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Soil compaction results whenever applied soil stress by machinery exceed the soil
strength. Both, soil strength and stress, are spatially and temporally highly variable,
depending on the weather situation, the current crop type, and the machinery used.
Thus, soil compaction risk is very dynamic, changes from day to day and from field to field.
The objective of this study was to analyze the spatio-temporal dynamics of soil compaction
risk and to identify hot-spot areas of high soil compaction risk at regional scale. Therefore,
we selected a study area (~2,000 km2) with intensive arable farming in Northern Germany,
having a high share of cereals, maize and sugar beets. Sentinel-2 images were used to
derive the crop types for a 5-years crop rotation (2016–2020). We calculated the soil
compaction risk using an updated version of the SaSCiA-model (Spatially explicit Soil
Compaction risk Assessment) for each single day of the period, with a spatial resolution of
20 m. The results showed the dynamic changes of soil compaction risk within a year and
throughout the entire crop rotation. The relatively dry years 2016 and 2018–2020 reduced
the soil compaction risk even at high wheel loads applied to soil during maize and sugar
beet harvest. Contrary, high precipitation in 2017 increased the soil compaction risk
considerably. Focusing on the complete 5-year period, 2.7% of the cropland area was
identified as hot-spots of soil compaction risk, where the highest soil compaction risk class
(“extremely high”) occurred every year. Additionally, 39.8% of the cropland was affected by
“extremely high” soil compaction at least in one of the 5 years. Although the soil
compaction risk analysis does not provide information on the actual extent of the
compacted area, the identification of risk areas within a period may contribute to
understand the dynamics of soil compaction risk in crop rotation at regional scale and
provide advice to mitigate further soil compaction in areas classified as high risk.
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INTRODUCTION

Soil compaction is one of the main soil degradation processes on agricultural land worldwide (FAO,
2015). This degradation process is expected to continue in the coming centuries due to intensive field
traffic activities with heavy machinery (Keller et al., 2017; Keller et al., 2019; Techen et al., 2020).
Continued soil compaction, however, contradicts the sustainable development goal 15 (SDG15),
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which aims to achieve land degradation neutrality by sustainable
land use management. Reducing soil compaction is therefore
necessary to achieve the SDG 15 and to enable a sustainable
soil use.

Soil compaction is defined as an increase of bulk density while
pore volume decreases (Horn et al., 1995). Compared to an
uncompacted soil, compacted soils have a lower air capacity,
reduced water infiltration, lower air permeability, lower biological
activity, reduced root and plant growth (e.g., Horn et al., 1995;
Weisskopf et al., 2010; Destain et al., 2016; Szatanik-Kloc et al.,
2018). Therefore, compacted soils are more susceptible to surface
water runoff and soil erosion (Alaoui et al., 2018; Keller et al.,
2019). In addition, soil compaction results often in lower yields
(Arvidsson and Håkansson, 2014; Daigh et al., 2020). As soil
compaction is persistent (Keller et al., 2017; Seehusen et al., 2021),
especially in the subsoil, the environmental effects are present in
the long term. As exemplarily shown by Graves et al. (2015) for

England and Wales, the total economic costs of soil degradation
caused by soil compaction can be three times that of soil erosion.
Thus, quantifying and localizing already compacted soils is as
important as identifying areas where the risk of soil compaction is
increased to prevent further soil degradation.

Calculating area percentages is challenging as soil compaction
on arable land is a spatio-temporal highly dynamic process
(Schjønning et al., 2015b), because crop type, soil, weather and
used machinery interact (Kuhwald et al., 2018). Comparing soil
strength against soil stress is the most common approach to
evaluate whether soil compaction may occur during wheeling
(Horn and Fleige, 2003; Horn et al., 2005). Soil strength results
from soil texture, carbon content, soil structure and soil moisture
(Horn et al., 1995; Horn and Fleige, 2003; Rücknagel et al., 2012;
Gut et al., 2015). Soil stress depends on the wheel load, tire
inflation pressure, contact area and amount of wheel passes
(Horn, 2003; Horn et al., 2003; Arvidsson and Keller, 2007;

TABLE 1 | Common spatial models and spatial approaches in soil compaction research (according to Kuhwald (2019).

Reference Aim/focus/product Used method

Horn et al. (2002) - Maps for Germany: precompression stress, changes in air capacity
and air conductivity by applied stress

- Application of Lebert and Horn (1991), DVWK 234 (1995)

Jones et al. (2003) - Map of subsoil susceptibility for soil compaction for Europe - Application of Jones et al. (2003)
van den Akker (2004) - Wheel load bearing capacity map of the Netherlands - Used SOCOMO van den Akker (2004)
Horn et al. (2005) - Precompression stress, contact area stress (and their relationship) and

change in air conductivity
- Application of Lebert and Horn (1991), DVWK 234 (1995), Horn and
Fleige (2003)

- Soil maps for Europe, Germany and for a farm
Horn and Fleige (2009) - Maps of precompression, change in air capacity - Application of Lebert and Horn (1991), DVWK 234 (1995), Horn and

Fleige (2003)- Subsoil stress of 60 and 90 kPa (40 cm)
Kroulík et al. (2009) - Mapping spatial pattern of traffic intensity - GPS tracking and tire measurements (tire width)

