
Trait-Based Model Reproduces
Patterns of Population Structure and
Diversity of Methane Oxidizing
Bacteria in a Stratified Lake
Matthias Zimmermann1,2, Magdalena J. Mayr1,2†, Damien Bouffard1, Bernhard Wehrli 1,2 and
Helmut Bürgmann1*

1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters—Research and Management,
Kastanienbaum, Switzerland, 2Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

In stratified lakes, methane oxidizing bacteria are critical methane converters that
significantly reduce emissions of this greenhouse gas to the atmosphere. Efforts to
better understand their ecology uncovered a surprising diversity, vertical structure, and
seasonal succession. It is an open question how this diversity has to be considered in
models of microbial methane oxidation. Likewise, it is unclear to what extent simple
microbial traits related to the kinetics of the oxidation process and temperature optimum,
suggested by previous studies, suffice to understand the observed ecology of methane
oxidizing bacteria. Here we incorporate niche partitioning in a mechanistic model of
seasonal lake mixing and microbial methane oxidation in a stratified lake. Can we
model MOB diversity and niche partitioning based on differences in methane oxidation
kinetics and temperature adaptation? We found that our model approach can closely
reproduce diversity and niche preference patterns of methanotrophs that were observed in
seasonally stratified lakes. We show that the combination of trait values resulting in
coexisting methanotroph communities is limited to very confined regions within the
parameter space of potential trait combinations. However, our model also indicates
that the sequence of community assembly, and variations in the stratification and
mixing behavior of the lake result in different stable combinations. A scenario analysis
introducing variable mixing conditions showed that annual weather conditions and the pre-
existing species also affect the developing stable methanotrophic species composition of
the lake. Both, effect of pre-existing species and the environmental impact suggest that the
MOB community in lakes may differ from year to year, and a stable community may never
truly occur. The model further shows that there are always better-adapted species in the
trait parameter space that would destabilize and replace an existing stable community.
Thus, natural selection may drive trait values into the specific configurations observed in
nature based on physiological limits and tradeoffs between traits.
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INTRODUCTION

In recent years, considerable efforts have been made to better
understand the ecology of methane oxidizing bacteria (MOB) in
lakes. MOB are a diverse group of mainly Alpha- and
Gammaproteobacteria that have the unique ability to use
methane as their sole carbon and energy source (Hanson and
Hanson, 1996). In lakes, these bacteria are an important sink for
methane and significantly reduce methane emissions to the
atmosphere (Kankaala et al., 2006; Conrad, 2009; Schubert
et al., 2012; Zimmermann et al., 2021). This is a crucial
process, as lake sediments are an important source of
methane. Despite the activity of MOB, methane emission from
lakes is responsible for about 75% of the emission of greenhouse
gases from lacustrine systems (DelSontro et al., 2018) and its total
emissionmight even offset the continental carbon sink (Bastviken
et al., 2011). In seasonally or permanently stratified lakes with an
anoxic hypolimnion MOB are found within the entire water
column (Kojima et al., 2009; Tsutsumi et al., 2011; Mayr et al.,
2020c). During stratification, methane oxidation strongly limits
diffusive methane losses from such lakes. However, ebullition
presents a shortcut to the atmosphere that allows significant
amounts of methane to escape and often represents the dominant
emission pathway, accounting for between 60% and 70% of total
global emissions from lakes and reservoirs (DelSontro et al.,
2018). The losses of stored methane during lake turnover
appear to be again strongly limited by methane oxidation
(Zimmermann et al., 2021).

Recent studies have brought to light the intriguing diversity,
vertical structure and seasonal succession of MOB in stratified
lakes (Mayr et al., 2020a, Mayr et al., 2020c; Reis et al., 2020;
Rissanen et al., 2020; Martin et al., 2021). The fact that all MOB
rely on methane and oxygen as primary resources, raises the
question of how diversity within this functional group is
maintained despite Hardin’s competitive exclusion principle
(Hardin, 1960). This is analogous to the situation of
phytoplankton, which has been the inspiration of much
research and the subject of much debate among ecologists
as the “paradox of the plankton” (Hutchinson, 1961). For
plankton, many explanations have been proposed, ranging
from niche partitioning (Salcher, 2013), selective grazing
and chaotic fluid motion to a dominance of stochastic
processes (i.e., neutral theory) and many more (Roy and
Chattopadhyay, 2007; Record et al., 2014). While we thus
have a comprehensive general understanding of the
ecological mechanisms that limit the competitive exclusion
principle (Chesson, 2000; Maynard et al., 2020), the case of
MOB diversity has not been thoroughly studied, and we
propose that they can be an interesting test case for
ecological theory. The potential for using trait-based
approaches in prokaryotic microbial ecology has been
highlighted (Martiny et al., 2015), noting in particular that
many traits appear to be phylogenetically conserved, so that
traits can frequently be related to taxonomic identities.

