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TheClimateHazardGroup InfraRed Precipitationwith Stations (CHIRPS) dataset

was examined for its variability and performance in explaining precipitation

variations, forecasting, and drought monitoring in Southeast Asia (SEA) for the

period of 1981–2020. By using time-series analysis, the Standardized

Precipitation Index (SPI), and the Autoregressive Integrated Moving Average

(ARIMA) model this study established a data-driven approach for estimating the

future trends of precipitation. The ARIMA model is based on the Box Jenkins

approach, which removes seasonality and keeps the data stationary while

forecasting future patterns. Depending on the series, ARIMA model annual

estimates can be read as a blend of recent observations and long-term historical

trend. Methods for determining 95 percent confidence intervals for several SEA

countries and simulating future annual and seasonal precipitation were

developed. The results illustrates that Bangladesh and Sri Lanka were chosen

as the countries with the greatest inaccuracies. On an annual basis, Afghanistan

has the lowest Mean Absolute Error (MAE) values at 33.285 mm, while Pakistan

has the highest at 35.149 mm. It was predicted that these two countries would

receive more precipitation in the future as compared to previous years.
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1 Introduction

The water that falls to the ground as hail, sleet, rain, mist,

or snow is referred to as precipitation (Driscoll et al., 2003; Li

et al., 2021). It is an important climate parameter that’s been

used to investigate the trend and variability of hydro-

meteorological occurrences (DasGupta and Shaw, 2015;

Rousta et al., 2017; Rousta et al., 2018). Variability in

precipitation is defined as a variation in the amount of

precipitation that falls naturally in a certain area. These

errors occur in both space and time, providing a global risk

to hydro-meteorological systems (Naheed and Rasul, 2011).

Flooding occurs when there is a lot of rain, whereas a lack of

rain can cause water scarcity, which can lead to drought

(Seager et al., 2009; Syed et al., 2021a). As a result, heavy

precipitation has the potential to have far-reaching societal

consequences, including loss of life and livelihood, as well as

distruction of infrastructure (Jones et al., 2004; Zhang et al.,

2019a). Extreme precipitation events will become more

regular as the concentration of water vapours has increased

in air, according to the IPCC’s Sixth Assessment Reports

(IPCC AR6), which provided the most well-known

projections of the variability caused by global warming

(Agenda, 2007; Rousta et al., 2016).

Globally, precipitation has fluctuated throughout the last few

decades (Trenberth, 2011). In recent times, it has experienced

substantial spatiotemporal variability (Kumar et al., 2010).

According to the IPCC AR6 (AR6, 2021), climate change will

cause substantial spatiotemporal variability in precipitation,

which will increase the frequency and intensity of

hydrometeorological utmost (i.e., droughts and floods) in

many regions around the globe (Zhao et al., 2021). Drought

has a devastating effect on the ecology as a potential hydro-

meteorological disaster (Miao et al., 2022). Droughts that endure

for a long time can have an adverse effect on solar and

hydropower production (Al-Dousari et al., 2019). As a result,

it is critical to keep track of precipitation and put in place effective

control mechanisms to mitigate the effects of drought (Khan

et al., 2011; Ionita et al., 2016; Higashino and Stefan, 2019).

Large-scale severe droughts occurred all around the world during

the turn of the twenty-first century, resulting in substantial

economic losses (Du et al., 2018). Though the most crucial

aspect in determining drought indices is precipitation

(Khodadoust Siuki et al., 2017), drought assessment always

necessitates long-term precipitation records. In-situ

climatological measurements are commonly used to construct

drought indicators. Nevertheless, climatological sensors are

frequently placed hastily and irregularly, and in certain distant

regions, they may be completely inaccessible. If enough

consideration is given to their inherent mistakes and

uncertainties, a number of satellite-derived precipitation

products may be able to cover these gaps (Shen et al., 2014).

Short-term satellite precipitation products have been used in

several studies to assess drought; nevertheless, the inaccuracy of

such sparse data should be investigated further (De Jesús et al.,

2016). Although most satellite-derived datasets have too short

time series, they can not be used for drought monitoring because

data with a time span of at least 30 years is required (Svoboda

et al., 2012; Funk et al., 2015; Ullah et al., 2021). For day, month,

and year periods, the most latest iteration of the CHIRPS dataset

with 0.05° spatial resolution is accessible (Funk et al., 2015). The

CHIRPS dataset was shown to yield good results in a

comprehensive global analysis of all precipitation datasets,

capable of meeting the demands of drought monitoring over a

local meteorological timeframe of more than 3 decades (Beck

et al., 2017). The CHIRPS dataset has been utilized for drought

monitoring in recent years, with positive results in a variety of

countries and areas (Habitou et al., 2020; Pandey et al., 2021).

Globally there are some other studies (Salehie et al., 2021) has

contributed in analyzing the precipitation extremes and its

variations in other countries. Some of these studies has used

CHIRPS datasets. The study by (Nashwan et al., 2020) proposed

the CHIRPS is better at estimating the total amount of rainfall

over Egypt. In addition, precipitation measurement has many

applications in drought estimation, hydrological analyses (Ziarh

et al., 2021) and studying water-related issues including erosion

and quality. For example, extreme precipitation events caused

warming in the coastal and inland areas of Bangladesh (Abdullah

et al., 2020).

SPI has been used in several studies to anticipate drought

utilizing basic but effective time series statistical approaches

including Autoregressive Integrated Moving Average

(ARIMA) models, deep learning, and logarithmic smoothing

(Morid et al., 2007; Han et al., 2013). The ARIMA model uses

a statistical approach to forecast reliable drought trends, and it

has several advantages over traditional methods, including a fixed

structure, time series specificity, ease of use, low computational

cost, reliance on data analyst skill and experience, and the use of

backward observations, to name a few. The ARIMA time series

model is a well-structured empirical instrument for predicting

and comprehending drought’s chaotic nature. When the time

series data is stationary and linear, the Autoregressive (AR) or

Moving Average (MA) or mixed Auto Regressive Moving

Average (ARMA) models are utilized (Han et al., 2013).