- Wheel track area and wheel passages for entire cropping season
Lebert (2010) - Maps of susceptibility to soil compaction for varying field capacities for

entire Germany
- Application of Lebert and Horn (1991), DVWK 234 (1995), Horn and
Fleige (2003), DIN V 19688 (2011)

- Assumption of the same field capacities for entire Germany
van den Akker and
Hoogland (2011)

- Calculating the soil vulnerability and susceptibility to soil compaction in
the Netherlands

- Application of Jones et al. (2003) and van den Akker (2004)

- Calculating the soil strength and the allowable wheel load for the
Netherlands

Duttmann et al. (2013) - Modelling and mapping of wheel passages, wheel load, mean ground
contact pressure for maize harvest

- Application of Diserens (2002), Diserens (2009)
- Recorded GPS-data and time stamps

Duttmann et al. (2014) - Modelling and mapping of wheel passages, wheel load, mean ground
contact pressure, soil strength, soil stress (2D and 3D) for maize harvest

- Application of Diserens (2002), Diserens (2009), Horn and Fleige
(2003)
- Recorded GPS-data and time stamps

D’Or and Destain (2014) - Calculation of precompression stress maps and soil compaction risk
maps for Belgium

- Application of Horn and Fleige (2003), Keller (2005), Schjønning et al.
(2008)

Schjønning et al. (2015a) - Mapping wheel load carrying capacity for Europe - Application of Terranimo (Stettler et al., 2014) algorithm
- For a tire with a diameter of 800 mm, soil depth of 25 cm and traffic at a
matric potential of - 300hPa

Lamandé et al. (2018) - Mapping wheel load carrying capacity for Europe (for rubber tracks
and wheels)

- Application of Frida (Schjønning et al., 2008; Schjønning et al., 2015a)
and Schjønning and Lamandé (2018) for soil strength calculation

- Tire: 1050/50R32, at a depth of 35 cm
- Matric potential of -50 hPa

Kuhwald et al. (2018) - Mapping daily soil compaction risk at regional scale with high spatial
resolution (20 m*20 m)

- SaSCiA-model, incorporates Horn and Fleige (2003), DIN V 19688
(2011), Nendel et al. (2011), Rücknagel et al. (2012, 2013, 2015)

Ledermüller et al. (2018) - Mapping soil compaction risk for a feral state (Lower Saxony) in
Germany

- Application of Lorenz et al. (2016)

Augustin et al. (2020) - Modelling spatial pattern of traffic intensity for an entire crop rotation for
one field

- Application of FiTraM (Augustin et al., 2019), which incorporates
Koolen et al. (1992)

- Maps of wheel passages, maximum wheel load, maximum mean
ground contact pressure for maize harvest

Duttmann et al. (2021) - modelling of soil compaction risk beneath the wheel tracks of a
complete maize season

- Application of FiTraM and SaSCiA (Kuhwald et al., 2018; Augustin
et al., 2019)
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Botta et al., 2009; Schjønning et al., 2012). Several studies exist
that analyzed the various effects of wheeling on stress propagation
and distribution inside the soil as on physical soil properties as
well (e.g., Gebhardt et al., 2009; Lamandé and Schjønning, 2011;
Hartmann et al., 2012; Keller et al., 2012; Berisso et al., 2013;
Seehusen et al., 2019).

From field and laboratory experiments, numerous functions
were derived to calculate e.g. the contact area, the soil strength at a
certain soil moisture state or the stress distribution while
wheeling (Keller et al., 2007; Schjønning et al., 2008; Diserens,
2009; Rücknagel et al., 2012). These functions, incorporated into
more complex assessment models, allow to estimate soil
compaction behavior at different spatial scales. Table 1 lists
common spatial approaches and models in soil compaction
research.

The growing availability of high resolute data from global
navigation satellite systems (GNSS) received and recorded by
modern farm vehicles enables to precisely predict traffic intensity
(e.g., Kroulík et al., 2009; Duttmann et al., 2013) and traffic related
compaction effects at field scale (e.g., Duttmann et al., 2014;
Augustin et al., 2020; Duttmann et al., 2021).

From field to larger scales, the pre-compression (or pre-
consolidation stress)-concept (e.g., Lebert and Horn, 1991) has
been applied in various studies (e.g., Horn et al., 2002; Horn et al.,
2005; Horn and Fleige, 2009; Lebert, 2010; Destain et al., 2016).
The results are maps showing the susceptibility to soil
compaction (Jones et al., 2003; Lebert, 2010), the soil
compaction risk (D’Or and Destain, 2014) or, by using further
equations, changes in air conductivity and air capacity (Horn
et al., 2002; Horn et al., 2005; Horn and Fleige, 2009).
Furthermore, the wheel load carrying capacity can be derived
by calculating the soil strength and setting threshold values for
soil stress. Examples are given by van den Akker (2004) for the
Netherlands and by Schjønning et al. (2015b) and Lamandé et al.
(2018) for Europe.

One limitation of all these large scale predictions is the
assumption of static conditions, either for the soil or for the
used machinery data or for both. Dynamic changes of soil
stress and soil strength in space and time were rarely
considered.

Newer approaches try to consider the dynamics of soil
stress and soil strength in soil compaction risk modelling at
regional scale (Kuhwald et al., 2018; Ledermüller et al., 2018).
The approach of Ledermüller et al. (2018) uses available soil
moisture information at a spatial resolution of 1*1 km2

provided by the German weather service (DWD) and land
use data from the Integrated Administration and Control
System (IACS) to calculate soil compaction risk according
to Lorenz et al. (2016). This method aims at a long-term
assessment of topsoil compaction risk, which can support
famers in decision making.