In our recent publications we have suggested that niche
partitioning (species sorting) can at least partly explain the
vertical (spatial) structuring of MOB in lakes (Mayr et al.,

2020c) and that environmental drivers also partly explain
temporal variability (Guggenheim et al., 2020). MOB niches
may derive from various adaptations in MOB to temperature
regimes and nutrient conditions, but also to the availability of the
main substrate, i.e., through enzymes with variable substrate
affinity or complementary metabolic costs. In MOB, there is a
considerable body of evidence that adaptations to substrate
availability plays a role for their ecology. MOB isolates are
known to have a range of different affinities to methane
(Knief and Dunfield, 2005; Dam et al., 2012) with high-affinity
variants being able to oxidize methane at very low (e.g.,
atmospheric) levels. The particulate and soluble forms of
methane monooxygenase (pMMO and sMMO) also differ in
their kinetic properties, with sMMO exhibiting a lower methane
affinity. Our previous research showed that both the observed
vertical structures and seasonal succession of MOB community
composition in a stratified lake were accompanied by differences
in the methane oxidation kinetics (Mayr et al., 2020b) and
potentially also temperature adaptation (Mayr et al., 2020a).
Among the patterns observed in MOB populations were
discrete population maxima above, within and below the
oxycline under stable stratification (Mayr et al., 2020a), as well
as in the epilimnion and anoxic hypolimnion (Guggenheim et al.,
2020); on the temporal scale, succession and blooming of
previously rare MOB taxa was observed during the autumn
lake mixing (Mayr et al., 2020a). Statistical analyses of driving
factors consistently pointed to the importance of the methane
gradient and temperature, although other environmental factors
as well as ecological interactions may play a role as well
(Guggenheim et al., 2020).

In Zimmerman et al. (2021), we built a model to evaluate how
MOB limited outgassing in seasonally stratified lakes during fall
turnover. The approach was based on a mechanistic model to
assess the dynamical development of the MOB biomass. Here, we
build on this work to develop a trait-based model for MOB in a
stratified lake. Trait-based models have a rich, yet recent, history
in phytoplankton ecology (Litchman and Klausmeier, 2008) and
were originally developed primarily to understand patterns of
niche differentiation and diversity. The potential of such models
to also improve our mechanistic understanding of
biogeochemical processes has also been highlighted (Litchman
et al., 2015; Zakharova et al., 2019). Traits that regulate both
responses and effects are an interesting target for modeling. As a
response trait, methane oxidation provides a growth advantage
where methane is an abundant or perhaps the only available
source of energy and carbon; and as an effect trait it may alter the
availability of methane and oxygen in the system. On the other
hand, pure response traits like temperature growth optima may
still be related to biogeochemical effects if they are correlated with
response traits. A key element of trait-based models is the concept
of trade-offs between traits, i.e., limitations in the ability of
organisms to optimize trait combinations arbitrarily. In lakes,
trait-based models of MOBmostly followed a statistical approach
to explain environmental drivers affecting MOB (Thottathil et al.,
2019; Reis et al., 2020). Our approach instead follows an
equation-based approach to study the diversity of MOB in a
stratified lake.
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Our previous work suggested that methane affinity and
temperature growth optimum might be among the most
important traits of MOB in stratified freshwater lakes. We
here explored with the first trait-based mechanistic model of
microbial methane oxidation, to what extent a model based on a
minimal set of traits, i.e., just the twomain parameters of methane
oxidation kinetics and temperature optima, can reproduce
observed patterns of MOB diversity. The microbial growth
model specifically considers Monod-type methane oxidation
kinetics associated with MOB “species” with three independent
traits as suggested in Mayr et al. (2020a), Mayr et al. (2020c):
maximum growth rates, methane half-saturation constants of the
Monod-type kinetics and temperature dependence of methane
oxidation. In order to limit complexity in this first attempt, we
neglect further potential traits (such as kinetic or inhibitory
effects of oxygen) as well as environmental drivers such as
(micro) nutrient concentrations.