When time series data is non-linear and quasi-linear,

however, differencing is done first. The purpose of this project

is to determine the most accurate satellite-based precipitation

product at a local scale, as well as to analyze and forecast the

drought condition in the study area, so that water resource

managers may develop effective management strategies and

operations. The particular objectives of this studg are to look

at seasonal and annual precipitation variations, forecast seasonal

and annual precipitation in the next 20 years using ARIMA, and

monitor droughts in Southeast Asian countries.
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2 Materials and methods

2.1 Study area

This study selected 9 Southeast Asia countries that are

located between longitudinal coordinates 88.5°E and 130.5°E

and latitudinal coordinates 23.5°N and 14.5°S, according to

their climatic history (Figure 1; Table 1) (Maharjan et al.,

2020; Shahzaman et al., 2021). The Maritime Continent and

Continental Southeast Asia (Myanmar, Thailand) have

previously been identified as the principal causes of changes

in air temperature and particulate deposition in SEA due to

recurrent emission outbreaks (Ng et al., 2017). The majority of

Southeast Asia is in the hot, humid tropics, with a monsoonal

rains. For agriculture, the summer monsoon season is critical.

Around 70% of the inhabitants in these nations work in

agriculture, either directly or indirectly, and their livelihoods

are strongly reliant on rainfall patterns. With 160 million

hectares of agricultural land, India is the world’s second-

largest and most populous country in Southeast Asia. With

23.3 million hectares of agricultural land, Pakistan is the

second-largest country in Southeast Asia (Shah et al., 2019). It

connects to the Hindukush Himalayan Mountains on the north

side, and spans from the Pamirs to the Arabian Sea on the south

(Ullah et al., 2020; Syed et al., 2021b). In Bangladesh, agriculture

occupies 9.3 million hectares, while in Afghanistan, agriculture

covers 8 million hectares (Lal, 2007; Zhang et al., 2019b). The

other Southeast Asian countries account for a significantly lower

proportion of the total. SEA has a total land size of

5.2 million km2 (Nawaz and Farooq, 2021).

2.2 Climate of Southeast Asia

Tropical, subtropical, rocky, moist, alpine, arid terrain, and

desert areas with a lot of rain (summer and winter monsoon)

regimes are all found in Southeast Asia (Lieberman and Buckley,

2012). In Southeast Asia, there are four seasons (spring, summer,

autumn, and winter), as well as monsoon rains. This location is

notable for its wind reversal during the monsoon rains. Monsoon

rainfall patterns vary across the country on a regional and

temporal basis. summer monsoons, in combination with

southwesterly winds, contribute for more than 75% of annual

rainfall (Ullah et al., 2018). The western disturbances due to the

Mediterranean Sea and Atlantic Ocean (MSAO) continue to have

an impact on these locations during the winter season

(Shahzaman et al., 2021). The only subtropical climate in

Southeast Asia is found in Myanmar’s northern and

mountainous regions, with milder winters and temperatures

as low as 20°C. The majority of the SEA experiences rainy

FIGURE 1
Land-cover type map of SEA, that was identified from MODIS (MCD12Q1) images using IGBP classifications.

Frontiers in Environmental Science frontiersin.org03

Syed et al. 10.3389/fenvs.2022.832427

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


and dry seasons due to seasonal variations in winds or monsoons.

During the monsoon season, the tropical rain belt causes more

rainfall. The rainforest is the world’s second-largest environment

(with the Amazon rainforest being the largest) (Cardoso Da Silva

and Bates, 2002). There are exceptions to this rainforest, climate,

and vegetation in the northern region and on higher islands,

where higher heights bring to milder temperatures (Lan et al.,

2021). The Arakan Mountains’ rain shadow causes yearly rainfall

to be as low as 600 mm (24 inches) in central Myanmar’s “dry

zone,” where annual rainfall can be as low as 600 mm (24 inches)

(24 inches) (Loo et al., 2015). This location is dry enough to be

classified as semi-arid due to the current scorching temperatures.

The Southeast Asia region is one of the world’s most endangered

areas in regrad of climate change. Changes in rainfall and runoff

will have a substantial impact on agriculture, affecting irrigation

systems and, as a result, water quality and quantity (Pan and

Chen, 2021). The Southeast Asian fishing sector is predicted to be

severely impacted by climate change. While being one of the

world’s most sensitive regions to the effects of climate change,

SEA countries lag behind in terms of climate mitigation

initiatives.

2.3 Monsoon rainfall

Asia’s precipitation vary dramatically throughout a wide

range of time periods. Interannual variability in precipitation

has long been thought to be linked to changes in the Asian

monsoon circulation (Webster et al., 1998; Wang and Ho, 2002).

One of the most noticeable features of the southern Asian climate

is that, as is typical of monsoon climates, rainfall is heaviest in the

summer season and least in the winter season. The summer

monsoon in South Asia, which accounts for up to 75% of total

annual rainfall in some parts of the region, is inextricably linked

to more than 22% of the world’s population (Dhar and Nandargi,

2003). The vast variation in the start and duration of the summer

monsoon has a significant impact on Southeast Asia’s water

resources, agriculture, economy, ecosystems, and human

mortality. Given the reliance of vast populations on monsoon

rains, the response of South Asian monsoon dynamics to rising

atmospheric greenhouse gas concentrations is a scientific and

societal concern. Throughout western and central India, as well

as the Tibetan Plateau’s southern hills and Bangladesh,

considerable rain falls during the summer (Yao et al., 2010).