Kuhwald et al. (2018) developed a different approach to
calculate soil compaction risk, called “SaSCiA” (Spatially
explicit Soil Compaction risk Assessment). The raster-based
model incorporates spatial information of the soil and current
crop types and calculates the daily soil strength depending on
actual soil moisture. For the calculation of soil stress, the current

crop type, the actual soil moisture, crop-dependent used
machinery and field traffic days are considered. The modelling
results are daily maps of soil compaction risk at a spatial
resolution of 20 m. As shown in a first study by Kuhwald
et al. (2018), the SaSCiA-model was successfully used to
simulate the daily changes of soil compaction risk, separated
by different soil depths (20, 35 and 50 cm), within 1 year for two
study areas. Among other aspects, the high variability of soil
compaction risk within a year was evident, confirming the
significant influence of the actual weather conditions in a
respective region. However, Kuhwald et al. (2018) analyzed
only 1 year for each study area. Therefore, variations between
years for a specific study area could not accounted for.

Thus, the following research questions arise for this study: (i)
whether and to what extend does soil compaction risk vary
between individual years, and (ii) does a continuous
calculation of soil compaction risk over a longer period enable
the detection of areas within the region that are more often
affected by high soil compaction risk than other areas? To answer
both questions, we analyzed the soil compaction risk for a 5-year
period for an intensively cropped region using an updated version
of the SaSCiA-model. The objectives of this study are (i) to model
and analyze the variation of soil compaction risk within the
individual years and within the 5-years period (2016–2020), and
(ii) to identify areas with recurring patterns of high soil
compaction risk within this period. We hypothesize that (i)
the variation in soil compaction risk between the single years
will be strong depending on actual weather conditions, but that
(ii) classes of higher soil compaction risk can be observed for the
same areas in each year, which enables to delineate “hot-spot”
areas of increased soil compaction risk.

This study focusses on a perennial analysis of soil
compaction risk dynamics at regional scale to understand
the spatio-temporal characteristics of soil compaction.
Furthermore, identifying areas of different soil compaction
risk during a crop rotation enables selective and specific
intervention through soil management to mitigate potential
soil compaction. In this way, this study may support to a more
sustainable soil use as envisaged by the SDG 15.

MATERIALS AND METHODS

Study Area
A 2,000 km2 region in Lower Saxony (Germany) near the city of
Hildesheim was selected as study area (Figure 1). Intensive
agricultural use characterizes this region. Most important crop
types are winter wheat (Triticum aestivum), sugar beets (Beta
vulgaris), silage maize (Zea mays) and rapeseed (Brassica napus).
The study area is part of the Lower Saxony Loess Hill Country. The
geology of the region is complex, resulting in diversely distributed
soil parent material. Deeply weathered loess predominates along the
hill slopes, while loamy deposits occur in the valleys. Shallow layers
of sandy and clayey weathered materials are mostly found at the
hilltops. Typical soil types at the hill slopes and valleys are Luvisols
(often stagnic) and Cambisols, while Leptosols and Regosols (FAO,
2014) occur at the hilltops. Forests cover the hilly areas and the areas
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with shallow soil development. The climate is humid with a mean
annual precipitation of 649mm and mean annual temperature of
10.0°C (weather station Liebenburg-Othfresen; DWD, 2021). The
weather conditions for the investigated period are exemplarily
shown for the weather station “Liebenburg-Othfresen,” which is
centrally located in the study area (Figure 2).

Modelling, Model Structure and Input Data
The SaSCiA-model (Spatially explicit Soil Compaction risk
Assessment) was used for the 5-years analysis. The freely
available study by Kuhwald et al. (2018) describes the model
and its components in detail. Here, we briefly explain the model
and highlight the changes in the model and the used input data.

FIGURE 1 | Study area with land use in 2020.

FIGURE 2 | Monthly precipitation and air temperature of the weather station Liebenburg-Othfresen, located central in the study area (DWD, 2021).
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The SaSCiA-model incorporates crop type data, weather
information, soil data, machinery information, the crop model
“MONICA” and various pedotransfer functions (e.g., Horn
and Fleige, 2003; Nendel et al., 2011; Rücknagel et al., 2012;
Rücknagel et al., 2013; Rücknagel et al., 2015). Based on these
components, it calculates the daily soil compaction risk for
each raster cell within a selected area (Figure 3). In this study,
we modelled and analyzed the subsoil compaction risk at a soil
depth of 40 cm. Since this depth will not be reached by regular
primary tillage and related loosening effects, soil compaction

persists (Keller et al., 2017; Keller et al., 2021) and may not
recover in short-term.

Crop Types and Crop Rotations
The crop types and crop rotations for the period (2016–2020)
were derived by land use mapping and land use classification.
During each summer (July–September) of the investigation
period, we mapped crop types in the study area for ground
control. Field mapping data encompassed the following target
classes: cereals (e.g., winter wheat, rye, barley), maize, winter

FIGURE 3 | Schematic overview of the SaSCiA-model (according to Kuhwald et al., 2018).
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rapeseed, sugar beets and grassland. Google Earth imagery
supported the identiflcation of less changing land cover classes
such as water bodies, evergreen/deciduous forest and sealed areas.
The mapped data formed the basis for a remote sensing approach
to obtain spatially continuous maps of cultivated crop types at
20 m spatial resolution.