We further combine a 1D physical lake model with a simplified
biogeochemical model for oxygen andmethane to provide a realistic
simulated lake environment. This model was developed with data
available for Rotsee, a small, shallow, seasonally stratified eutrophic
lake near the city of Lucerne, Switzerland. Our data and the modeled
dynamics include the seasonal mixing of the lake as previously
described (Schubert et al., 2012; Mayr et al., 2020a; Zimmermann
et al., 2021). The model thus couples the trait-based approach
directly with a physical and biogeochemical model of the lake’s
temperature and methane dynamics.

We then explored whether simulated MOB communities with
species based on the three kinetic traits can qualitatively
reproduce stable niche differentiation over the simulated
vertical and temporal gradients of temperature, methane and
oxygen of Rotsee simulated over several years. We assembled
communities of 2, 3, and 4 species starting from trait
combinations actually observed in the MOB populations of
Rotsee. We explore the stability of such communities against
new species with different trait combinations and changes in the
simulated lake environment. Finally, we explore the
spatiotemporal abundance patterns of the simulated species
and compare them with observed population patterns.

METHODS

Basic Structure of the Physical and
Biogeochemical Model
Our first objective was to reproduce the temporal evolution of the
thermal structure in the water column of Lake Rotsee to derive
physical parameters such as time and space varying temperature
and vertical diffusion as well as dissipation coefficient. For this
purpose, we calibrated the physical lake model Simstrat version
2.1.2 (Gaudard et al., 2019) to temperature observations in Lake
Rotsee, Switzerland, that were available for multiple years.
Assuming that we can neglect feedback of chemical and
biological processes in the lake on the physical processes, we
used this calibrated physical model to pre-calculate the physical
framework of our biogeochemical model and thereby improved
its computational efficiency.

Our second objective was to build a simple biogeochemical
model that would on the one hand reproduce the concentrations
of methane and oxygen, i.e., reproduce the observed seasonal
dynamics of the biogeochemical boundary conditions for
methane oxidation. On the other hand, we use this model of
the lake to explore the population dynamics of different “species”
(trait combinations) of methane oxidizing bacteria, and the
conditions for stable coexistence of multiple species.

The model that we used for this second objective is based on
the classical reaction-diffusion equation:

ztu � D2u + R(u) (1)
where u is the vector of concentrations, R(u) describes the local
reaction kinetics and D is the diagonal turbulent diffusion
coefficient matrix. For numerical integration, we used a finite
volume discretisation method that takes into account the lake
bathymetry with a Crank-Nicolson integration scheme with
Neumann boundary conditions (Moukalled et al., 2015). Areas
A and volumes V for each grid cell of the finite volume
discretization were derived from the lake bathymetry
(Zimmermann et al., 2021). Numerical discretization and
integration was implemented in Julia 1.2 (Bezanson et al.,
2017) and is available on GitHub (see Data Availability
Statement).

Using this diffusion-reaction system, we modelled methane,
oxygen, and MOB species concentrations in the water column.
The diffusion-coefficients were pre-calculated with the above
mentioned physical model. Simulations were performed with a
spatial resolution of 10 cm and time steps of 15 min. We used the
same diffusion-reaction equation to model concentrations of
organic matter, methane and oxygen in the sediment. For the
sediment, the diffusion-coefficient was taken from available
literature as described below (see section “Methane Production
in the Sediment”). The complete set of additional processes that
are part of the termR(u) as well as the needed parameters (Tables
1, 2) are discussed below. For a full set of equations, see
Supplementary Methods S1.

Gas Exchange With the Atmosphere
We modelled the exchange of methane and oxygen with the
atmosphere with the boundary layer model of Liss and Slater
(1974).