The onset of the Asian summer monsoon is abrupt in late spring

(Lau and Yang, 1997), while the retreat of the monsoon in

autumn is relatively slow.

2.4 Data collection

A monthly CHIRPS dataset with a spatial resolution of 0.05°

was used in this investigation. At monthly and daily scales,

CHIRPS provides global data (50°N–50°S). This dataset

combines satellite estimation with in-situ/station observation

data based on cold cloud duration (CCD) data. The CHIRPS

data was intended largely to track agricultural droughts (Funk

et al., 2015). The monthly product version 2.0 was downloaded

from https://data.chc.ucsb.edu/products/CHIRPS-2.0/(accessed

on 9 February 2021) for the duration of 1981–2020.

Precipitation data from the CHIRPS satellite are commonly

utilised in hydrogeology and drought research (Shukla et al.,

2014; Agutu et al., 2017; McNally et al., 2017). On-the-ground

readings, sensor extrapolation, and global precipitation

climatology are the three datasets that makeup CHIRPS. The

CHIRPS dataset was created using TMPA 3B42, National

Climatic Data Center (NCDC) pentad precipitation

climatology, National Oceanic and Atmospheric

Administration (NOAA) climate forecast system atmospheric

model precipitation fields, Climate Prediction Center (CPC)

Thermal Infrared (TIR) satellite observations, and SPG

observations. The precipitation was measured using the IR

Cold Cloud Duration (CCD) observation method, and the

dataset was produced using the Inverse Distance Weightage

(IDW) interpolation approach (Funk et al., 2014).

3 Methodology

3.1 Time series models

Time series models are used to fulfill the current study’s

purpose. To find the best-fitting model, many performance

indicators are considered. This was accomplished using the

R-forecast Studio software. As a consequence, the best-fitting

model has been chosen. Box and Jenkins provided a linear time

series model that was used in this study (Box et al., 2015) for

forecasting precipitation in SEA to analyze whether the future will

going to face drought or a wet period in the coming future. ARIMA

is a popular type of time series forecasting model. Over other

stochastic models, the ARIMA model has a number of

advantages, including exponential smoothing, better forecasting,

and the ability to provide more information on time-related

changes (Mishra and Desai, 2005). The ARIMA group’s non-

seasonal model is composed of three constraints (p, d, q), each

of which can have zero or positive integral values, and is

autoregressive (AR) to order p, moving average (MA) to order q,

and operates on the dth variance of the data series zt. As an example,

a general non-seasonal ARIMA model could be written as follows:

ut � ∑p

i�1 φiut−1 + εt −∑q

j�1 θjεt−j (1)

where p, d, and q are three non-negative integer parameters which

can be defined as “p = is the order of autoregressive,” “d = is the

order of differencing” and “q = is the order of moving average

model.” The performance of the different series ut can be then

Frontiers in Environmental Science frontiersin.org04

Syed et al. 10.3389/fenvs.2022.832427

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


represented in ARIMA (p, d, q) model by Equation above. Box and

Jenkins promoted the ARIMA (p, d, q) model for forecasting

hydrologic variables including rainfall and streamflow.

⁃ Root Mean Square (RMSE)

The root mean square error (RMSE) error statistic is widely

used in methodological approaches to assess overall distortion.

RMSE �
������������
1
n
∑ (Si − Oi)2

√
(2)

Where Oi is the total amount of observations, Si denotes

anticipated values for a particular variable, and n denotes the

total number of observations available for analysis. RMSE is an

excellent reasonable approximation for assessing prediction

errors of different models or modeling configurations for a

single variable, rather than between variables, because it is

scale dependant.

⁃Mean Absolute Percentage Error (MAPE)

MAPE � 1
n
∑n

t�1⃒
Si − Oi

Si
⃒ (3)

⁃ Mean Absolute Error (MAE)

MAE � 1
n
∑⃒Si − Oi⃒ (4)

⁃ Ljung-Box Q

There are a number of statistical tests that may be used to

determinewhether or not something is random. In current research,

the Ljung-Box Q statistic, as well as the tipping point and intervals

tests, were used to assess covariances for independence (Di Lorenzo

and Ljung-Box, 2013). Instead of visually inspecting the sample

autocorrelations, the LjungBox Q or Q(r) statistic can be used to

check independence. By selecting a level of significance, this

hypothesis can be tested for convergent validity after that it can

compared the value of calculated χ2 with the χ2-table critical value,
the present model is adequate based on available data.

Q(r) � n(n + 2)∑m

k�1(n − k )−1 rk(a)2 (5)

For the best models, to test the independence assumption of

residuals, the Ljung-Box Q statistic has been used. Tables 3 and 4

summarize the findings of these testing.

3.2 The Standardized Precipitation Index
for drought assessment

The SPI computation needs fitting a probability

distribution for homogenised long-term precipitation

records, such as the Pearson Type III or Gamma

probability function, which generally follows the

nonnormal stable distribution, in order to produce the

standard normal variable. Then, using equiprobability

transformation, it is transformed into a normally

distributed version with a unit standard deviation and zero

mean for the relevant region and period (Guttman, 1998;

Khan et al., 2020). SPI was calculated on a 1, 3, 6, and 12-

months time frame using the R platform to analyze

meteorological drought revealed by accurate satellite

precipitation data in this study. The SPI is a number that

ranges from 2 to −2, with a lower value indicating drier or

drought conditions and a higher value indicating wetter

conditions (Table 2).

TABLE 1 Land-cover types of SEA, that were identified from MODIS
(MCD12Q1) images using IGBP classifications (Syed et al., 2021a).

