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Weather and climate strongly impact coffee; however, few studies have measured this
impact on robusta coffee yield. This is because the yield record is not long enough, and/or
the data are only available at a local farm level. A data-driven approach is developed here to
1) identify how sensitive Vietnamese robusta coffee is to weather on district and provincial
levels, 2) during which key moments weather is most influential for yield, and 3) how long
before harvest, yield could potentially be forecasted. Robusta coffee yield time series were
available from 2000 to 2018 for the Central Highlands, where 40% of global robusta coffee
is produced. Multiple linear regression has been used to assess the effect of weather on
coffee yield, with regularization techniques such as PCA and leave-one-out to avoid over-
fitting the regression models. The data suggest that robusta coffee in Vietnam is most
sensitive to two key moments: a prolonged rainy season of the previous year favoring
vegetative growth, thereby increasing the potential yield (i.e., number of fruiting nodes),
while low rainfall during bean formation decreases yield. Depending on location, these
moments could be used to forecast the yield anomaly with 3–6months’ anticipation. The
sensitivity of yield anomalies to weather varied substantially between provinces and even
districts. In Dak Lak and some Lam Dong districts, weather explained up to 36% of the
robusta coffee yield anomalies variation, while low sensitivities were identified in Dak Nong
and Gia Lai districts. Our statistical model can be used as a seasonal forecasting tool for
the management of coffee production. It can also be applied to climate change studies,
i.e., using this statistical model in climate simulations to see the tendency of coffee in the
following decades.
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1 INTRODUCTION

Coffee is one of the most traded agricultural commodities in the world. It is a major cash crop and an
important foreign exchange earner for many coffee producing countries. Robusta coffee (Coffea
canephora Pierre ex A. Froehner) is the second most economically significant species of coffee plants
(FAO, 2019; United States Department of Agriculture - Foreign Agricultural Service, 2019).

Several studies have indicated high sensitivity of coffee to weather (Craparo et al., 2015; Kath et al.,
2020, 2021) and climate (Davis et al., 2012; Bunn et al., 2015b; Moat et al., 2017). The interactive
effects of precipitation and temperature define where coffee can be grown as an economically
profitable crop as well as year-to-year variability in coffee yield and quality. High sensitivity to
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changing precipitation patterns and increasing temperature have
raised strong concerns regarding future viability of coffee to
support many coffee farmers’ livelihoods and meet future
coffee demand in a climate change context. For example,
climate change is expected to significantly reduce areas
suitable for coffee growth (Bunn et al., 2015b; Imbach et al.,
2017). Furthermore, for robusta coffee in Vietnam and Indonesia,
every 1°C increase in mean minimum/maximum temperatures
(above 16.2/24.1°C) during the growing season was suggested to
lead to a 14 %-yield reduction (Kath et al., 2020). Another study
indicates that precipitation-sensitivity is more important for
robusta coffee than arabica coffee, the latter being more
sensitive to temperature (Bunn et al., 2015b).

Although weather and climate play an important role in
agriculture, few studies have addressed the weather impact on
coffee yield, especially for robusta coffee. Long-term coffee yield
time series for several contrasting environments are required for a
robust statistical assessment; however, such data are mostly lacking.
Aggregated data on different administrative levels are publicly
available from several countries; yet again, most countries have a
limited time record and/or report yields only for large spatial areas.
Thus, the few studies that assessed weather impact on coffee yield
have used yield datasets over some specific locations (e.g., few
Brazilian municipalities or farm-level data) with limited time
series (the maximum of 10 years) (de Oliveira Aparecido et al.,
2017; Valeriano et al., 2018; Kath et al., 2020); while previous global
studies made use of indirect coffee information such as the
occurrence of coffee-production without yield data (Bunn et al.,
2015a, Bunn et al., 2015b). This study focuses on robusta coffee of
the Central Highlands of Vietnam, the biggest robusta coffee
producing country, using 19 years of data.

Previous studies analyzed differing weather/climate variables
from different sources, such as data from surface meteorological
stations, interpolated high-resolution climatology data or gridded
time-series weather data from satellite and/or models. For example,
de Oliveira Aparecido et al. (2017) used weather measurements
obtained in automated meteorological stations to forecast coffee
yield inMinas Gerais, Brazil. This strategy is only viable in areas with
a high density of meteorological stations covering a substantial
spatial extent, a long-enough time record, and good quality-check
procedures. This is not available in most coffee growing areas. Many
studies have also used gridded weather data as major inputs for
regional yield forecasting (Zhang and Huang, 2012; Valeriano et al.,
2018). Bioclimatic variables based on climatology from WorldClim
(Hijmans et al., 2005) have widely been used with species
distribution models (O’Donnell and Ignizio, 2012; Bunn et al.,
2015a; Bunn et al., 2015b; Läderach et al., 2017; Gomes et al.,
2020; Davis et al., 2021).