Fatm � k(C − Ceq) (2)
where Fatm is the flux into the atmosphere, C is the surface water
concentration, Ceq is the equilibrium concentration and k is the
transfer velocity. The temperature dependence of solubility of O2 and
CH4 were considered.We used the surface-renewalmodel to calculate
the transfer velocity based on the dissipation of turbulent kinetic
energy (Zappa et al., 2007; MacIntyre et al., 2010; Read et al., 2012):

k � η(ϵ])1/4Sc−n (3)
where ϵ is the rate of dissipation of turbulent kinetic energy near
the air-water interface, ] is the kinematic viscosity, and η is an
empirically derived, depth-dependent scaling coefficient. For this
conceptual model, η was set to 1/(2π) based on theoretical
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considerations (Soloviev et al., 2007). The rate of dissipation ϵwas
pre-calculated for each time step by the physical model. We
determined the Schmidt number Sc for methane and oxygen with
an exponent of n � −1/2 (Wanninkhof, 2014).

The exchange of methane and oxygen with the atmosphere
was implemented as a reaction term in the topmost cell of the
spatially discrete diffusion-reaction system. Primary production
was not considered, which is a deliberate simplification.

Water Column Oxygen Depletion
For eutrophic lakes in Switzerland, an average areal oxygen
depletion rate in the water column of 0.9 g O2 m−2 d−1 has

been estimated (Müller et al., 2012). With an estimated
sediment surface area of 0.49 km2 and a total volume of
0.0044 km3, we assumed a water column biochemical oxygen
demand (WBOD) of 3,190 μmol O2 m

−3 d−1. The water column
biochemical oxygen demand was modelled as a constant reaction
term in the diffusion-reaction system throughout the water
column.

Methane Production in the Sediment
The methane production and flux from the sediment was
parameterized with a simplified sediment model using a
constant sedimentation velocity FOM,sed of organic material,

TABLE 1 | Set of the parameters used in the physical model.

Model aspect Parameter Value Description Reference

Physical model (Simstrat) a_seiche 0.0038 fraction of wind energy to seiche energy calibrated
qNN 0.7 fit parameter for distribution of seiche energy calibrated
C10 F(wind) wind drag coefficient Wüest and Lorke (2003)
f_wind 0.5 fraction of forcing wind to wind at 10 m (W10/Wf) calibrated
p_radin 0.99 fit parameter for absorption of IR radiation from sky calibrated
p_windf 1.04 fit parameter for convective and latent heat fluxes calibrated
Albsw 0.018 albedo for reflection of short-wave radiation calibrated
Absrp 0.44 light absorption coefficient calibrated

TABLE 2 | Set of the parameters used in the biogeochemical model.

Model aspect Parameter Value Description References

Sediment
model

ksed 1.8 × 10−5 m s−1 apparent sediment/water transfer velocity. Fitting parameter calibrated

D 12 × 10−6 m2 h−1 sediment diffusivity Hofman et al. (1991)
FOM,sed 41 mmol C m−2 d−1 sedimentation rate of organic matter calibrated (Fiskal et al., 2019)
Vmax,sed 36 days−1 maximum rate of methane production in the sediment calibrated
KI,O2 ,sed 50 nM monod type inhibition constant of methane production by

oxygen
calibrated

Water column WBOD 3,190 μmol O2 m−3 d−1 oxygen consumption rate Müller et al. (2012)
k 3.4 × 10−6 ± 1.41 ×

10−6 m s−1
piston velocity 1-D physical model

Growth model Vmax 0.09–2.2 days−1 maximum growth rate Hanson and Hanson (1996),
Knief and Dunfield (2005),
Baani and Liesack (2008),
Lofton et al. (2014),
Milucka et al. (2015), Brand et al.
(2016),
Mayr et al., 2020a), Mayr et al. (2020c)

KM,CH4 0.1–300 μM monod constant for methane Hanson and Hanson (1996),
Knief and Dunfield (2005),
Baani and Liesack (2008),
Lofton et al. (2014)

KM,O2 0.3 μM monod constant for oxygen this study (Milucka et al., 2015;
Oswald et al., 2015)

KI,O2 200 μM monod type growth inhibition constant by oxygen this study (Thottathil et al., 2019)
Temperature dependence of rMOX Ratkowsky et al. (1983)

Tmin 1–12°C minimum growth temperature
Topt 5–25°C optimal growth temperature
Tmax 11–55°C maximum growth temperature
yCCE 0.3 carbon conversion efficiency Leak and Dalton (1986)
manox 0.0024 days−1 mortality without oxygen Roslev and King (1995)
mox 0.022 days−1 maximum mortality with oxygen Roslev and King (1995)
Kmo,O2 100 μM monod type saturation constant for oxygen dependency of

mortality
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a methane production velocity Vmax,sed that is oxygen
inhibited (KI,O2) and limited by the availability of organic
material and an apparent constant exchange velocity with the
water column (Supplementary Method S1). The input of
organic matter to the sediment was implemented as
reaction terms in the top-most cell of the sediment.
Likewise, the exchange of methane and oxygen with the
water column was added as a reaction term in the top-most
cell of the sediment as well as the deepest cell of the water
column. Temperature effects were not considered for this term
as temperature fluctuations in the sediment are rather small
and the effect of oxygen was assumed to be more important.

