019 has time length
of 16 years with 17 indexes. Dataset of 1987–2019 has time length

of 33 years with 15 indexes. Dataset of 1979–2019 has the longest
time length (41 years), but contains only 11 indexes. In the
following paper, we will use these four datasets to explore the
influence of sample number and feature number on the fit
goodness of Random Forest algorithm.

4.2.2 RF Model Performance
Taking drought-affected area and drought-suffering area as target
variables, and taking indexes in Table 4 as features, Random
Forest model was constructed based on the method described in
Section 3.4. It should be mentioned that log (y+1) transformation

FIGURE 6 | Heatmaps are provided with R2 of grid research and cross-validation in case of drought-affected area. (A) 2011–2019. (B) 2004–2019. (C)
1987–2019. (D) 1979–2019.

TABLE 5 | Optimal parameters and the corresponding model performance metrics of RF algorithms for drought-affected area and drought-suffering area

Drought characteristics Time series Best R2 Optimal RF parameters Model performance

max_depth max_features R2 RMSE PBIAS

Drought-affected area 2011–2019 0.25 10 5 0.26 1.30 −4.40
2004–2019 0.44 7 6 0.38 1.24 5.84
1987–2019 0.53 7 9 0.60 1.01 −0.44
1979–2019 0.52 8 5 0.65 0.88 −0.04

Drought-suffering area 2011–2019 0.26 5 3 0.21 1.21 −4.30
2004–2019 0.43 7 4 0.42 1.22 7.88
1987–2019 0.50 7 10 0.59 1.07 −0.49
1979–2019 0.47 9 5 0.62 0.96 0.27
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was carried out on target variables when building the RF model
because both drought-affected area and drought-suffering area
correspond to a positive skew distribution (Figure 2).

To explore the influence of sample number and feature
number on the fit goodness of RF algorithm, the four datasets
of 2011–2019, 2004–2019, 1987–2019, and 1979–2019 were used
as the input data, respectively. Figure 6 and Supplementary
Figure S2 present the results of parameter network search and
cross-validation for drought-affected area and drought-suffering
area in the training set. It can be found that when max_depth is
small (1–4), R2 derived from all the four datasets is poor. When
max_features is small (1–2), R2 derived from all the four datasets
is poor. For the dataset of 2011–2019, R2 is poor when
max_features is large (>7). For the datasets of 2004–2019,
1987–2019, and 1979–2019, R2 changes little with max_depth
(>4) and max_features (>2) increasing.

According to the best R2 of cross-validation, we obtain the
optimal parameters of RF algorithms derived from the four
datasets (Table 5). It shows that the optimal max_depth of all
the algorithms is relatively large (5–10), and the optimal

max_features of the algorithms varies greatly (from 3 to 10).
For drought-affected area, the best R2 of dataset of 2011–2019 is
the smallest (0.25), and that of 1979–2019 is the largest (0.52). For
drought-suffering area, the best R2 of dataset of 2011–2019 is the
smallest (0.26), and that of 1987–2019 is the largest (0.50).
Generally speaking, the increase of sample numbers
significantly improves the simulation accuracy of the RF
algorithm.

We evaluated the performance of RF algorithm derived from
the four datasets in the test set. The metrics of R2, RMSE, and
PBIAS for the corresponding model configurations are listed in
Table 5. Among the four datasets, the algorithm derived from the
dataset of 1979–2019 performs best with the largest R2, smallest
RMSE and PBIAS closest to 0, indicating that the RF algorithm
driven by the dataset of 1979–2019 can explain the variance of
drought-affected area and drought-suffering area to the greatest
extent. It can also be seen from Figure 7D and Supplementary
Figure S3D that the deviation between the actual values in the
test set and the fitted values of the RF algorithm are the smallest.
The RF algorithm driven by the dataset of 2011–2019 performs

FIGURE 7 | Comparison plots are provided with x-axis as the actual values in test set of drought-affected area and y-axis as the fitted values of the RF model. (A)
2011–2019. (B) 2004–2019. (C) 1987–2019. (D) 1979–2019.
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poorly with R2 smaller than 0.30 and overestimates the actual
values (Figure 7A and Supplementary Figure S3A). While the
RF algorithm driven by the dataset of 2004–2019 underestimates
the actual values (Figure 7B and Supplementary Figure S3B)
with R2 smaller than 0.45. The RF algorithm derived from the
dataset of 1987–2019 has high prediction accuracy, but slightly
overestimates the actual values (Figure 7C and Supplementary
Figure S3C), especially drought with low intensity. The test result
of the model also shows that the increase of sample numbers can

improve the generalization ability of the RF algorithm compared
with the increase of the number of features.