The approach to link weather to coffee yield can take several
forms, from statistical approaches as outlined above to process-
based models that intend to integrate the current understanding
of plant growth and development (Rodríguez et al., 2011; Rahn
et al., 2018; Vezy et al., 2020). The process-based approach is
often exemplified at a local scale (e.g., a farm level). This study
thus prefers a statistical approach to explore the weather variables
affecting coffee production on a larger spatial scale (e.g., the
district and/or provincial levels). The challenge with statistical

models is the limited time-series yield data (less than 20 years of
data). Because 1 year of data represents one sample, it is not easy
to obtain enough samples to evaluate the weather information
and build impact models. Moreover, once a statistical model is
calibrated on historical data, it is particularly challenging to
quantify the model performance in different regions or
weather conditions, using years not included in the historical
record. We aim to tackle this using information content
techniques, dimension reduction techniques, multi-linear
models, and generalization estimation techniques.

Our study focuses on the coffee yield of the leading robusta
coffee-producing provinces in the Central Highlands of Vietnam
on province and district levels. The objectives of this study are: 1)
to propose a simple approach that identifies the most important
weather predictors related to coffee yield; 2) to propose a
mathematical framework to predict the weather-related
variability of coffee yield; and 3) understand the weather
response of Vietnamese robusta coffee.

2 MATERIALS AND METHODS

2.1 Materials
2.1.1 Study Area
Vietnam is the second-largest coffee producer worldwide after Brazil
and the leading robusta coffee producer, with more than 40% of
global robusta coffee in 2019 (FAO, 2019; United States Department
of Agriculture - Foreign Agricultural Service, 2019). All Vietnamese
robusta coffee comes from the Central Highlands, which lies on a
series of contiguous plateaus with an elevation ranging from 200 to
1,500 m, with an annual average temperature of about 22 °C and an
annual rainfall of 1800–2000mm per year. Due to the long dry
season of 5months, coffee farms are irrigated (starting in January/
February up to the rainy season). The Central Highlands region
includes five provinces: Kon Tum, Gia Lai, Dak Lak, Dak Nong, and
Lam Dong; each province is divided into several districts.

Figure 1 presents the study area in the Central Highland of
Vietnam, including its elevation (Figure 1A) and the coffee
information (i.e., average planted area, yield, and production
in Figures 1B-D, respectively). Here, we focus on high-intensity
robusta coffee production districts, i.e., 20 districts with a coffee
planting area higher than 10 thousand hectares (Figure 1B).
Figure 1D shows that Dak Lak and Lam Dong districts produce
much more coffee than other districts. From 2000 to 2018, Dak
Lak produced on average 35.36% of Vietnam’s total coffee (about
1,200 tons), followed by Lam Dong with 27.33%, Dak Nong with
14.82%, and Gia Lai with 13.27%. The coffee harvest season
occurs from October to January.

2.1.2 Yield Data
The provincial and district level coffee statistics were obtained
from the General Statistics Office of Vietnam (GSOV) for a
period of 19 years, from 2000 to 2018 (Figure 2A).

Long-term trend identification–To analyze the yield data,
the long-term trend was first determined. This long-term trend
in coffee yield often describes the changes in agricultural
practices (e.g., agro-management and irrigation practices) or
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indirect factors affecting these practices, such as changes in
coffee price (Mathieu and Aires, 2016; Miao et al., 2016).
Consequently, suppressing this trend from the yield time
series allows removing the impact of non-weather related
factors.

Anomaly calculation–Analysis of weather impact on coffee
yield was based on the absolute yield-anomalies with respect to
the previous long-term trend. The coffee yield for year t is defined
as y(t), and the long-term trend value is represented by �y(t). Both
y(t) and �y(t) are in 103 kg per hectare (103 kg·ha−1). The absolute
yield-anomaly a(t) is defined as the percentage variation around
the long-term trend:

a t( ) � y t( ) − �y t( ) (1)
If a(t) > 0, then the yield in year t is higher than average, and

vice versa.
Trend identification–Yield steadily increases from 2000 to

2018 (Figure 2A). Therefore, a simple linear function was
used to define the robusta coffee trend:

�y t( ) � y0 + α · t (2)
where y0 is the yield in the year 2000, and α is the annual rate of
increment. In Figure 2B, the robusta coffee yield anomalies from
2000 to 2011 show more variability, while fluctuations are lower

FIGURE 1 | (A) The elevation (in m) over the Central Highlands of Vietnam. (B) The average planted coffee area (in 103 ha), (C) coffee yield (in 103 kg·ha−1), (D)
coffee production (in 106 kg), averaged from 2010 to 2018 over the 20 selected districts—with high-intensity robusta coffee production—in the Central Highlands.
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in the second half period (i.e., 2012–2018). This might be due to
the coffee price drop at the beginning of the 21st century, leading
to less investments in agronomic management and therefore
being more sensitive to weather fluctuations (Miao et al.,
2016). In contrast, in the second period, robusta coffee yield
became more stable and weather-independent, most likely due to
improving agricultural practices.