Growth Model for MOB
We assumed that methane oxidation rates were limited by
methane, oxygen and temperature (Mayr et al., 2020a, Mayr
et al., 2020c; Zimmermann et al., 2021). We used a Monod
kinetics to describe limitation by methane. For oxygen, we
assumed that MOB were able to grow at nanomolar oxygen
concentrations (Milucka et al., 2015; Oswald et al., 2015)
according to a Monod kinetics but were inhibited at higher
oxygen concentrations (Thottathil et al., 2019). The sensitivity
of pMMO to oxygen has been shown on isolated and purified
enzymes and is most likely related to copper oxidation
(Nguyen et al., 1998). We used a Ratkowski 2 model to
formulate the temperature dependence of the methane
oxidation rate (Ratkowsky et al., 1983). To our knowledge,
there is no evidence on the exact shape of the temperature
dependence of MOB growth rates but Ratkowski’s growth rate
model provides a common approach that has been
successfully applied to describe the temperature
dependence of a variety of bacterial species (Longhi et al.,
2017). The combination of the three limiting factors leads to
the following set of equations:

rMOX � Vmax(T) [CH4]
[CH4] +KM,CH4

[O2]
[O2] +KM,O2

KI,O2

[O2] +KI,O2

(4)

Vmax(T) � (b(T − Tmin)(1 − exp[c(T − Tmax)]))2 (5)
whereKM,CH4 is the half-saturation constant for methane, Tmin

and Tmax are the minimum and maximum temperature at
which the methane oxidation rate is zero. By solving the first
derivative of Eq. 5 at Topt, i.e., where Vmax(T) has its
maximum and the derivative is zero, we can calculate the
coefficients b and c from the four parameters Tmin, Tmax, Topt

and Vmax(Topt):
c � [TminLambertW(γ) − ToptLambertW(γ) + Topt − Tmax]/[(Tmin − Topt)(Topt − Tmax)] (6)

γ � −exp(Tmax − Topt

Tmin − Topt
)(Tmax − Topt)/(Topt − Tmin) (7)

b �
��������������������������������������������
Vmax/((Tmin − Topt)2 · (exp(c · (Topt − Tmax)) − 1)2)√

(8)

where LambertW is the inverse function of f(x) � xex.

Furthermore, we assumed that growth rates are directly
proportional to methane oxidation rates, and we used typical
values for the carbon use efficiency yCCE (Leak and Dalton, 1986)
as the fraction of oxidized methane that is incorporated into
biomass. The growth rate rMOB is therefore only a fraction of the
methane oxidation rate:

μMOB � yCCE · rMOX −m (9)
Mortality m was estimated from published laboratory

experiments (Roslev and King, 1995) and was divided into a base
mortality manox and an additional oxygen-dependent component:

FIGURE 1 | Visualization of the methodological approach to analyze
coexistence patterns in the model. (A) The 3-dimensional space of potential
trait values for MOB is depicted as a cube. The range of trait values was
derived to include trait values measured in Lake Rotsee (Mayr et al.,
2020b). The affinity for methane is shown as the half-saturation constant for
methane (high affinity = low KM). The maximum growth rate is shown as
doubling time. Most of the measured MOB assemblages in Lake Rotsee
(shown in black) showed adaptation to low temperatures of 5–8°C and had
slow methane oxidation rates of about 60 pmol cell−1 d−1 (full list of trait values
in Supplementary Table S1). A single assemblage was abundant at higher
temperatures of 16°C. However, we only have trait measurements of MOB
assemblages from October to December, and we expect that there could be
more trait combinations with adaptation to higher temperature earlier in the
year and the range was accordingly set from 5 to 25°C. Similarly, other trait
ranges were set somewhat in excess of measured trait combinations of
assemblages, taking into account that traits of individual species can be
averaged out in the assemblages (B) The stability index of a single species was
calculated based on the difference between the yearly cumulative abundance
in the fifth and seventh year of simulation. Lines illustrate the abundance of
different MOB species in the model. The species in blue illustrates a species
with a stable abundance after the initial “burn-in” phase. The species in pink
illustrates an unstable species with decreasing concentrations. Another
unstable species with increasing concentration is shown in grey.
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m � manox +mox
[O2]