To this end, we selected 20 cloud-free or almost cloud-free
Sentinel-2 scenes, which were acquired during the vegetation
periods 2016–2020 (Supplementary Table S1). Since its launch
in 2015, Sentinel-2 data are widely used and established for crop
type mapping (e.g., Immitzer et al., 2016). To ensure data
comparability, we downloaded atmospherically corrected
(Sen2Cor (Müller-Wilm, 2016); Level-2A products from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/).
Crop types were classified by using a random forest
classification algorithm implemented as QGIS plugin (dzetsaka
classification; Karasiak, 2016). The random forest algorithm is a
supervised ensemble classifier and well known for crop type
classification. To learn the spectral signatures of the target
classes (training), the classifier requires georeferenced data on
known crop types (Belgiu and Drăguţ, 2016). For this purpose, we
used the crop types mapped annually in the study area. The
Sentinel-2 bands 2-7, 8A, 11 and 12 (20 m spatial resolution) of all
selected scenes from a year served as spectral input, whereas we
excluded cloudy pixels based on the standard cloud mask of the
Level-2A products.

Speckle in the crop type maps was reduced by using a 3 × 3
pixel median filter. Here, speckle means natural classification
noise. At field borders, for instance, different land cover are
represented within one 20 m × 20 m large pixel (e.g., the crop
type, field path and hedgerow or crop type of adjacent field). The
result are single, erroneously classified pixels and a grainy
appearing land cover map. Filtering is a common post-
classification tool to refine and smoothen the map.
Furthermore, we applied the IRSeL tool (Rathjens et al., 2014).
IRSeL is a post-classification tool for refining remote sensing
based land cover maps (e.g., interpolation of no data gaps,
reduction of misclassifications between crop types and less
dynamic classes; Kandziora et al., 2014; Rathjens et al., 2014).
Accuracy assessment followed the suggestions by Foody (2002)
using independent field mapping data, which were not used for
classifier training (Supplementary Table S2).

Subsequently, the received crop types were used to calculate
soil moisture, to select the machinery employed for crop-specific
field traffic activities and to define time periods for these activities.

Weather Data
The weather data is used to calculate the soil moisture within the
crop model MONICA. Required weather information are
temperature (minimum, maximum, average), precipitation,
relative humidity, Sun duration and wind speed. In the
original SaSCiA-version, only one weather station was used for
deriving weather information for an entire region. As weather is
highly variable in space, one station may not adequately represent
the weather conditions within a region of 2,000 km2. For this
reason, we newly incorporated regionalized weather data in the
model. In a first step, all available weather stations within the

federal state “Lower Saxony” were identified and the available
data automatically downloaded using the R-package “papros”
(Hamer, 2019). Afterwards the data were processed in R (version
4.1.0; R Core Team, 2020) to generate regionalized weather
information for each day for each of the required weather
variable. From these grids, the weather input-files for each
crop-soil grid cell were automatically generated. As a result,
the spatial variation of weather can be considered in the
calculation of soil compaction risk.

Soil Data
Soil data was extracted from the digital soil map BK 50 (scale 1:
50,000) provided by the federal state agency of Lower Saxony
(LBEG, 2020). The BK 50 contains information of e.g., soil type,
soil horizons, soil depths, soil texture class, carbon content, gravel
content and dry bulk density class, which were used for
modelling. Further information about air capacity, field
capacity, available field capacity and wilting point were derived
according to Wessolek et al. (2009). In total, 1,800 different soil
profiles were located within the study area and used for further
soil compaction analysis.

Machinery Data
The study area represents a region with highly mechanized
agriculture, i.e., nearly all field processes are conducted with
heavy machinery. The SaSCiA-model considers the used
machinery based on the present crop type. For each crop type,
a machinery with fixed wheel load and tire inflation pressure is
defined and the periods for potential field traffic (Supplementary
Table S3; cf. Kuhwald et al., 2018). For instance, it is assumed that
the winter wheat is harvested between the first and 15th of August
each year using a 220 kw combine harvester (max wheel load:
8,200 Mg, tire inflation pressure: 2.0 bar). We used the same
machinery setups and field traffic days as selected by Kuhwald
et al. (2018).

Soil Moisture Modelling
Soil moisture is calculated from the present crop type, weather
information and soil data for each day for each grid cell using the
MONICA-model (Nendel et al., 2011). Among others, the model
provides the soil moisture in 10 cm intervals for the depth
between 0 and 200 cm (cf. Kuhwald et al., 2018).

Calculation of Soil Strength, Soil Stress and Soil
Compaction Risk
The soil strength is calculated by the static soil properties (e.g.,
soil texture, gravel content) in combination with themodelled soil
moisture by the MONICA-model using the pedotransfer
functions of Horn and Fleige (2003), DIN V 19688 (2011),
Rücknagel et al. (2012), Rücknagel et al. (2013) and Rücknagel
et al. (2015). The result is a dynamic change of soil strength on a
daily basis, depending on present crop type, weather situation and
soil properties.

The soil strength is compared against the soil stress caused by
the used machinery. The latter depends on the present crop type
and time of year. The soil stress is calculated by the pedotransfer
function from Koolen et al. (1992) and Rücknagel et al. (2015).
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Input data is the wheel load, the tire inflation pressure and the
desired depth of risk analyses.