2.1.3 Phenological Processes and Relationship With
Weather
As we aim to study the weather impact on robusta coffee yield, it
is necessary to understand the phenological processes and how
they are affected by weather. In general, a coffee plant takes
roughly 3 years to develop, from seed germination to first
flowering and then fruit production (Arcila-Pulgarín et al.,

FIGURE 2 | (A) The coffee yield time series and its trend (in 103 kg·ha−1); and (B) its corresponding yield anomalies (in 103 kg·ha−1) of study districts in Dak Lak
(Vietnam), from 2000 to 2018.

FIGURE 3 | (A) The weather profile [3-months average of mean temperature (T) and precipitation (P)] in Dak Lak averaged from 2000 to 2018, and (B) the
phenology of robusta coffee corresponding to the tropical monsoon climatic conditions of the Central Highlands (Vietnam).
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2002; Wintgens, 2004). It is productive for about 30 years
(Wintgens, 2004) but can be more than 50 years, or even up
to 80 years with good management. The phenological cycle of
coffee trees varies depending on various factors such as the
species, variety, weather, and agriculture practices.

Figure 3 exemplifies broad phenological stages for robusta
coffee in the Central Highlands of Vietnam. Mature coffee trees
undergo several plant growth and developmental stages before
harvesting:

• Flower bud formation and growth: During this period, the
development of a serial bud into a flower bud is largely
controlled by plant hormones activated by the change in day
length and/or a drop in temperature (Descroix and Snoeck,
2004) (Majerowicz and Sondahl, 2005). At the end of the
growing phase, these buds enter into a dormant phase until
flowering is stimulated.

• Flowering: The dormancy of the flower buds is usually
broken by sudden relief of water stress (e.g., the first
rains of the wet season, irrigation) and/or a drastic fall in
temperature. Water is necessary for this process, but heavy
rain could cause an acute form of floral atrophy. The flowers
are often pollinated within 24–48 h.

• Fruit development, including pinhead (a very young fruit)
grain expansion, and grain (bean) formation: After
pollination, the very young fruits (e.g., pinheads) remain
dormant with low water requirements. From the second to
third month after blossoming, the fruits start to swell, which
increases the water requirements. Thus, this process usually
happens during the onset of the rainy season.

• Maturation (fruit ripening): Between the sixth and the
eighth months after fertilization, the fruit reaches
maturity, which occurs during the beginning and/or the
middle of the dry season since adequate temperature and
sunlight promote the ripening of coffee fruits.

The time required from flowering until fruit ripening varies
according to various factors (e.g., variety, climate condition,
management). In general, it is about 9–11 months for robusta
coffee.

2.1.4 Weather Data
Monthly-mean data–The monthly-mean of different weather
variables, including total precipitation and 2 m temperature
data among others, were collected for the period 2000–2018,
from the ERA5-Land (covering land areas of the ERA5 re-analysis
of the European Center for Medium-Range Weather Forecasts
(ECMWF) (Hersbach et al., 2018)), with a spatial resolution of
0.1 ° × 0.1 ° (about 10 km × 10 km). The data are available from
https://cds.climate.copernicus.eu/cdsapp#!/home. The data is
projected from its original 0.1 ° × 0.1 ° regular grid into the
resolution of the selected administrative levels (e.g., provincial
and district levels) to match the resolution of coffee yields,
presented in Figure 4. Another alternative could be analyzed
by, for instance, agroclimatic zones. However, there is a need to
gather coffee yield by corresponding zones in this case. This step
can mix the coffee information or require yield data at a higher

resolution. As a result, our study will work at the same resolution
levels provided by the coffee yield information.