4.2.3 Drought-Affected Area
Figure 8 shows the rank of natural and human factors that has potential
influence on drought-affected area indicated by the twomethods of Gini
importance and permutation feature importance based on the four
datasets. Red circles and top x-axis represent results derived from Gini
importance, and blue triangles and bottom x-axis represent results

FIGURE 8 | Rank plots are provided in descending order with features exhibiting maximum importance on the leftmost in case of drought-affected area based on
datasets of (A) 2011–2019, (B) 2004–2019, (C) 1987–2019, and (D) 1979–2019. Red circles and top x-axis represent results derived from Gini importance, blue
triangles and bottom x-axis represent results derived from permutation feature importance. The line shows the average feature importance, which can be used as a
threshold to determine the significant features of interest for Gini importance.
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derived from permutation feature importance. The line shows the
average feature importance of Gini importance, which can be used as
a threshold to determine the significant features of interest.

For the dataset of 2011–2019, F17 (effective irrigation area), F9
(total sown area of crops), F2 (precipitation), F12 (agricultural
water use), F4 (water production modulus), F10 (total power of

FIGURE 9 | ALE plots of top six features controlling drought-affected area. (A) 2011–2019. (B) 2004–2019. (C) 1987–2019. (D) 1979–2019.
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agricultural machinery), F18 (actual irrigation water use per mu
of cultivated land), and F14 (number of reservoirs) have more
than average Gini importance, while F2, F4, and F17 show the top
three permutation importance. It is worth noting that these three
features are the only three features whose permutation
importance value is over 0. For the dataset of 2004–2019, F9,
F2, F17, F12, and F7 (total water use) have more than average
Gini importance, while F9, F2, and F21 (domestic patent
application authorization), and F17 and F5 (regional GDP)
show the top five permutation importance. For the dataset of
1987–2019, F9, F2, F21, and F17 have more than average Gini
importance; these four features are exactly the same as the top
four features derived from permutation feature importance. For
the dataset of 1979–2019, F9, F2, F5, F17, and F8 (rural
population) have more than average Gini importance; these
five features are exactly the same as the top five features
derived from permutation feature importance.

We can find that the significant features screened by the two
methods of Gini importance and permutation importance based
on the datasets of 1979–2019 and 1987–2019 are identical, while
the significant features screened by the twomethods derived from
the dataset of 2011–2019 show significant difference. Considering
the performance of RF models, we can deduce that models with
low prediction accuracy have high uncertainties, and the feature
importance derived from the datasets of 1979–2019, 1987–2019,
and 2004–2019 is more reliable.

In addition, F9, F2, and F17 dominate in controlling drought-
affected area for all the four datasets. F21 dominates in
controlling drought-affected area for datasets of 1987–2019
and 2004–2019. F5 dominates in controlling drought-affected
area for datasets of 1979–2019 and 2004–2019. Based on the
aforementioned facts, we can make a preliminary judgement that
F9, F2, F17, F21, and F5 are the principal features influencing
drought-affected area.

To further understand how these key features influence
drought-affected area, the ALE plots of the top six features
derived from the four datasets are plotted (Figure 9).
Basically, drought-affected area is positively correlated with F9,
and the nonlinear relation between F9 and drought-affected area
can be divided into two stages at 4 million hectares. Before 4
million hectares, drought-affected area increases significantly
with the increase of F9; after 4 million hectares, drought-
affected area increases slightly or even decreases with the
increase of F9. Drought-affected area is negatively correlated
with F2 based on a linear behavior. A non-significant jump
point can be observed at 1,000 mm, and the downward trend
after 1,000 mm is steeper than that before 1,000 mm. The relation
between drought-affected area and F17 is complicated, which can
be roughly divided into two stages around 1 million hectares.
Before 1 million hectares, drought-affected area increases
significantly with the increase of F17; after 1 million hectares,
drought-affected area decreases slightly with the increase of F17.
Two-stage relationship can be observed between drought-affected
area and F21. Before 20,000, drought-affected area decreases
significantly over F21 increasing; after 20,000, drought-affected
area decreases slightly over F21 increasing. Drought-affected area
is negatively correlated with F5. A jump point can be observed

around 150 trillion yuan, and the downward trend after 150
trillion yuan is gentler than that before 150 trillion yuan.