The comparison of soil strength and soil stress results in the soil
compaction index (Rücknagel et al., 2015). The index is divided into
five classes ranging from “no risk” (value <0) to “extremely high”
(value >0.4) soil compaction risk. Though, the final result is a soil
compaction risk class for each grid cell for each day within a year.

Spatio-Temporal Analysis and Hot-Spots
Detection
The temporal analysis of soil compaction risk within a year was
performed by stringing together the daily results for the
investigated period.

For the analyses of recurring patterns, all grid cells of 1 year
with the class “extremely high” soil compaction risk were
summed up. The results were summed raster for each year
showing the areas of the highest soil compaction risk class. By
summarizing and counting these five grids, we can identify the
hot-spots of extremely high soil compaction risk and areas, that
were never affected by such a high soil compaction risk class.

RESULTS

Spatial Characterization of the Study Area
The total size of the study area is 2,000 km2. The cover by
arable land had a share of 50.2%, followed by forest (27.2%),
grassland (16.0%), sealed area (5.4%) and water bodies (1.2%;
Supplementary Table S2).

Organic soils cannot be processed by the SaSCiA-model since
the incorporated functions (Horn and Fleige, 2003; Rücknagel
et al., 2015) are invalid for soil with organic matter content >30%.
Therefore, 1,562 of the originally 1,800 soil profiles could be used
for soil compaction risk analysis, representing 116,309 ha under
arable use.

At the desired depth of 40 cm, a wide range of soil texture
classes occurred (Figure 4). Soil texture classes having high clay
(Tt, Tl, Ts) and silt content (Uu, Ut2) were absent, as were those
with low silt but high sand content (St2, St3, Ls4, Ts4, Ts3;
according to the German classification scheme; Ad-Hoc-AG
Boden, 2005).

Within the 116,309 ha area, cereals share ranged from 54 to
68% and was the predominating crop type in all years, while
rapeseed always had the lowest share (4–12%; Table 2).

Spatial Distribution of Soil Compaction Risk
Figure 5 exemplarily shows the spatial distribution of soil
compaction risk on 07 August 2017 for the depth of 40 cm.
On this date, all soil compaction risk classes (“no risk” to
“extremely high risk”) occurred in the study area, each with
varying percentages of area (Table 3). In total, one quarter of the
cropland area was not affected by field traffic, while another
quarter revealed no soil compaction risk. The remaining area was
distributed among the classes “low” to “extremely high” soil
compaction risk, with the “extremely high” class having the
highest share at 19.3%.

No field traffic occurred for maize and rapeseed as no field
traffic was assumed for these crop types on this date. The plant
height of maize prevents any field traffic without damaging the
plants; rapeseed has already been harvested and the sowing of a
subsequent crop is too early in the year. For sugar beet, the
class “no risk” dominated (19.1%), while 2.9% of the sugar beet
area had a “low” soil compaction risk. Thus, the risk classes
“medium” to “extremely high” referred to the crop type cereals
on this date.

Temporal Variation of Soil Compaction Risk
Summarizing all daily soil compaction risk maps of a year and
calculating the area shares of each soil compaction risk class,
results in a temporal overview of soil compaction risk (Figures
6A–E). Focusing on all years, there were periods without soil
compaction risk, e.g., December and January. Here, no field traffic
was assumed, thus no soil compaction could occur. During the
rest of the year, the percentage of arable land, which was
potentially affected by soil compaction, varies from 10 to
100%. Autumn was the period with most field traffic activities.
The risk class “no risk” predominates in all years. The highest risk
class “extremely high”mainly occurred in spring. From February
to mid of June, all soil compaction risk classes occurred in all
years, which was not the case in summer and autumn.

Comparing the years with each other, 2017 showed a distinctly
different distribution of soil compaction risk. In particular from
mid of July to November, the soil compaction risk was much
higher than in all other years. For instance, the classes “high” to
“extremely high” accounted for 43.6% of the arable land in mid of
August. At the same time the year before and the years after, this

FIGURE 4 | Soil texture triangle identifying the soil texture classes within
the region (German soil classification; Ad-Hoc-AG Boden, 2005; Moeys,
2018). Dark grey shaded patches are present in the depth of 40 cm in the
study area, while light grey patches are not.
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percentage ranged between 0.0 and 10.0%; the “extremely high
risk” class was absent in August in any other year than 2017.

Hot-Spots of Soil Compaction Risk Within
the Region
Focusing on the class “extremely high” soil compaction risk
enables the detection of areas that are mostly at risk for soil

compaction within the region. In a first step, all daily soil
compaction risk maps with the class “extremely high” risk
were summarized for each year (Supplementary Figures
S1–S5). This yielded in the amount of days, on which a
certain area/raster cell falls into the highest compaction risk
class within 1 year. In 2016 and 2018–2020, the highest soil
compaction risk class is absent in more than 90% of the
cropland area. In 2017, however, only 60.3% of the area were

TABLE 2 | Absolute and percentage area of the classified crop types for the single years between 2016 and 2020.