Weather variables–In the literature, statistical approaches
often consider precipitation, air temperature (minimum,
mean, and maximum), solar radiation, and/or other
variables derived from these basic variables (de Oliveira
Aparecido et al., 2017; Valeriano et al., 2018; Kath et al.,
2020, 2021). This study selects monthly total precipitation
(P) and average temperature (T) as explanatory variables for
robusta coffee yield. Other variables such as solar radiation,
maximum and minimum temperature were also assessed, but
they were excluded because they either show low correlations
to the yield anomalies or are highly correlated to the
precipitation and temperature variables. The weather data
will be evaluated for n = 19 months: from the beginning of
the bud development to the peak of the harvest season H0 (as
shown in Figure 3). The value n varies from 1 to 24 (shown in
Figure 5), depending on the coffee phenology in the study
locations. Here, we use n = 19, resulting in 38 potential inputs
(i.e., 19 realizations (chronological data) for P and T series),
for modelling Vietnamese robusta coffee yield.

Similar to the yield data, we considered the trend in weather
anomalies, but the trend of about 2 decades is not significant
compared to the inter-annual variations (Mathieu and Aires,
2016). Therefore, the long-term trend is omitted, and relative
anomalies will be computed from the long-term average. This
average value is calculated for each of the n months before H0.
Furthermore, a 3-months moving average is applied to reduce the
variability at the monthly scale. This variability would introduce
instabilities caused by the short time series of the dataset (Dinh
and Aires, 2022).

2.2 Methods
2.2.1 Weather-To-Yield Impact Model
There are many regression models that could be considered for
measuring the impact of weather anomalies on coffee yield. As
regression models are purely data-driven, a learning database
is required to empirically describe the relationships between
the inputs and the desired coffee yield. Depending on the
available data, models can be chosen from domains such as
traditional statistics, Bayesian statistics, machine learning, or
artificial intelligence. Yield modeling has been based on linear
regression (Kouadio et al., 2018), random forest (Kouadio
et al., 2018), neural networks (Mathieu and Aires, 2018), or
mixed-effect models (Mathieu and Aires, 2016).

Ideally, the complexity of the model is adjusted to the
complexity of the relationship under consideration, i.e., the
effect of weather on coffee phenology. Thus, a complex
regression model would be necessary to model all the
processes involved in plant growth and development
(described in Section 2.1.3). However, in practice, we are
often limited to more simple statistical models due to the
limited number of samples (Dinh and Aires, 2022).

As a result, a simple multiple linear regression method is used
here to model the relationship between the observations of coffee
yield anomalies a(t) and the weather input anomalies Xi. This
model is formulated as:
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a � α0 + α1 ·X1 + α2 ·X2 +/ + αn ·Xn (3)
where n is the number of input variables. The unknown
coefficients αi (i = 1, 2, . . ., n) are the model parameters
that need to be optimized based on the dataset of samples β
= {(s1, s2, . . ., sm); m = 1, 2, . . ., m}, where m is the number of
samples (i.e., number of years multiplied by the number of
locations when several locations are mixed in β). The samples
are composed of one output and the n inputs: s = (a, X1, . . .,
Xn). This model is simple, but it has the advantage of having a

limited number of parameters, and these parameters αi can be
easily interpreted because they represent the sensitivity of
coffee yield a to the input Xi. Figure 5 presents the datasets
and methods used. In detail, the yield anomaly is induced from
the yield for year t, i.e., yield at the peak of the harvest season
H0. We then select n potential values from the 2-years time
series before H0 for each weather variable. As mentioned in
Sect. 2.1.4, this study uses n = 19; thus, the inputs Xi will be
chosen from 38 potential inputs (i.e., 19 realizations for each
variable P and T).

FIGURE 4 | (A)Mean annual total precipitation (in mm) and (B) average annual temperature (in °C) over the 20 selected districts in the Central Highlands (Vietnam),
averaged from 2010 to 2018.

FIGURE 5 | Scheme representing the datasets used in the study.
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Other more sophisticated models (e.g., neural network models
with different hyperparameters and number of layers) were
tested, but this complexity was detrimental, as explained in
more detail in the following.

2.2.2 Regularization of the Model
One major difficulty when performing a regression is that the
model complexity can be too high compared to the description of
the relationships in the database. When the model is too complex,
it is said to be over-parameterized. This leads to over-training (or
over-fitting), i.e., the model artificially fits the learning database
very well, but it is unable to predict data not present in the
learning database, meaning that the model is not reliable and
cannot be used in practice.

In order to avoid over-training, regularization techniques need
to be used. Firstly, we reduced the number of potential inputs by
selecting only four important weather variables out of the 38
potential inputs, using correlation score.

Secondly, Principal Component Analysis (PCA) was
applied over the four selected variables to compress this
information into two inputs. By reducing the number of
inputs, PCA reduces the number of parameters in the
model, therefore regularizing the model structure and
reducing the over-training problem. Furthermore, PCA
enables the inclusion of more synthetic inputs, with more
robust integrative information on robusta coffee. This pre-
processing facilitates the work of the regression, so it helps to
regularize the problem. We then compared the two
approaches: the four selected weather variables and two
PCA components to identify the more robust model that
could better deal with over-training.