Lc type Area (km2)

Evergreen Needle leaf Forests (ENF) 217,388

Evergreen Broadleaf Forests (EBF) 2,232,441

Deciduous Needle leaf Forests (DNF) 16

Deciduous Broadleaf Forests (DBF) 695,645

Mixed Forests (MF) 1,031,372

Closed Shrublands (CS) 1,200

Open Shrublands (OS) 1,524,690

Woody Savannas (WS) 1,980,582

Savannas (S) 1,545,778

Grasslands (GL) 398,274

Permanent Wetlands (PW) 170,264

Croplands (CL) 13,004,394

Urban and Built-up Lands (UBL) 260,741

Cropland/Natural Vegetation Mosaics (CNVM) 468,773

Permanent Snow and Ice (PSI) 155,472

Barren (B) 4,714,146

Water Bodies (WB) 234,531

TABLE 2 Drought classification according to SPI values (Rousta et al.,
2020a; Rousta et al., 2020b).

Class Category

SPI≥2.00 Extremely wet

1.50 ≤ SPI<2.00 Very wet

1.00 ≤ SPI<1.50 Moderately wet

−1.00 ≤ SPI<1.00 Normal

−1.50 ≤ SPI<−1.00 Moderate drought

−2.00 ≤ SPI<−1.50 Severe drought

SPI<−2.00 Extreme drought

Frontiers in Environmental Science frontiersin.org05

Syed et al. 10.3389/fenvs.2022.832427

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


4 Results

Due to global warming, droughts have become more common

and severe in recent years. According to various studies,

precipitation is a predictor of the onset and persistence of

meteorological and other types of droughts. As a consequence,

precise precipitation observations at multiple temporal and spatial

scales are essential for assessing drought risk. Satellite-based

precipitation products offer an appealing alternative to rain gauge

observations, with significantly higher geographical resolution and

continuous spatial and temporal coverage than rain gauge data.

Because they bridge data gaps in remote places where traditional

rain gauge and ground radar readings are limited or unavailable,

these datasets enable worldwide precipitation monitoring and are

commonly used for diverse hydrological and climatic applications.

The accuracy of different satellite-based precipitation products

varies greatly depending on the working principle, sensor type,

electromagnetic spectrum range used in product generation

(microwave, infrared, visible, or combined range), number of

integrated observational networks, data processing algorithms,

and resampling techniques.

Drought conditions are identified using a variety of

indicators based on the divergence of meteorological variables

from the long-term average value. The Standardized

Precipitation Metric (SPI) is a compliance index proposed by

the World Meteorological Organization (WMO) for

meteorological drought assessment.

4.1 Performance evaluation of satellite
precipitation index

Using satellite precipitation products, a monthly

precipitation time series was produced. To determine the

degree of underestimation or overestimation of monthly

satellite precipitation data, the yearly average difference, as

well as the deviation, were computed. winter (DJF), spring

(MAM), summer (JJA), and fall (SON) seasons were

temporally aggregated to detect differences in seasonal inter-

relationship across satellite precipitation datasets from 1998 to

2021. A set of regularly used statistical metrics such as RMSE and

MAE were generated against CHIRPS data for a thorough

assessment of satellite-precipitation datasets (Table 2). The

average amount of predicted error between satellite

precipitation was calculated using RMSE and MAE.

4.2 Time series autoregressive integrated
moving average model development for
precipitation forecasting

There are four main processes to building an ARIMA model:

identification, estimate, diagnostic checking, and forecasting.

Forecasting via time series analysis, using the autoregressive

integrated moving average (ARIMA), has been identified as

one of the most efficient methods for predicting climate

change, and is characterised by broad use and adaptability.

Furthermore, the data required by ARIMA is less onerous

than that required by other approaches like as causal

modelling, best fitting the situation of hydro-meteorology and

CC parameters in data-sparse contexts. While ARIMA focuses

simply on the data itself rather than the data generating process,

the ARIMA family provides a simple and cost-effective

modelling method ideal for decision makers that need swift

short-term and informative forecasts.

In a propagative model, the seasonal ARIMA model

comprises both non-seasonal and seasonal features. From

2021 to 2040, the best-fit ARIMA models were used to

anticipate seasonal and yearly precipiaion data. From

1981 through 2020, the observed values were compared to the

projected values. The expected rainfall number shows a

significant result. Figures 2, 3 depict the anticipated and

observed time series, as well as the 95 percent confidence level

error bound.

Given the average monthly precipitation in the area, the

ARIMA model has been used to anticipate the future. Variance

was utilised to reduce linearity in a data trend while stabilising

variance. The most appropriate methodology and the one that

best represents the observed pattern were chosen using various

ARIMA orders. Two alternative values for the moving average

(q) and autoregressive (p) were determined based on ACF and

PACF observations, with differencing (d) of the first and second

levels. To determine which ARIMAmodel was the best for future

prediction among the others, the t-test was used. Table 3 displays

model values for various ARIMA orders for time series

anticipated for the period of 1981–2020. The best-fitting

ARIMA models were picked using the R-Studio forecast-

package to predict future precipitation in the area. The

ARIMA order (p,d,q) was incomparable for all studied

countries for much of the rainy season; nevertheless, Pakistan

and Afghanistan showed a significantly expanding trend in yearly

precipitation for the future.

The best-fit ARIMAmodels for yearly (Table 3) and seasonal

(Table 4) precipitation were assessed using SEA and country-

level information. To check that the models were operating

appropriately, the scientists forecasted the already known

CHIRPS precipitation datasets before projecting the

precipitation. The predicted values were substantially closer to

the actual data in Figure 2. Then, to improve accuracy,

forecasting was done for a period of 20 years Figures 3–7

show observed and simulated precipitation time series,

revealing that the modelled (ARIMA) and observed CHIRPS

are very similar. The yellow line represents the expected

precipitation, and the outcome shows that the forecasted data

follows the same trend as the monitored data and meets the basic

statistics.