[O2] +Kmo,O2

(10)

Model Calibration
To calibrate the physical and biogeochemical model, we used
PEST version 1.4 (Doherty, 2015). Meteorological data for the
physical model were obtained from MeteoSwiss (see Data
Availability). The primary calibration target was to reproduce
available temperature profiles from 2014 to 2017. To calibrate the
sediment model, we used seasonal methane profiles from 2016
(Mayr et al., 2020a; Zimmermann et al., 2021).

Mapping and Analysis of the Trait Space
and Coexistence Patterns
Based on our hypothesis that methane oxidation kinetics and
temperature adaptation are the main driver for niche partitioning
of MOB in stratified lakes, we described each MOB species by
three traits that form a three-dimensional trait space T
(Figure 1A): its optimal temperature range, its affinity for
methane and its maximum growth rate. Each point in this
trait space T corresponds to a unique trait combination that
describes a potential MOB species in the lake.

We used the above described biogeochemical model to explore
the abundance and coexistence of single MOB species from the
trait space T or whole communities of MOB species (multiple
points in T). Based on preliminary explorations of the burn-in
time of the model, we ran simulations for 7 years to allow the
MOB species to establish their niches. For our simulation, we
chose the meteorological forcing of a specific year and repeated
these conditions in every year of the simulation. We thus
simplified the problem by removing interannual variability and
thereby focus on the development of population structure under
realistic, but defined seasonal variations. For each species, we
computed the annual cumulative abundance by simply adding up
over depth and time.

To track survival or disappearance of species and long-term
stability of the community, we defined a set of criteria. A species
was considered a reoccurring member of the community if its
annual cumulative abundance reached at least 103 cells in the last
year of the simulation. For recurring members, we defined a
stability index Si where the stability Si of a species i was calculated
as the relative change of the cumulative abundance from year 5 to
year 7 (Figure 1B):

Si � |A7 − A5|
A7 + A5

(11)

This index was chosen as a simple proxy for stability that
meets the following criteria: 1) the values range from 0 to 1, where
0 means stable (no change in abundance from year 5 to year 7)
and 1 means unstable (extinction or infinitely many cells), and 2)
the index is computationally efficient. If the simulation contained
more than one species, we used the maximum value of all
individual stabilities as the stability of the whole community.
For a community, an overall stability index close to 0 indicates

stable coexistence, whereas an overall stability index close to 1
indicates unstable coexistence.

To find and analyze trait combinations in multi-species
communities that result in a stable coexistence, we generated
maps of the stability index. To do so, we normalized each trait
dimension (i.e., temperature optimumTTopt , affinity for methane
TKM andmaximum growth rate TVmax) and analyzed coexistence
patterns in this normalized 3-dimensional trait space T
(Figure 1A). The transformation from the normalized space T
into actual trait values was performed as follows:

Topt � 15 + 10 ·⎧⎨⎩ (TTopt − 0.5)2TTopt ≥ 0.5(TTopt · 2 − 1)TTopt < 0.5
[°C] (12a)

Tmin � 7 +⎧⎨⎩ 5 · (TTopt − 0.5)2TTopt ≥ 0.5

6 · (TTopt · 2 − 1)TTopt < 0.5
[°C] (12b)

Tmax � 33 + 22 ·⎧⎨⎩ (TTopt − 0.5) · 2TTopt ≥ 0.5(TTopt · 2 − 1)TTopt < 0.5
[°C] (12c)

KM � 10(2.5−3.5·TKM) · 1000 [μmolm−3] (13)
Vmax � (0.1 + 1.9 · TVmax) · 10−5 [s−3] (14)

Note, that KM is normalized logarithmically while Topt and
Vmax were normalized linearly. Equations 12b, 12c describe our
assumption on how temperature minimum and temperature
maximum are situated around the temperature optimum. To
our knowledge, there is no comprehensive dataset to derive this
dependency and the two equations remain pragmatic
assumptions.