We assessed the Pearson’s correlation coefficient (COR) and
Root Mean Square Error (RMSE =

�������������������
1
n∑n

i�1(aest(i) − aobs(i))2
√

)
between the estimated yield anomalies (aest) and the observed
yield anomalies (aobs) as two diagnostics of the model quality. The
COR is uniteless and RMSE is in (103 kg·ha−1).

2.2.3 Assessment of the Model Using the
Leave-One-Out
Generally, the model is trained over a learning dataset, and its
generalization ability is tested over a so-called generalization
database. Since the overall database in this study only includes
19 years (i.e., 19 samples), splitting it into two such databases
would be critical. However, with such a limited database,
estimating the true generalization ability of the model and
determining the optimal model parameters is a real challenge.

The leave-one-out method (Kogan et al., 2013; Zhao et al.,
2018; Li et al., 2019) is used here. Given N available samples
(i.e., 19 years), the model is calibrated N times, using N − 1
samples (leaving one sample out). The resulting model is tested
on the sample not used in the learning. Since this is reproduced N
times, we will obtain N generalization estimates for each sample.
In the end, N estimated yield anomalies (aest) will be compared
with the real yield observations (aobs). The same diagnostics COR
(i.e., generalization score) and RMSE were considered to measure
the model quality over these N samples.

2.2.4 Sensitivity to the Model Spatial Scale
Each region/district differs in terms of elevation, weather, and
perhaps even agricultural practices. Thus, calibrating a localized
model could be beneficial if the model can take into account these
specificities. However, this is not always possible as sufficient
yield data are often unavailable or the weather data is too coarse;
therefore, it is of interest to evaluate the differences between
scales. Also, when working at a large scale, we can compensate for
all small region uncertainties, thus gain better results. Hence,
working at each spatial scale has advantages and disadvantages,
depending on the problems and applications. Therefore, it is
necessary to study this scaling aspect and identify at which spatial
scale it is more optimal to work on.

In this study, the coffee yield data are available at both
provincial and district scales. Therefore, we analyzed our
regression model at both scales to better understand the
following questions: 1) at which scale can yields be better
forecasted, 2) do we gain more when we go to higher spatial
resolution. We first set up the two models at the provincial and
district levels. However, to perform comparison between the
models, we applied the provincial model to the district scale to
compare it with the district model, and we also integrated the
district model prediction at the provincial scale to compare these
results to the provincial model.

3 RESULTS

3.1 Spatial Variability of Weather Data
Large spatial variations can be observed in the weather (including
P and T) over the study districts in the Central Highlands
(Figure 4). Overall, Dak Lak and Dak Nong show higher
temperatures and lower precipitation than Lam Dong and Gia
Lai. The selected LamDong districts have the lowest annual mean
temperature (2010–2018) and high precipitation. The weather in
three study districts in Gia Lai varies greatly, especially for the
annual mean temperature ranging from 22.5 to 26 °C. Districts
with high coffee yield (e.g., Lam Dong districts) are located in
high elevation areas, high precipitation, and low/moderate
temperature.

3.2 Weather-Yield Correlation Analysis
Dak Lak provincial level case study–Figure 6 presents the
correlation between the coffee yield anomalies and the weather
variables (P and T variables) at the Dak Lak provincial level.
(Results of other provinces (i.e., Gia Lai, Dak Nong, Lam Dong).
are presented in Supplementary Figure S1). An opposite relation
is observed between precipitation and temperature. During the
fruit maturation period in Dak Lak from H−2 to H−1, robusta
coffee trees benefit from higher temperature rather than increased
water availability, as shown by the positive correlations between
temperature and absolute yield anomalies, while the precipitation
variables show negative correlations. Additionally, precipitation
and temperature differ in their correlation signs at other
phenological stages (i.e., bud development, flowering, and fruit
development). The end of the rainy season of the previous year
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(H−13) and the peak of the rainy season of the year of harvest
(H−4) show the highest correlations with yield anomaly, both are
positively correlated with precipitation (0.50 and 0.55,
respectively) and negatively correlated with temperature (-0.45
and -0.40, respectively).