Crop
type

2016 2017 2018 2019 2020

ha % ha % ha % ha % ha %

Cereals 77,155 66.3 62,880 54.1 76,065 65.4 62,594 53.8 78,722 67.7
Maize 14,312 12.3 16,805 14.4 12,308 10.6 17,754 15.3 9,843 8.5
Sugar beets 15,042 12.9 25,590 22.0 19,022 16.4 22,430 19.3 22,866 19.7
Rapeseed 9,800 8.4 11,034 9.5 8,914 7.7 13,530 11.6 4,878 4.2

FIGURE 5 | Spatial distribution of soil compaction risk on 07 August 2017 at a depth of 40 cm.
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not at “extremely high” risk (Table 4). Additionally, the number
of days with “extremely high” soil compaction risk is increased in
2017 compared to the four other years, e.g., 21,985 ha with
11–20 days of “extremely high” soil compaction risk Table 4.

In a second step, all soil compaction risk maps of the 5 years (=
1,827 days) with the class “extremely high” were summarized to
identify the area of highest soil compaction risk (Figure 7). It
showed that 39.8% of the cropland was exposed to “extremely
high” soil compaction risk at least once during the entire study
period (Table 5). Overall, 2.7% of the area revealed an “extremely
high” soil compaction risk in each year. The areas, which were
never or only once affected by “extremely high” soil compaction
risk, were heterogeneously distributed across the study area. The
north-western part of the study area showed a remarkable cluster
with increased soil compaction risk.

Analyzing the 2.7% area exposed to “extremely high” soil
compaction risk in all 5 years in more detail revealed that a
high percentage of this area (40.3–86%) corresponds to the
crop type cereals (Table 6), followed by maize with a share
ranging between 12.0 and 28.7%. An exception was 2017,
where cereals (40.3%) and sugar beets (39.1%) reached
similar area percentages.

Focusing on the soil characteristics of the 2.7% area showed
that the soil texture class “Ut4” (German classification scheme;
clay content: 17–25%, silt content: 65–83%) predominated this
area with 3,055 ha. Further affected soil texture classes were Sl2,
Lt2 and Lu. However, almost all soil texture classes (Ls2, Lt2, Lt3,
Lts, Lu, Sl2, Ss, Su3, Su4, Tu2, Tu3, Tu4, Uls, Us, Ut3, Ut4)
occurred at the areas exposed to “extremely high” soil compaction
risk in at least 1 year.

DISCUSSION

Spatio-Temporal Variation of Soil
Compaction Risk
Our study showed the high spatio-temporal variation of soil
compaction risk within a region. This applies to the annual
changes in the same way as to the changes between the
individual years.

These variations result from the interaction of actual soil
strength and soil stress, which was calculated from the present
crop type, soil data, weather data, machinery characteristics and
field traffic days. The combination and interaction of these factors

resulted in a heterogenous distribution of soil compaction risk
across the region (exemplarily shown in Figure 5). Cereals
harvest with wheel loads of 8.2 Mg (Supplementary Table S3)
and relatively wet soil conditions in 2017 (discussion below)
resulted in an increased share of high” to “extremely high” soil
compaction risk at that date. The areas with sugar beets were less
affected, as only spraying operation with wheel loads of 1.1/
2.4 Mg were assumed, causing only “low” soil compaction risk
(Table 3). The selected wheel loads represent typical ones for the
study area. However, as wheel loads continuously increase in
intensive agriculture (Keller et al., 2019; Kuhwald, 2019), higher
wheel loads will frequently occur in the study area as well,
resulting in higher soil stress and thus in higher soil
compaction risk.

Weather is one highly variable and strongly influencing factor
affecting variation of soil compaction risk, which exerts a large
influence both within a year and between years. Within a year,
spring is the period with the highest soil compaction risk in all
years. The reason is a decreased evapotranspiration during
winter, while precipitation is at a high level (Figure 2). Both
factors increase soil moisture until spring. Generally, an increase
in soil moisture leads to a decrease in soil strength (Rücknagel
et al., 2012; Gut et al., 2015; Edwards et al., 2016). Thus, the soil
strength is decreased to a minimum when field traffic activities
occur in spring, usually in March and at the beginning of April.
Consequently, it can be assumed that a high share of field traffic
activities occurring at this time are associated with an increased
soil compaction risk. Many field studies investigated the negative
effects of field traffic in spring under wet soil conditions on soil
functions (e.g., Schjønning et al., 2016; Pulido-Moncada et al.,
2019; Ren et al., 2019).

During summer, evapotranspiration increases. The soils may
become drier, which generally results in higher soil strength and
lower soil compaction risk in general, as seen for the years 2016
and 2018–2020. In contrast, precipitation was higher in 2017. The
mean annual precipitation was 750 mm this year, while it ranged
between 454 and 641 mm in the other 4 years (DWD, 2021).
Especially in July and August, the precipitation was significantly
higher amounting to 278 mm in 2017 compared to 50–117 mm as
registered for 2016 and 2018–2020 (Figure 2; Supplementary
Table S4). The high amount of precipitation in summer increased
the soil moisture even in the subsoil. Thus, the soil strength was
reduced and the soil compaction risk noticeably increased in 2017
during cereal harvest. The effects of increased soil moisture were

TABLE 3 | Absolute and percentage area of soil compaction risk classes for the four crop types on 07 August 2017 at a depth of 40 cm.