4.2.4 Drought-Suffering Area
Supplementary Figure S4 shows the rank of natural and human
factors that has potential influence on drought-suffering area
indicated by the two methods of Gini importance and
permutation feature importance based on the four datasets.
For the dataset of 2011–2019, F17, F9, F12, F2, F4, F10, F7, F1
(air temperature), and F14 have more than average Gini
importance, while F4, F2, F17, and F3 (total water resources)
show the top four permutation importance. It should be noted
that these four features are the only four features whose
permutation importance value is over 0. For the dataset of
2004–2019, F9, F2, F17, F7, F12, and F21 have more than
average Gini importance, while F9, F21, F2, F17, F5, and F6
(total population) show the top six permutation importance. For
the dataset of 1987–2019, F9, F2, F21, and F17 have more than
average Gini importance; these four features are exactly the same
as the top four features derived from permutation feature
importance. For the dataset of 1979–2019, F9, F2, F5, and F17
have more than average Gini importance; these four features are
exactly the same as the top four features derived from
permutation feature importance.

In addition, F9, F2, and F17 dominate in controlling drought-
suffering area for all the four datasets. F21 dominates in
controlling drought-suffering area for datasets of 1987–2019
and 2004–2019. F5 dominates in controlling drought-suffering
area for datasets of 1979–2019 and 2004–2019. Based on the
aforementioned facts, we can make a preliminary judgement that
F9, F2, F17, F21, and F5 are the key features influencing drought-
suffering area. To further understand how these dominant
features influence drought-suffering area, the ALE plots of top
six features for the four datasets are plotted (Supplementary
Figure S5). The nonlinear relation between drought-suffering
area and F9, F2, F17, F21, and F5 is almost the same as drought-
affected area, so we will not go into much detail here.

5 DISCUSSION

Over the past 70 years, agricultural drought disasters in China
have undergone significant fluctuations, and the spatial pattern of
agricultural drought disasters varies from north to south. In terms
of drought intensity characterized by the absolute value of
drought-affected area and drought-suffering area, northern
China is significantly higher than southern China. In terms of
the impact of drought on agricultural production characterized
by the relationship between drought-affected/suffering area rate
against sown area proportion, eight northern provinces including
Inner Mongolia, Gansu, Jilin, Shaanxi, Hebei, Heilongjiang,
Shandong, and Henan and three southern provinces including
Yunnan, Hubei, and Hunan are greatly affected by drought. In
terms of the trend of drought characterized by the U statistics
derived from Mann–Kendall test, among the aforementioned 11
provinces, drought in Inner Mongolia, Gansu, Jilin, Heilongjiang,
Yunnan, and Hubei shows a non-significant downward trend,
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while drought in Shaanxi, Hebei, Shandong, Hunan, and Henan
presents a significant downward trend. These results show that we
should carry out regular monitoring, predicting, early warning,
and risk management on drought in northern China. At the same
time, we should also pay enough attention to the three southern
provinces including Yunnan, Hubei, and Hunan. In addition, it
should be noted that with the increase of drought intensity, it is
more likely to evolve into a drought disaster of high impact with
crop yield 30% or much lower than normal year, which indicates
that all provinces should further improve their response ability to
heavy drought disasters.

Wang et al. (2021a, 2021b) showed that standardized
precipitation evapotranspiration index (SPEI) has the best
correlation with drought-affected area in Northeast China, and
by analyzing the trend of SPEI during the growing season, they
found that there was an overall increasing trend, and the jump
point was in 1983. Liao and Zhang (2017) found that from the
perspective of drought-affected area rate, northern China is
relatively high, while the middle and lower reaches of the
Yangtze River are relatively low, and the spatial distribution of
drought-affected area rate is basically consistent with that of
meteorological drought days. These results show that sometimes
drought indices derived from hydro-meteorological variables can
be a good representation for agricultural drought disaster. In fact,
drought-affected area and drought-suffering area are not only
related to drought itself, but also closely related to the local
agricultural distribution characteristics.

By analyzing the feature importance in each dataset based on
the two methods of Gini importance and permutation feature
importance, we can deduce that total sown area of crops,
precipitation, effective irrigation area, domestic patent
application authorization, and regional GDP are the top five
dominant factors that influence agricultural drought disasters.
These 5 factors correspond to 5 secondary indexes including
agriculture development, meteorological conditions, water
conservancy conditions, water saving consciousness, and basic
socio-economic conditions, respectively. This also illustrates the
complexity of the influencing factors of agricultural drought
disasters and indicates the applicability of the index system
constructed in this paper.