Variable selection for all selected districts of the Central
Highlands–Figure 7 shows the 2 months with the highest
correlations between weather variables and yield anomalies,
e.g.,H−5 andH−13 for Ea H’leo district. In other words, the four
selected weather variables (mentioned in Section 2.2.2) are the
precipitation and temperature of these 2 months. In addition,

these selected months vary from district to district which could
be due to the climatic variation among districts. Overall, the
most important month (i.e., shown in Figure 7A) ranges from
the sixth to the third month before the harvest (H−6 to H−3),
corresponding to the end of fruit development stage (the bean
formation). In details, in the areas at higher elevations
(i.e., 600–1,000 m, as shown in Figure 1A), the weather at
6 months ahead of the harvest is the most important variable,
while at lower elevations (i.e., 200–600 m), the coffee yield
anomalies are impacted more by the precipitation and
temperature at H−3. The second most important month

FIGURE 6 | Correlation (COR) between the yield anomalies and weather variables [i.e., precipitation (P) and temperature (T)] for Dak Lak province.

FIGURE 7 | The 2 months with highest correlation between weather variables (i.e., precipitation and temperature) and coffee yield anomalies, at the district scale, in
the Central Highlands of Vietnam: (A) the month with highest correlation, and (B) the month with second highest correlation.
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(i.e., shown in Figure 7B) is related to the vegetative growth
and bud development stages, i.e., H−17 to H−12.

3.3 Regression Models
Dak Lak district-level case study–Table 1 shows the learning and
generalization scores, or the correlations and RMSE between
observed and estimated yield anomalies over the Dak Lak
districts, for the two input configurations: the four selected
weather variables and the two PCA components.

The correlation for the model using four selected variables is
much higher over the training dataset than over the
generalization (Table 1). This indicates that over-training is
occurring when using too many inputs. For instance, in Buon
Ma Thuot, the correlation between aest and aobs reduces
approximately by 0.4 and the RMSE by 0.07 × 103 kg·ha−1. On
the other hand, the learning and generalization scores are more

similar and the RMSE difference is much smaller when using
PCA, which means that over-training is reduced. Besides, we
obtained better generalization scores when using two PCA
components instead of the four selected variables. A more
realistic generalization correlation/score (0.55) with a lower
RMSE (0.17 × 103 kg·ha−1) is obtained for robusta coffee in
Buon Ma Thuot and the average correlation of 0.49 for the
whole province of Dak Lak. It confirms that PCA is a good
regularization technique, which will be used in the subsequent
models. The generalization correlation ranges from about 0.4 to
0.6, which shows considerable differences among districts.
Different environmental conditions can explain these
differences, not only between but also within the provinces
(Kath et al., 2020).

All selected districts in the Central Highlands–Figure 8A
shows the final generalization score, i.e., the correlation

TABLE 1 | Correlation (COR) and RMSE (in 103 kg·ha−1) between observed and estimated yield anomalies over the Dak Lak districts.

Districts Four Selected Variables PCA

Learning Generalization Learning Generalization

COR RMSE COR RMSE COR RMSE COR RMSE

Buon Ma Thuot 0.70 0.16 0.31 0.23 0.72 0.15 0.55 0.17
Cu M’gar 0.78 0.14 0.53 0.20 0.76 0.16 0.6 0.16
Ea H’leo 0.77 0.16 0.48 0.24 0.66 0.22 0.42 0.25
Krong Buk 0.71 0.20 0.37 0.29 0.62 0.15 0.48 0.17
Krong Nang 0.62 0.14 0.29 0.19 0.57 0.27 0.36 0.29
Krong Pak 0.70 0.24 0.31 0.35 0.7 0.22 0.55 0.24
Average 0.71 0.17 0.38 0.25 0.67 0.20 0.49 0.21

FIGURE 8 | (A)Generalization correlation between observed and estimated yield anomalies; (B) the corresponding explained variance (in %) over selected districts
in the Central Highlands (Vietnam). The district-average values are indicated on each panel; AvgDL is the value only over Dak Lak province.
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between observed and estimated yield anomalies for
generalization over the selected districts in the Central
Highlands. The explained variance (in %), which equals the
square of the correlation coefficient, is also indicated
(Figure 8B).

Figure 8 shows that the model works best over the Dak Lak
districts, followed by Lam Dong, while lower generalization
scores are found for Kon Tum and Dak Nong districts.
Weather explains up to 36% of the variation in robusta coffee
yield anomalies, approximately 25% in Dak Lak province on
average, and about 16% for the whole Central Highlands. These
values could appear to be low, but it should be kept in mind that
the objective here is not to forecast the whole coffee yield
anomalies, but only their weather-sensitive part. It is possible
that weather/climate explains more of the yield variability, if a
larger sample were available allowing for a more complex model
(i.e., additional predictors that might capture other weather
sensitive phenological stages).

3.4 Yield Estimation
District level case study in Dak Lak–Figure 9 presents the
observed and predicted coffee yield anomalies, as well as the
corresponding coffee yield (in 103 kg·ha−1) time series and its
uncertainties in one district of Dak Lak (i.e., Cu M’gar).