We subdivided the normalized trait space into a grid with a
resolution of 0.05 normalized trait units in every dimension. Each
grid point in this trait space denotes a potential trait combination.
The stability of a given point (a species) in T can be determined in
isolation (single species) or tested in the presence of a community
of n other species with different trait combinations.

In a first set of numerical experiments, we explored the
stability of trait combinations and community compositions in
an iterative way. For this purpose, we introduce the following
nomenclature: Tn denotes the stability pattern of a whole
community with n species that are known to be in a stable
configuration and one additional species (n + 1). This allowed us
to determine if the addition of a new species destabilizes a
community that is otherwise stable, or if the new species can
coexist with the previously stable community. For example, in T0

every grid point denotes the stability of a single species with the
trait combination at that specific grid point. In T1, every grid
point denotes the stability of the coexistence of the species at the
grid point with a previously chosen, stable species from T0. This
allowed us to start out with a single stable species and iteratively
explore which other species we can add to compose more and
more complex stable communities.

In a second set of numerical experiments, the focus was on the
effect of an additional species on a community that is known to be
stable. According to the same principle, we define Pn as the
stability pattern of only the already known, stable community
with n species, when an additional species (n + 1) from the grid is
added (i.e., without taking the stability of the added species into
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account). For example, in P3 every grid point denotes the stability
of the previously stable community of three species after addition
of a fourth species with the trait combination at the grid point.
The resulting stabilities associated with every grid-point in the
trait spaces Tn and Pn were visualized using Wolfram
Mathematica version 12.0.

Classification of Abundance Patterns
Based on the exploration of stability patterns (see Results), we
determined a surface within the three dimensional trait space that
covers trait combinations that are all coexisting with each other.
The specific coexistence surface used for this exercise was selected
to be close to the measured values of MOB assemblages in Rotsee.
From this surface, we selected 1,564 species and ran a 7-year
simulation. Because many of the 1,564 species will behave very
similarly, our goal was to categorize the dominant abundance
patterns. Due to the large number of observations and data
points, classical statistical classification techniques are not
suitable for this task. Instead, we used a technique that
originates from the domain of unsupervised machine learning:
self-organizing maps (SOM, Kohonen, 1982; Asan and Ercan,
2012). We used the implementation of the Julia package SOM.jl
(see Code Availability) and trained eight neurons with all
resulting abundance patterns to classify the dominant
abundance patterns.

RESULTS AND DISCUSSION

Modelling Lake Stratification, Overturn and
Methane Dynamics
The modelled development of stratification, mixing and methane
concentrations qualitatively agreed well with field observations
(Figure 2). The physical model overestimated surface water

temperatures and underestimated water temperatures at the
bottom of the lake (Figure 2A; Supplementary Figure S1).
However, the mixed layer depths were in good agreement with
the field observations, meaning that the stratification and mixing
process was generally well reproduced. The modelled methane
profiles qualitatively fitted well with measured methane profiles,
which indicates that our biogeochemical model captured themost
essential processes (Figure 2A; Supplementary Figure S1). Note
that the aim of the model was not to reproduce the observations
perfectly. For the purpose of this study, it was sufficient that the
model was able to reproduce the general dynamics of the system
(i.e., seasonal dynamics of stratification, accumulation of
methane in the hypolimnion and subsequent lake overturn,
which transports accumulated methane to the mixed layer)
and to yield concentration values that are comparable to the
observations (Figure 2B).

The modelled methane profiles within the water-column fitted
well with observations even when we modelled methane profiles
without considering microbial methane oxidation (Figure 2A;
Supplementary Figure S1). This suggests that the shape of the
methane gradient in the water-column (i.e., especially the
position of the methane interface) is not a direct indication for
microbial activity. In particular, the depth where methane
concentrations started to increase matched well with the field
observations suggesting that the position of the methane-oxygen
counter gradient is largely controlled by the physical stratification
and mixing process rather than microbial activity. Even though
this indicates that microbial methane oxidation does not alter
methane concentrations substantially, growth of methanotrophs
is still supported by the flux of methane. The decreasing methane
concentrations towards the mixed layer results in a flux of
methane into the epilimnion. During stable stratification, this
methane flux supports growth of methanotrophic bacteria right at
the oxycline (Zimmermann et al., 2021). Without considering