Qian et al. (2016) analyzed the relationships between
agricultural drought and climate factors based on Pearson
correlation coefficient using vegetation condition index data
recorded from 1982 to 2010; they found that temperature and
wind velocity were the main factors that influenced drought in the
agricultural areas of China. Liu et al. (2021) analyzed
meteorological factors on droughts in Xilinguole Grassland
with a combination of Pearson correlation analysis and t-tests,
and result shows that temperature, precipitation, water vapor
pressure, and solar radiation are the key factors. These two studies
only considered the effect of meteorological factors based on
linear methods, and results showed that temperature and
precipitation are the main influencing factors on agricultural
drought, which is basically consistent with the results in our paper
(Figure 8 and Supplementary Figure S4). However, they
neglected the effect of human activities on agricultural
drought, as Qian et al. (2016) discussed that the correlation

between VCI and precipitation was low, possibly due to the
widespread use of artificial irrigation technology, which
reduces the reliance of agricultural areas on precipitation.
Zhang et al. (2021) identified influencing factors of regional
agricultural drought vulnerability during the period from 2012
to 2018 in Henan Province based on grey trend relational analysis
method, and they found that the influencing factors mainly
related to natural resources, agricultural industrial structure,
agricultural attention, agricultural water efficiency, residents’
awareness of water conservation, and water and soil
conservation measures. This study explored influencing factors
of agricultural drought considering both natural and human
factors based on a nonlinear method, which is quite similar to
our research, and the important impact of natural resources,
agricultural attention, agricultural water efficiency, and residents’
awareness of water conservation is also indicated in our results.
All aforementioned studies explored the dominant influencing
factors on agricultural drought, and the results are different since
influencing factors considered are different. However, few
research studies have investigated how these factors impact
agricultural drought.

ALE plots were adopted to interpret RF algorithm for
revealing how key factors impact agricultural drought disasters
in our paper, and we find that there is a negative linear correlation
between agricultural drought disasters and precipitation basically,
but a non-significant jump point can still be observed at
1,000 mm, showing that when precipitation exceeds 1,000 mm,
the intensity of agricultural drought disasters will decrease more
significantly. This is an important reason for the low intensity of
agricultural drought disasters in southeast coastal China, such as
Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan.
Moreover, agricultural drought disaster negatively correlates with
domestic patent application authorization and regional GDP, and
we suppose that domestic patent application authorization is a
quantifiable index indicating scientific and technological
innovation, and that regional GDP is an excellent index
indicating economic development. They play a great role in
promoting the reduction of agricultural drought disasters at
the beginning of the growth of scientific and technological
innovation and economic development, while during the
development of economy, science and technology reaches a
certain level; for example, in our case, domestic patent
application authorization equals 20,000, regional GDP equals
150 trillion yuan, and the promotion effect of economy, and
science and technology on agricultural drought reduction will
slow down. The responses of agricultural drought disasters to
total sown area of crops and effective irrigation area are similar
and can be basically divided into two stages. The first stage mainly
corresponds to the stage when China’s economy and society have
not yet developed rapidly. Total sown area of crops and effective
irrigation area are low, and the ability of science and technology
to support drought disaster response is also poor. Therefore, with
the increase of total sown area of crops and effective irrigation
area, agricultural drought disasters are also increasing. The
second stage mainly corresponds to the stage of rapid
economic and social development in China. Total sown area
of crops and effective irrigation area are rising, and the ability of
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science and technology to support drought disaster response is
also significantly enhanced. Therefore, with the increase of crop
sown area, the growth rate of agricultural drought disasters slows
down or even decreases. The implementation of irrigation
measures also effectively mitigates drought events. With the
increase of effective irrigation area, agricultural drought
disasters are decreasing. Based on the aforementioned analysis,
we can present the critical thresholds for agricultural drought
disaster prevention and control in China: total sown area of crops
>4 million hectares, effective irrigation area >1 million hectares,
domestic patent application authorization >20,000, and regional
GDP >150 trillion yuan.

Chen et al. (2018) explored the relationship between
socioeconomic factors and grain vulnerability to drought in
China covering the period of 1949–2015 using the method of
locally weighted regression plots. Result shows that irrigated
area rate and GDP in agriculture have a generally monotonous,
linear, and positive relationship with grain sensitivity of
drought, which means with the increase of irrigated area rate
and GDP in agriculture, sensitive crop production to droughts
decreases. This result is basically consistent with the effect of the
second stage of effective irrigation area and regional GDP on
agricultural drought disasters presented in our paper. Pogson
et al. (2012) carried out sensitivity analysis based on a crop
model in the UK, and results showed that with the increase of
precipitation, relative crop yield is increasing with an S-curve
shape. This result is close to the negative relationship between
precipitation and agricultural drought disasters presented in
our paper.