As mentioned above, we obtain a correlation of 0.6 between
the observation of yield anomalies aobs and its estimation aest in
Cu M’gar. Therefore, the model explains 36% (= 0.62) of the
variation in coffee yield anomalies in this district. The correlation
between yobs and yest (0.72) is certainly higher than the yield
anomalies correlations due to the use of the trend that is known in
our case without uncertainty (Figure 9). The prediction seems to

work better in the 2000–2011 period compared to the 2012–2018
period.

Assessment of model quality–Besides the yield anomalies, it is
also interesting to compare the estimated coffee yield (yest) and
the observed yield (yobs). The yield forecasting for year t is
estimated as yest(t) � �y(t) + aest(t), where �y(t) is the yield
trend (Section 2.1.2) and aest(t) is the forecasted yield-anomalies.

In addition to assessing model quality, we compared two cases:
the average state given by the long-term trend (i.e., no weather
information) and our weather impact model estimation. The
average state is the most straightforward guess/prediction
without weather information, resulting in a typical year with
no weather anomaly. We compared this simple guess to our
model estimation to see how much we gain by using weather
information.

Figure 10 presents the results of the yield anomalies (in
103 kg·ha−1) and production (in 106 kg) over the selected
districts in 2011 of the three cases: 1) the true observation, 2)
the average state with no weather information, and 3) our weather
impact model. As indicated in panel (A2), the true observation of
the total production over the selected districts is 935 × 106 kg in
2011. For this year, our weather impact model shows a similar
estimation compared to the true observation (i.e., 926 × 106 kg).
Although our model seems to overestimate one Dak Lak district
(with an absolute difference of about 16 × 106 kg), the integrated
prediction is closer to the true observation.

3.5 Sensitivity to the Model Spatial Scale
Figure 11 shows the generalization score of different models
when applying to different spatial scales (i.e., province and
district). Firstly, considering the comparison at the provincial

FIGURE 9 | (A) The observed (solid lines) and forecast (dashed grey lines) coffee yield anomalies time series and its uncertainties in CuM’gar (Dak Lak). (B) Same as
(A) but for the coffee yield data (in 103 kg·ha−1).
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FIGURE 10 | The comparison among (1) the true observation, (2) average state from the long-term trend (no weather information), and (3) our weather impact
model estimation of the yield anomalies (in 103 kg·ha−1) and production (in 106 kg) over the 20 selected districts in the Central Highlands (Vietnam) in 2011. The absolute
values (in 106 kg) of the difference between the true production and the estimated production induced from the average state are shown in (B3); and from our weather
impact model in (C3). The district-total values are indicated on panels (B2), (B3), (C2), and (C3).
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scale: (A1) is the result of the provincial model, B1 is induced by
integrating the district model at the provincial scale. The average
generalization score obtained over the Central Highlands is a little

higher in (B1) compared to (A1), i.e., 0.51 and 0.44, respectively.
These scores indicate that the integration of the district model is
more interesting than the provincial model.

FIGURE 11 | Generalization score of different models when applying over different spatial scales (i.e., province and district). The district-average values are
indicated on each panel.
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Similarly, we consider the two cases at the district scale:
applying the provincial model to the district scale (A2), using
the district model (B2). Although some Lam Dong districts
show high generalization scores (0.6 or 0.7), the average score
over the whole study area is very low (0.25) in (A2), i.e., the
lowest one among four tested cases. Meanwhile, when using
the district model, the overall score is much higher (0.39). In
short, as expected, for robusta coffee in the Central Highlands,
it is more advantageous to use the model calibrated at the
district scale as it is able to take advantage of the local
specificities, even if more ambitious task.

4 DISCUSSION

Our study explored how the relationship between phenological
processes of the coffee plant (i.e., bud formation and growth,
flowering, fruit development, and maturation) and weather
affects yield at district and provincial scale in Vietnam. Each
phenological stage requires specific weather characteristics for
optimal yield. Finally, due to the perennial nature of the coffee
plant, climatic effects in the previous year can affect the
preceding year’s yield. This understanding is essential in the
study of weather patterns that affect coffee yield.

Due to the limited availability of coffee yield data, a simple
regression model was used to relate weather with robusta coffee
yield over the Vietnamese coffee area. The analysis indicates that
precipitation and temperature during 1) vegetative growth of the
previous year and 2) bean formation are most influential in
determining coffee yield anomalies. The exact timing of these
variables varies among coffee districts due to the difference in
elevation, climate, and/or agricultural practices. Overall, the
model can forecast the coffee yield anomalies from three to
6 months before the harvest, 6 months for the districts located
at a higher elevation with cooler temperature and therefore slower
development rates. However, the accuracy of such a yield forecast
and its value for decision-making would need to be tested in more
detail and depend on seasonal climate forecasts for the different
districts of interest.