Frontiers in Environmental Science frontiersin.org06

Syed et al. 10.3389/fenvs.2022.832427

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


4.2.1 Annual forecast
The implementation, as well as the findings achieved, are

discussed in the current section. With a similar data span of

1981–2020, the study was done on an annual and seasonal basis.

We were able to detect and anticipate precipitation trends using

R and SPSS technologies. An ARIMA model was used to

anticipate the future based on the area’s mean annual

precipitation. Differencing was used to stabilize variance while

removing linearity from a data trend. The most appropriate

model and the one that best represents the given pattern were

chosen using a variety of ARIMA orders. Table 3 shows the p

values for various ARIMA orders for the anticipated time series

from 1981 to 2020. All ARIMA models were significant within a

95 percent confidence interval corresponding p values, and these

findings were subsequently clarified by AIC/BIC values. Models

developed with the least AIC/BIC were selected to anticipate

future precipitation in the area. The absolute divergence among

witnessed and projected data, known as the mean absolute error,

was discovered on an annual basis which lowest in Afghanistan,

at 33.285 mm, and the highest in Pakistan, at 35.149 mm. It was

predicted that these two countries would receive more

precipitation than in previous years.

4.2.2 Seasonal forecast
As discussed earlier, ARIMA model was used to predict

variations in precipitation during recorded years (1981–2020).

A diagnostic testing approach in R-Studio was used to determine

the right ARIMAmodels for seasonal precipitation. Precipitation

projections for observed years validated the best-fit ARIMA

models, which were then used to estimate precipitation up to

2040 by estimating the future precipitation trend. In comparison

to other countries with a typical yearly precipitation trend,

Maynmar’s anticipated trend shows a high level of

precipitation (heavy rain) throughout the winter season.

Seasonal data reveals the several ARIMAmodels presented in

Table 4. Bangladesh and Sri Lanka were chosen as the countries

with the greatest inaccuracies. When employing mean seasonal

precipitation data, the findings of the ARIMA model at various

levels produced an acceptable absolute error.

5 Discussion

In this study, we analysed precipitation over Southeast

Asia using a newly created, finest and high-resolution

FIGURE 2
Comparison of ARIMA model results for country wise forecasting as well as for the whole SEA.

Frontiers in Environmental Science frontiersin.org07

Syed et al. 10.3389/fenvs.2022.832427

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


precipitation dataset. We investigated the relationships

between changes in precipitation and variations in large-

scale atmospheric and future changes in precipitation by

depicting the properties of precipitation in different

seasons. Numerous stochastic models were used to

anticipate precipitation, study seasonal variability, and

FIGURE 3
ARIMA Forecasting for time series annual mean precipitation for the study period.

TABLE 3 Model statistics for mean annual precipitation for the countries of SEA.

Number
of predictors

Model fit statistics Ljung-box Q (18)

Country Model
type

Stationary
R-squared

RMSE MAPE MAE Statistics Df Sig Number
of outliers

Afghanistan ARIMA
(5,0,3)

0 0.283 45.284 12.934 33.285 11.370 10 0.329 0

Bangladesh ARIMA
(5,0,0)

0 0.105 265.470 7.934 187.635 11.216 13 0.593 0

Bhutan ARIMA
(5,0,3)

0 0.300 81.901 6.857 58.173 10.885 10 0.367 0

India ARIMA
(4,0,3)

0 0.183 102.151 7.037 78.640 9.065 11 0.616 0

Myanmar ARIMA
(3,0,2)

0 0.240 149.726 5.666 116.324 30.638 13 0.004 0

Nepal ARIMA
(1,0,5)

0 0.275 143.452 7.478 102.950 10.869 12 0.540 0

Pakistan ARIMA
(1,0,2)

0 0.342 43.680 12.667 35.149 9.661 15 0.840 0

Sri Lanka ARIMA
(4,0,1)

0 0.303 265.707 10.482 183.986 9.980 13 0.696 0

Thailand ARIMA
(2,0,3)

0 0.195 150.303 6.831 110.077 9.209 13 0.757 0
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TABLE 4 Model statistics for mean seasonal precipitation for the countries of SEA.

Period Model
type

Number of
predictors

Model fit statistics Ljung-box Q (18) Number of
outliers

Country Stationary
R-squared

RMSE MAPE MAE Statistics Df Sig

Afghanistan spring ARIMA
(1,0,3)

0 0.204 26.304 18.589 19.362 13.303 14 0.503 0

summer ARIMA
(1,0,5)

0 0.107 1.977 9.593 1.341 8.575 12 0.739 0

fall ARIMA
(5,0,2)

0 0.200 8.982 23.501 6.091 7.980 11 0.715 0

winter ARIMA
(2,0,4)

0 0.085 31.548 24.288 23.965 5.185 12 0.952 0

Bangladesh spring ARIMA
(2,0,2)

0 0.048 102.802 16.211 74.926 18.532 14 0.184 0

summer ARIMA
(1,0,0)

0 0.021 175.610 10.035 131.750 7.591 17 0.975 0

fall ARIMA
(1,0,4)

0 0.095 129.923 17.596 87.575 8.574 13 0.804 0

winter ARIMA
(2,0,4)

0 0.104 10.293 27.611 7.874 10.018 12 0.614 0

Bhutan spring ARIMA
(1,0,2)

0 0.209 27.490 13.000 21.573 17.602 15 0.284 0

summer ARIMA
(1,0,5)