In addition, although other factors do not show significant
influence on agricultural drought disasters, their ALE plots can
still reflect their effect since ALE plots have already removed the
interference of relevant factors. For example, as can be seen
from Figure 9 and Supplementary Figure S5, agricultural
drought disasters is negatively correlated with F4 (water
production modulus), but positively correlated with F8 (rural
population).

Furthermore, it is worth noting that although R2 of cross-
validation and test for RF models are not high (<0.7), the
relationship between influencing factors and target variables
based on Monte Carlo simulation is relatively stable (Figure 9
and Supplementary Figure S5). The purpose of this paper is to
filter out the principal influencing factors of agricultural drought
disasters, so the constructed RF model can fully meet this
requirement. However, the accuracy of cross-validation and
test is not high, which also shows that the input features
cannot fully explain the variance of drought-affected area and
drought-suffering area. It is necessary to further improve the
input features to predict agricultural drought disasters in the
future.

From the analysis of agricultural drought disasters in China,
we can perceive that the north–south spatial pattern of
agricultural drought is remarkable. Next, we will use
unsupervised learning method to further refine agricultural
drought disaster zoning. On this basis, based on RF algorithm,
we will explore the differences of the key influencing factors of
agricultural drought disasters in different zones. In addition, we

will further analyze the occurrence and development process of
agricultural drought disasters from the perspective of physical
causes, and explore the relationship between meteorological
drought, hydrological drought, and agricultural drought in
near-natural areas and areas affected by human activities, so
as to deepen the understanding of drought disasters and provide
scientific basis for drought event monitoring, evaluation, early
warning, and prediction.

6 CONCLUSION

In this study, we analyzed the spatial–temporal pattern and
evolution characteristics of agricultural drought disasters in
China based on the Mann–Kendall test, and applied Random
Forest algorithm by integrating Gini importance, permutation
feature importance, and accumulated local effects plot to quantify
the role of natural and human factors on agricultural drought
disasters. The constructed RF model can adequately meet the
requirement to filter out the key factors of agricultural drought
disasters, reveal the nonlinear response of agricultural drought
disasters to the principal drivers, and identify the critical
thresholds for agricultural drought disaster prevention and
control.

The following conclusions can be drawn from this study:

1) Agricultural drought disaster has been fluctuating since 1950,
which can be roughly divided into three stages: 1950–1980
with a significant upward trend, 1981–2000 with a non-
significant upward trend, and 2001–2020 with a significant
downward trend.

2) The spatial pattern of agricultural drought disaster tends to
decrease in severity from north to south. Eight northern
provinces including Inner Mongolia, Gansu, Jilin, Shaanxi,
Hebei, Heilongjiang, Shandong, and Henan and three
southern provinces including Yunnan, Hubei, and Hunan
are greatly affected by drought. Among them, agricultural
drought disasters in Shaanxi, Hebei, Shandong, Hunan, and
Henan present a significant downward trend, while drought in
Inner Mongolia, Gansu, Jilin, Heilongjiang, Yunnan, and
Hubei shows a non-significant downward trend.

3) Total sown area of crops, precipitation, effective irrigation
area, domestic patent application authorization, and regional
GDP are the top 5 dominant factors influencing agricultural
drought disasters.

4) Agricultural drought disasters have a negative correlation with
precipitation, domestic patent application authorization, and
regional GDP, and the nonlinear responses of agricultural
drought disasters to total sown area of crops and effective
irrigation area can be basically divided into two stages. In the
first stage, with the increase of feature value, agricultural
drought disaster is also increasing. In the second stage,
with the increase of feature value, agricultural drought
disaster is growing slow or just decreasing.

5) The critical thresholds for agricultural drought disaster
prevention and control in China are as follows: total sown
area of crops >4 million hectares, effective irrigation area >1
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million hectares, domestic patent application authorization
>20,000, and regional GDP >150 trillion yuan.

From these insights, we propose that more attention should be
paid in northern China and three southern provinces including
Yunnan, Hubei, and Hunan, and all provinces should further
improve their response ability to heavy drought disasters.
Furthermore, to improve the prediction ability of the RF
model, it is necessary to integrate more knowledge about
agricultural drought disasters. This implies that a better
understanding of the role of factors on agricultural drought
disasters and a better understanding of the development
process of agricultural drought disasters complement each other.
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