Identifying an appropriate statistical model for a relatively
complex crop like coffee is not easy, particularly as there are
limited observations (only about 20 years of coffee yield). This
explains why using regularization strategies such as favoring
simple models (e.g., linear regression) over complex ones and
applying good quality assessment diagnostics (e.g., PCA, leave-
one-out) are required. In particular, we used the leave-one-out
method to avoid potential over-training when a limited number
of samples is available.

Our findings indicated that, with about 20 years of data,
weather could explain up to 36% (from 16 to 25% on average)
of the variation in robusta coffee yield anomalies in the Central
Highlands. This value is significant as it means that weather can
affect up to one quarter of the farmer revenue. Some Lam Dong
districts can show higher weather sensitivity. Other coffee
districts in Gia Lai or Dak Nong are not so sensitive to
weather, which could partially be due to the adequacy of these

regions to the coffee production and/or higher stability of the
weather in these regions.

Our results for robusta coffee in Dak Lak agree with Kath
et al. (2020), who showed that rainfall has a positive effect,
while temperature has a negative effect during the growing
season (Mar-Sept). One advantage of our approach is that we
can point out the month with the highest correlation, while
(Kath et al., 2020) only looked at two seasons (flowering and
fruit growth). As phenology dynamically responds to
prevailing weather conditions, the key moments that affect
yield vary in time and space. For instance, Figure 6 shows a
positive correlation score from H−9 to H−3 (i.e., the growing
season), with the highest score at H−5 for robusta coffee in Dak
Lak. However, the different districts have different key
moments where weather most affects yield. In our example
of Dak Lak, we found a low correlation score of precipitation at
H−11/H−10 (i.e., the beginning of the flowering season)
(Figure 6), while Kath et al. (2020) concluded that rainfall
has a negative effect on robusta coffee yields during the
flowering season (Jan-Mar). It is unclear whether this
difference is due to the different spatial scales of used
weather data or due to the underlying yield data set.

It also showed that Vietnamese coffee farmers have improved
their agricultural practices considerably in the last 10 years,
leading to coffee yield becoming less weather sensitive. In
addition, by applying our model at different spatial scales,
while each scale has its advantages and disadvantages, our
model for robusta coffee in the Central Highlands shows more
interesting results over the district level.

This study highlights the importance of selecting spatially
dynamic weather variables for optimal modelling. This needs
to be atomized to apply this model approach at larger scale.
Therefore, a practical automatic selection procedure needs to
be developed. Secondly, given the relatively high weather
sensitivity already detectable with simple linear regression
using a small yield database, there is a need to consolidate
high quality yield data from all coffee growing regions to
enable the development of more complex data driven
approaches and elucidate key weather sensitive coffee
phenological stages and related yield forecasting skill. We
expect to obtain better forecasting scores in regions where
coffee is rainfed and thus is more sensitive to the weather.

This work can be extended following different approaches.
Firstly, other input variables could be analyzed. For example,
other agro-climatic indicators, characterizing plant-climate
interactions for global agriculture, are available from 1951
to 2099 at the ECMWF (Hersbach et al., 2018). Some variables
could be relevant for coffee, such as (very) heavy precipitation
days, the maximum number of consecutive dry days, frost
days, etc.). The addition of input variables should not come at
the cost of over-training; however, these variables could be
interesting for further studies, for instance, when applying
over other regions where more yield data are available.
Secondly, we could study cluster analysis, which helps
identify coffee groups with the same environmental
characteristics. We can then define the regions suitable for
coffee production and analyze their long-term evolution due to
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climate change. If more data becomes available, we can also
test more sophisticated models (e.g., mixed-effects models)
that stay simple, combine data from multiple locations but still
keep some specificities for each coffee region.

Here, we only studied the current climate situation (i.e., in
the last 20 years). As shown in other studies, (Davis et al., 2012;
Bunn et al., 2015a; Bunn et al., 2015b), it is also of interest to
look at the future climate, for instance, the 2040–2069 time-
slide. Along with the development of the model, in future
studies, our model can be applied to the common climate
simulations (from several greenhouse gas emission scenarios,
i.e., CMIP6), thus we can analyze the impact of climate change
on coffee yield (assuming that management practices stay the
same). In the climate change scenarios, some locations might
become more weather-sensitive or have more extreme events;
in such areas, we would expect a significant change in the yield
prediction. Therefore, these potential analyzes could improve
our understanding of the optimal current and future
management practices (Läderach et al., 2017; Challinor
et al., 2018). Strategies for the adaptation and mitigation of
climate change on coffee production could potentially be
refined.
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