0 0.131 61.248 8.385 43.532 11.097 12 0.521 0

fall ARIMA
(0,0,2)

0 0.057 31.680 17.486 25.457 13.570 16 0.631 0

winter ARIMA
(5,0,2)

0 0.139 6.051 17.478 4.076 9.985 11 0.532 0

India spring ARIMA
(5,0,3)

0 0.272 14.428 9.566 10.955 11.080 10 0.351 0

summer ARIMA
(2,0,5)

0 0.255 64.239 6.718 46.297 10.289 11 0.505 0

fall ARIMA
(5,0,1)

0 0.093 50.059 13.530 36.529 6.455 12 0.891 0

winter ARIMA
(4,0,2)

0 0.161 5.678 10.930 4.167 13.560 12 0.330 0

Myanmar spring ARIMA
(1,0,4)

0 0.252 61.343 18.403 49.270 14.852 13 0.317 0

summer ARIMA
(3,0,2)

0 0.216 82.334 4.787 59.828 17.170 13 0.192 0

fall ARIMA
(3,0,3)

0 0.033 70.193 9.760 47.861 6.915 12 0.863 0

winter ARIMA
(0,0,3)

0 0.076 4.586 11.484 3.359 15.666 15 0.405 0

Nepal spring ARIMA
(5,0,1)

0 0.048 46.437 20.091 33.302 5.782 12 0.927 0

summer ARIMA
(1,0,4)

0 0.131 106.734 8.735 78.012 14.050 13 0.370 0

fall ARIMA
(5,0,0)

0 0.170 57.909 16.909 42.452 7.986 13 0.845 0

winter ARIMA
(5,0,2)

0 0.301 22.133 28.017 15.917 4.596 11 0.949 0

Pakistan spring ARIMA
(5,0,2)

0 0.429 14.985 16.114 10.207 4.826 11 0.939 0

summer ARIMA
(1,0,4)

0 0.043 34.611 24.932 27.561 9.008 13 0.772 0

fall ARIMA
(5,0,0)

0 0.168 10.787 20.833 7.392 7.299 13 0.886 0

winter ARIMA
(1,0,3)

0 0.215 15.594 24.021 11.888 6.345 14 0.957 0

(Continued on following page)
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forecast monthly/yearly precipitation over a specific

geographical area. Research about precipitation is intriguing

because of the challenges it raises, such as forecasting,

corrosion impacts, and climate variability, all of which have

been explored in diverse literatures (Ferm et al., 2006; Tzanis

and Varotsos, 2008). The study of Chin (Chin, 1977), reviewed

that the daily precipitation records for 25 years at more than

100 stations across the conterminous United States, the proper

Markov order characterizing the daily precipitation process

must be discovered and cannot be expected a predetermined.

TABLE 4 (Continued) Model statistics for mean seasonal precipitation for the countries of SEA.

Period Model
type

Number of
predictors

Model fit statistics Ljung-box Q (18) Number of
outliers

Country Stationary
R-squared

RMSE MAPE MAE Statistics Df Sig

Sri Lanka spring ARIMA
(3,0,0)

0 0.213 107.761 21.416 75.708 10.936 15 0.757 0

summer ARIMA
(1,0,2)

0 0.040 69.233 26.727 54.927 13.208 15 0.586 0

fall ARIMA
(1,0,1)

0 0.009 184.168 21.781 147.075 9.132 16 0.908 0

winter ARIMA
(0,0,4)

0 0.072 242.793 44.665 172.032 6.864 14 0.940 0

Thailand spring ARIMA
(0,0,2)

0 0.059 85.155 20.916 67.417 19.316 16 0.253 0

summer ARIMA
(3,0,2)

0 0.158 67.556 7.237 49.654 10.287 13 0.670 0

fall ARIMA
(3,0,3)

0 0.150 66.562 9.782 49.333 9.312 12 0.676 0

winter ARIMA
(5,0,3)

0 0.225 28.903 34.722 7.543 13.610 10 0.192 0

FIGURE 4
ARIMA Forecasting for time series spring mean precipitation for the study period.
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FIGURE 5
ARIMA Forecasting for time series winter mean precipitation for the study period.

FIGURE 6
ARIMA Forecasting for time series summer mean precipitation for the study period.

Frontiers in Environmental Science frontiersin.org11

Syed et al. 10.3389/fenvs.2022.832427

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.832427


The study of the possible presence of chaotic behavior in

precipitation time series has sparked a lot of attention recently

(Sivakumar, 2001). Various scientists (Islam and Sivakumar,

2002; Khan et al., 2005) have researched mathematical

techniques based on the theoretical notions underlying the

methodologies for detection and modeling of dynamical and

chaotic aspects within a hydrological time series. Although the

precipitation event is dependent on many dynamic and coupled

FIGURE 7
ARIMA Forecasting for time series fall mean precipitation for the study period.

FIGURE 8
Total annual precipitation in the SEA during 1981–2020 (black bars), with the linear trend line (red dotted line).
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processes, which necessitates very complicated coupled

simulation models for prediction, the ARIMA model was used

to produce a simple and reliable time series analysis. The

advantages of ARIMA over traditional statistical and

numerical weather prediction approaches have been discussed

by (Taneja et al., 2016; Kumar et al., 2021).

Much of the tropics and subtropics of the Eastern Hemisphere,

as well as a significant amount of the world’s population, are

influenced by the Asian monsoon circulation (Chattopadhyay,

2007). The southwest (summer) and the northeast (winter)

monsoons influence weather and climate between 30 N and 30 S

over the African, Indian and Asian land masses (Reddy and

Salvekar, 2003). The variability in the monsoon rainfall depends

heavily upon the sea surface temperature anomaly over the Indian

Ocean (Clark et al., 2000). The studied region is dependent on

agriculture for its major livelihood. The summer monsoon

(June–August) is the most productive period in SEA with

respect to its agricultural practices. Moreover, the conserved

rainwater for is used for future irrigation purposes. Therefore,

forecasting of annaual and seasonal precipipitation is necessary

for future agricultural and irrigation modelling over SEA. The Total

annual precipitation in the SEA during 1981–2020 (black bars), with

the linear trend line (red dotted line) has been manifested in

Figure 8.