Risk
class

Cereals Maize Sugar beet Rapeseed Total

ha % ha % ha % ha % ha %

No field traffic 0 0.0 16,805 14.4 0 0 11,034 9.5 27,839 23.9
No risk 6,435 5.5 0 0 22,197 19.1 0 0 28,632 24.6
Low 1,322 1.1 0 0 3,392 2.9 0 0 4,714 4.1
Medium 4,080 3.5 0 0 0 0 0 0 4,080 3.5
High 21,388 18.4 0 0 0 0 0 0 21,388 18.4
Very high 7,190 6.2 0 0 0 0 0 0 7,190 6.2
Extremely high 22,466 19.3 0 0 0 0 0 0 22,466 19.3
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also evident in autumn for 2017, where the soil compaction risk
remained at a high level during maize and sugar beet harvest. The
harvest of maize and sugar beets are accompanied with high
wheel loads, resulting in high soil stress and increased soil

compaction risk (e.g., Peth et al., 2006; Barik et al., 2014;
Duttmann et al., 2014; Destain et al., 2016; Götze et al., 2016).
Thus, an increased susceptibility to soil compaction can generally
be expected for maize and sugar beet.

Nevertheless, modelled soil compaction risk was relatively low
during autumn in 2016 and 2018–2020. These years were
extremely dry (e.g., Zscheischler and Fischer, 2020; Kowalski
et al., 2022), especially in the summer months. The dryness
increased soil strength and resulted in a reduced soil
compaction risk even for the heavy machineries used for
maize and sugar beet harvest. Thus, an increased soil
compaction risk in autumn can be expected for “normal”
years, during which the precipitation is around the long-term
average.

Overall, analyses of the spatio-temporal dynamics revealed
that 1 year with increased precipitation can considerably affect
the soil compaction risk. This is particularly problematic as soil
compaction, especially subsoil compaction, can be persistent for
many years (Etana et al., 2013; Keller et al., 2017; Keller et al.,
2021; Seehusen et al., 2021). Thus, 1 year of increased soil
compaction risk accompanied by unsuited field traffic activities
can be sufficient to affect soil functions and soil health in the
long term.

Hot-Spots of Soil Compaction Risk
The hot-spot analysis revealed an area share of 2.7% that was
exposed to the highest soil compaction risk class (“extremely
high”) in each year of the 5-years period. From the perspective of
sustainable soil use and soil protection, these areas are suggested
to be the most endangered ones. In order to prevent harmful soil
changes, they have to be managed carefully.

The soil texture class “Ut4” dominated the 2.7% area.
Generally, silty clay soils are highly susceptible to soil
compaction compared to other soil texture classes (Lorenz
et al., 2016). In the study area, 260 soil profiles are
characterized by the soil texture class “Ut4” at the investigated
depth, representing an area of 39,574 ha. Out of these, only 54 soil
profiles were part of the 2.7% hot-spot area. Thus, soil texture of
“Ut4” is not necessarily associated with the highest soil
compaction risk.

Focusing on the area that is affected at least in 1 year by the
highest soil compaction risk class revealed an area share of
39.8%. The majority of these area is affected in 1 year
(Table 5). As described above, soil compaction, especially
subsoil compaction, is persistent and hardly to recover.
Thus, even a one-time increased soil compaction risk can
result in soil compaction that persists for many years if field
traffic is conducted with machinery unsuitable for the current
situation. In practice, this will not be the case for the entire
39.8% area; however, the analysis showed the high area share
that is potentially affected.

As described above, the 5-years period was characterized by
mainly dry years. The mean annual precipitation between 2016
and 2020 was 582 mm, while it was 680 mm between the years
2005 and 2015 (Supplementary Table S4). Lower
precipitation and soil desiccation during the investigated
period compared to previous years resulted in a potentially

FIGURE 6 | Temporal variation of soil compaction risk area share (% of
total arable land) at 40 cm depth for (A) 2016, (B) 2017, (C) 2018, (D) 2019
and (E) 2020.
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underestimated hot-spot area. Thus, we assume that the area
percentage of the highest risk class would have been larger
when the weather and soil moisture conditions of a longer
period would have been considered. However, it remains to be
seen whether drier conditions will be the new “normal” in the
study area.

The potential area exposed to high soil compaction risk will
further increase when changing the definition of “hot-spot”.
The presented hot-spot analysis was conducted for the
“extremely high” soil compaction risk class. When
considering the two highest classes (“very high” and
“extremely high”), the hot-spot area increased considerably

TABLE 4 | Absolute and percentage area of days with the class “extremely high” soil compaction risk summarized for each year (2016–2020).

Days 2016 2017 2018 2019 2020

ha % ha % ha % ha % ha %

0 105,207 90.5 70,047 60.3 106,291 91.4 106,088 91.2 106,915 91.9
1–10 402 0.3 5,891 5.1 6,953 6.0 7,068 6.1 104 0.1
11–20 2,633 2.3 22,060 18.9 2,969 2.6 1,459 1.3 9,127 7.8
21–30 7,641 6.6 16,247 14.0 56 0.0 1,691 1.5 145 0.1
31–40 35 0.0 1,457 1.3 36 0.0 3 0.0 17 0.0
>40 391 0.3 607 0.5 4 0.0 0 0.0 0 0.0

FIGURE 7 | Spatial location of hot-spots (class “extremely high” soil compaction risk) of soil compaction risk on an annual basis for the period 2016–2020.
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(Table 7). The area share affected at least one time every
year by “very high” and/or “extremely high” soil compaction
risk was at 11.1%. Only 40% of the study area were never
affected by “very high” and/or “extremely high” soil
compaction risk.