The findings of gauge station data by Al Balasmeh et al. (2019)

revealed that the future trend shows that the high level (heavy rain) is

decreasing and low level (normal rain) is increasing, except in the

month of December, which shows an increasing trend. This observed

pattern warrants effective water management strategies for already

water-stressed area of Wadi Shueib catchment in Jordan. Feng et al.

(2016) used ARIMA model to predict the future pattern of annual

precipitation based onmonthly data, where the bestfit ARIMAmodel

has shown horizontal line based on minimum statistical measures

such as normalized to the mean of observed values.

According to the IPCC report, inter-seasonal, interdecadal,

and spatial variations in precipitation have been seen across Asia

in recent decades (Intergovernmental Panel on Climate Change,

2007). Even in Asia’s rainy and sub-humid regions, water scarcity

is a major impediment to long-term growth. Asia, on the other

hand, has a rapidly growing population, low levels of

development, and limited coping capacity. Climate change,

combined with other socioeconomic strains, is predicted to

exacerbate Asia’s water scarcity predicament. summer

precipitation is decreasing across the board in the mid-

latitudes, with the exception of eastern Asia, where it is

increasing. The research by Kim et al. (2011) compared the

last two decades of July mean intensity of precipitation with

IPCC, we observed a 28.4 mm lowering tendency for Mongolia,

but a rising trend for the rest of the countries. In South Korea, the

maximum trend of increasing precipitation was 71.5 mm in July.

Monthly precipitation data was being used byWang et al. (2014),

and the mean absolute value varied from 9.41 to 17.82. In the

northeast areas of India Murthy et al. (2018) carried out an

empirical study on seasonal monthly precipitation data. Similarly,

the ARIMA model has been utilised in a number of investigations

with the conclusion that it is both effective and useful (Chattopadhyay

et al., 2012). The present study assessed that in spring season, India

showed the MAE value at 10.955 mm and Pakistan showed

10.207mm the lowest of all. On the other hand, Afghanistan

portrayed the acceptable MAE in the summer and fall seasons.

Moreover, precipitation patterns varied across the region and

were strongly linked to drought occurrences and land use

changes. Precipitation changes appeared to be connected to

other climate occurrences, such as EL Niño. Further, rainfall

found to be the most strong force driving naturally vegetated

regions and rainfed croplands, whereas land use management

showed to be the most influential in irrigated agricultural areas.

This research concentrated on the key agricultural countries

of Southeast Asia. India is the world’s second-largest country,

behind the United States, with 160 million hectares of

agricultural land, accounting for almost 60% of total land

area. Pakistan has around 23.3 million hectares of agricultural

land, accounting for 20% of its total land area. Bangladesh has

9.5 million hectares of agricultural land, whereas Afghanistan has

8 million hectares. Agriculture affects over 70% of the total

population, either directly or indirectly. It is vital to people’s

lives, livelihoods, and economies. The primary source of revenue

is agronomy, which is dependent on precipitation. Agriculture

contributes 29.9% of Afghanistan’s GDP, whereas Pakistan,

India, and Bangladesh each contribute 21.2%, 17.7%, and

18.6%, respectively. This region has a wide variety of climatic

zones, including arid, drylands, and deserts, tropical and

subtropical, humid, alpine, and mountain environments.

5.1 Probability distribution function of
actual and predicted precipitation values

Figures 9–13 shows the probability density function (PDF)

of the precipitation at annual and seasonal scales during

1981–2020 over different countries of SEA. It has been

used to estimate the positive and negaive shifts of

precipitation values along time. Moreover, the density

showed the occureence of vales either they have a

maximum or minimum movement. The analysis was

conducted on the whole period between observed and

modelled values of precipitation (Ullah et al., 2019).

The PDF of annual precipitation (Figure 9) shows a major

positive shift in all countries, with maximum density during the

last in predicted precipitation of the study period. Interestingly,

the distribution of predicted precipitation was almost similar in

all regions, which indicates a uniform increase in precipitation

throughout the study period. Whereas, the higher density of

actual precipitation in the Afghanistan and Sri Lanka suggests

that these study region has experienced a relatively higher

frequency of precipitation during the studied period.
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For seasonal precipitation during spring (Figure 10), the

PDF followed the pattern of seasonal precipitation; however,

the density moments exhibit asymmetric changes in most of

the countries. The highest (lowest) density for predicted values

can be found in the Pakistan and Myanmar, indicating a

higher (lower) frequency of precipitation. The uneven

density of precipitation in actual vales confirms that the

frequency of precipitation was highly divergent during the

study period. It is worth mentioning that the actual

precipitation has shown a more positive movement in all

countries, which indicates a higher amount of precipitation

than the predicted values.

The PDF of summer precipitation (Figure 11) exhibits an

asymmetrical pattern with the highest density in Bhutan in the

predicted precipittaion, whereas, the actual precipitation shwed the

low denstites and lowest density was found in Bangladesh. In terms

of distribution, almost all of the actual precipittaion values have been

moved toward the right side; however, the highest positivemove was

found in Sri Lanka and Thailand, while the predicted values showed

the least positive move in almost all countries.