The definition of the term “hot-spot” is therefore very
important to provide information on the spatial extent of
critical soil compaction risk. This also raises the question of
how to assess the respective risk classes. The used approach
classifies the soil compaction risk in five classes (Rücknagel
et al., 2015; Götze et al., 2016). Terranimo, for instance, uses
only three classes (Stettler et al., 2014), while Jones et al. (2003)
uses four classes. It remains unclear, however, how these
classes are to be evaluated. Is a “medium” soil compaction
risk tolerable, or will it result in severe soil compaction? Thus,
an evaluation of the calculated soil compaction risk is
necessary, as exemplarily shown by Götze et al. (2016), in
order to derive the critical risk classes.

Advances and Limitations of the Soil
Compaction Risk Analysis
Generally, it must be kept in mind that the used SaSCiA-
model calculates the risk of soil compaction. Thus, the model
does not predict the real occurrence and distribution of soil
compaction, but indicates where soil compaction is likely to
occur. Furthermore, the SaSCiA-model has some limitations,
which are discussed in detail by Kuhwald et al. (2018). An

important limitation is that the wheel pass frequency is not
considered in the SaSCiA-model, although the amount of
wheel passes has an impact on soil compaction (e.g., Botta
et al., 2009; Pulido-Moncada et al., 2019). Another limitation
is associated with the raster approach, which leads to the fact
that the entire raster cell is always affected by field traffic. This
results in an overestimation of the risk area, since almost
never all parts of a field are wheeled during one field traffic
activity (except for sugar beet harvest with a self-propelled
harvester; Augustin et al., 2020).

However, two limitations of the original SaSCiA-version were
addressed in the present study. The first one was the use of all
available weather stations (a total of 55 stations) within the federal
state to regionalize the weather information; in the original
approach, only one weather station was used (cf. Kuhwald
et al., 2018). Thus, spatial variations, e.g., in precipitation,
could be accounted for in the 5-years analysis. The second one
was the use of a soil map at a scale of 1:50.000 instead of a soil map
of 1:200.000 (Kuhwald et al., 2018), which increased the accuracy
of the spatial representation of soil characteristics. However, even
a soil map of at a scale of 1:50.000 shows a relatively coarse spatial
resolution compared to a Sentinel 2-pixel size of 20 m. Therefore,
a higher spatial resolution soil map is needed to increase the
reliability of the soil compaction risk assessment, but is not yet
available for the region.

Independent on model limitations, the model approach and
model results may be useful to support sustainable soil use and
soil protection.

TABLE 5 | Absolute and percentage area of hot-spots (containing only the class “extremely high” soil compaction risk) of soil compaction risk, grouped by number of years of
their occurrence.

Occurrence of class “extremely high” soil compaction risk in

0 years 1 year 2 years 3 years 4 years 5 years

Area share (in %) 60.2 26.8 2.1 2.5 5.7 2.7
Total area (in ha) 69,977 31,220 2,475 2,854 6,649 3,134

TABLE 6 | Absolute and percentage crop type area of the areas with every year soil compaction risk class “extremely high”.

2016 2017 2018 2019 2020

ha % ha % ha % ha % ha %

Cereals 2,487 79.4 1,263 40.3 2,199 70.2 1,906 60.8 2,696 86.0
Maize 50 16.2 503 16.0 844 26.9 899 28.7 376 12.0
Sugar beet 6 0.2 1,224 39.1 2 0.1 97 3.1 9 0.3
Rapeseed 134 4.3 143 4.6 88 2.8 231 7.4 52 1.7

TABLE 7 | Absolute and percentage area of hot-spots (containing the classes “very high” and “extremely high” soil compaction risk) of soil compaction risk, grouped by
number of years of their occurrence.

Occurrence of classess “very high” and “extremely high” soil compaction risk in

0 years 1 year 2 years 3 years 4 years 5 years

Area share (in %) 40.1 42.4 2.7 1.8 1.8 11.1
Total area (in ha) 46,678 49,369 3,185 2,076 2,145 12,854
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CONCLUSION

This study modelled the spatio-temporal soil compaction risk on a
daily basis for 5 years for a region. Thus, for the first time, it was
feasible to analyze and show how the dynamic characteristic of soil
compaction risk vary in space and time over such a long period of
time with high spatial (20 m) and temporal (daily) resolution.

One main result of this analysis is that 1 year of increased
precipitation can contribute to a tremendous increase in soil
compaction risk, which was the case in this study in 2017.
Another important finding was that 2.7% of the area exhibited
the highest soil compaction risk class (“extremely high”) in
each year of the study period. Looking at the areas that were
affected by “extremely high” soil compaction risk at least once,
this percentage increased to 39.8%.

As discussed above, soil compaction is persistence and many
years are required to reach the pre-soil compaction state, if it is
achievable at all. Assuming a share of nearly 40% of compacted
soil in the study area would therefore have strong environmental
effects and will reduce the yield substantially. However, the
modelled results show the risk of soil compaction, not the
actual state. But by identifying the risk, the extent of possible
soil degradation becomes apparent.

Thus, this study may contribute to increased awareness of soil
compaction risk dynamics in order to mitigate further soil
degradation. In this sense, a next step must be the integration
of weather forecast to enable the prediction of soil compaction
risk for the following days. This prediction will enable to decide
on which day a field might by trafficked by identifying the day
with the lowest soil compaction risk.
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