In the PDF of fall precipitation (Figure 12), the density and

distribution moments of precipitation are relatively high for the

predicted precipitation during the selected time period. Overall,

the actual precipitation values exhibited the lowest densities

along with a positive shift in all countries, which indicates

that the study region experienced frequent and intense

precipitation during the fall season.

The PDF showed a slightly different pattern in actual

precipitation values over the winter season (Figure 13). The

findings reveal that the densities of the selected iterations were

similar; however, their distributions were slightly different,

indicating that the regions received different amounts of

precipitation. In the actual values, the maximum density may

be found in Nepal and India, whereas the predicted values show

the highest density but a less positive shift.

The overall results from Figures 9–13 show that the study

region had the highest expected densities but the most positive

shifts in actual precipitation values, implying that the study

region had experienced numerous and severe precipitation

episodes. In general, the Fall season has seen the lowest

frequency of precipitation in actual values compared to

predicted values, showing a decrease of model similarity.

When comparing the modelled values to the observed data,

the presented conclusions are useful.

5.2 Impacts of precipitation on drought

Several attempts were made to compare satellite precipitation

products with data from the ground. Recently, Dandridge et al.

FIGURE 9
Probability distribution function of annual actual and predicted precipitation values during 1981–2020.
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FIGURE 10
Probability distribution function of spring actual and predicted precipitation values during 1981–2020.

FIGURE 11
Probability distribution function of summer actual and predicted precipitation values during 1981–2020.
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FIGURE 12
Probability distribution function of fall actual and predicted precipitation values during 1981–2020.

FIGURE 13
Probability distribution function of winter actual and predicted precipitation values during 1981–2020.
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(Dandridge et al., 2019), statistically evaluated the CHIRPS data

at various temporal scales in the Lower Mekong River basin

(LMRB) over SEA for drought assessment. SPI is extensively used

to assess various aspects of drought events including frequency

(McKee et al., 1993), intensity (Naresh Kumar et al., 2009),

spatio-temporal distribution (Umran Komuscu, 1999; SIRDAŞ

and Sen, 2003), and forecasting (Pandey et al., 2020).

This could be the first study in Southeast Asia to analyze

precipitation products to monitor and forecast drought dangers

in nine distinct countries where drought is a common

phenomanon. The performance of new widely used satellite-

derived precipitation products with long-term histories, such as

CHIRPS, was evaluated in this work. These assessments are

carried out to promote the use of satellite precipitation

products in hydro-meteorological, agricultural, natural-

hazards, and other studies and planning. The assessment was

done monthly. The evaluation also includes a drought index,

known as the Standardized Precipitation Index (SPI). The SPI-12

for SEA has shown in Figure 14 during the period 1981–2020 by

using CHITPS datasets.

The ARIMA model was used to project the SPI for

drought hazard preparedness in the research region

utilising the SPI time series analysis. Although the

precipitation event is dependent on many dynamic and

coupled processes, which necessitates very complicated

coupled simulation models for prediction, the ARIMA

model was used to produce a simple and reliable time

series analysis. Previous research investigated the ARIMA

model’s suitability for drought time series forecasting. With

CHIRPS data, MAPE, and RMSE values were detected.

The relatively good results of CHIRPS are most likely

owing to its higher spatial resolutions (0.05°) and integration

of additional in-situ data in a two-phase process with high-

resolution climatology and multi-satellite outputs in a two-

phase process. Depending on the data processing technology

used, it may be suggested that higher resolution data is

proportionate to accuracy (Dandridge et al., 2019). This

study shows that CHIRPS precipitation can be utilized as

an alternative to station data for studying hydro-

meteorological phenomena including long-term drought

assessment at a local scale, and that it is suited for the

ungagged basin.

6 Conclusion

An ARIMA model was created for this research. The presented

model produces a reasonable outcome when comparing observed

and predicted values with a 95 percent confidence level. As a result,

this model may be useful in determining a future strategy for SEA in

terms of precipitation fluctuation. According to statistical

performance assessed from 1981 to 2020, the high resolution

(0.05°) CHIRPS data were the most suitable for precipitation

forecasting. It was discovered that SEA’s annual precipitation will

rise from 2021 to 2040, as predicted. In Afghanistan and Pakistan,

the annual precipitation shows a stronger trend of increasing

precipitation, with RMSE values of 45.284 and 43.680 mm,

respectively.

The highest fluctuating trend has been observed in the winter

season of SEA precipitation in the coming years. In the spring

season, India showed the MAE value at 10.955 mm and Pakistan

showed 10.207 mm the lowest of all. On the other hand,

Afghanistan portrayed the acceptable MAE in the summer and

fall seasons. The study’s findings can be extended to other places

FIGURE 14
SPI-12 for SEA during 1981–2020.
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with similar hydro-climatic circumstances for sustainable water

resource management, crop planning, food security, and other

watershed management-related activities. Predicting the future

patterns will assist scientists and policymakers in establishing

effective and efficient flood prediction, urban planning, and

environmental planning techniques.

The probability density function (PDF) of precipitation at

annual and seasonal scales over countries wise data in SEA was

used during 1981–2020. The findings indicates that the fall season

showed the lowest densities along with a positive shift in all countries

in actual precipitation values. Actual values show the highest density

during the winter season in Nepal and India, whereas predicted

values show the highest density but a lesser positive shift.

In numerous disadvantaged drought-prone and

economically poor regions, such as SEA, drought

monitoring and evaluation is limited. The results of such

investigations are exaggerated due to a lack of sufficient

and reliable rain gauge station data. The effectiveness of

satellite-derived precipitation products in monitoring and

forecasting drought episodes in nine Southeast Asian

countries was investigated in this study. Droughts have a

significant impact on rainfed agriculture-dependent

countries in Southeast Asia, which has worsened due to

poor management methods and water constraint.
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