FIGURE 2 | Seasonal evolution of stratification, mixing and methane profiles in Lake Rotsee in 2016. (A) Typical profiles of measured (dots) and modelled (solid
lines) temperatures and methane concentrations in 2016. Additional profiles are shown in Supplementary Figure S1. Log-scaled methane profiles are provided in
Supplementary Figure S4. Methane profiles were computed without considering microbial methane oxidation, suggesting that the methane gradient is largely
controlled by the physical stratification and mixing process rather than microbial activity. In July (left panel) the lake is stratified, and methane starts to accumulate in
the hypolimnion. In November, lake cooling has deepened the mixed layer to about 10 m and transports methane from the hypolimnion into the mixed layer. (B) The
seasonal evolution of lake temperatures simulated by the physical model is shown as a filled contour plot. The accumulation of methane predicted by the biogeochemical
model is indicated by black contour lines that are labelled with methane concentrations in mM.
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microbial methane oxidation, the model overestimated methane
concentrations in the epilimnion during the late overturn in
autumn (Supplementary Figure S1). Increased concentrations
result from the progressing thermocline deepening, which
substantially increases the methane flux to the epilimnion. As
shown in (Zimmermann et al., 2021), a rapidly growing
assemblage of MOB in the epilimnion is able to oxidize almost
all of this methane and keep methane concentrations low.

When the lake was completely mixed at the beginning of the
year, the model predicted higher methane concentrations at the
bottom of the lake than observed (Supplementary Figure S1).
Even though water temperatures are low at this time,
psychrophilic methanotrophs might be able to oxidize this
methane (Trotsenko and Khmelenina, 2005). To our
knowledge, however, there are no systematic measurements of
MOB abundance and activity in stratified lakes during winter.
Growth of MOB during this early, well-mixed phase might be an
alternative explanation or might at least partially contribute to the
methanotroph biomass observed in the anoxic hypolimnion
during stable stratification (Oswald et al., 2016; Mayr et al.,
2020a, 2020c; Zimmermann et al., 2021). At temperatures of
about 5—6°C and without oxygen, this biomass might be well
preserved for a considerable amount of time even when oxygen is
no longer available in the hypolimnion (Roslev and King, 1995).

The sediment model is very simplified and needed substantial
calibration. Our objective was to close our model with realistic
sediment fluxes. In our model, the sediment water fluxes were on
average 23 μmol m−2 d−1 (0.4 mg m−2 d−1) with a peak in fall at
about 55 μmol m−2 d−1 (0.9 mg m−2 d−1). This flux was actually
fitted to reproduce observed methane concentration in the
hypolimnion. When compared to the literature, our model
flux is in the lower range of the reported sediment-water
methane fluxes. Huttunen et al. (2006) reported fluxes for
eutrophic boreal lakes range over a wide range
0.44—76 mg m−2 d−1. Similarly, the flux at temperature close
to 4°C in Mindelsee ranged from 0.1 to 0.15 mmol m−2 d−1

(1.6–2.4 mg m−2 d−1) while Bastkiven et al. (2008) indicated
higher methane fluxes in the hypolimnion of three lakes in the
United States (3–13 mmol m−2 d−1 (48–209 mg m−2 d−1) for the
hypolimnion). Steinsberger et al. (2017) also reported similar
fluxes ranging from 0.08 to 4.24 mg m−2 d−1 for 5 Swiss lakes.

Configurations of Coexisting Species
We were interested in whether we can establish diversity and
niche differentiation of MOB in our model, based on measured
methane oxidation kinetics and temperature adaptation. We ran
model simulations, which considered seven individual model
species with trait value combinations derived from values
determined for natural MOB assemblages in Rotsee water
samples (Mayr et al., 2020b, Supplementary Table S1). While
the measurements were obtained from mixed communities
(Supplementary Table S2) and temperature optima were not
determined experimentally, it appeared reasonable that average
trait values of the community would approximate those of
dominant species in each sample, and that these organisms
would be adapted to the in-situ temperature, which was
therefore used as the temperature optimum. Simulations with

this set of species, however, did not result in a stable coexistence
and niche differentiation in the model (Supplementary Figure
S2). After the 7-year simulation period, only two of the seven
simulated species were stable and dominated the MOB
abundance whereas the other five species showed decreasing
abundances or fell below the survival threshold (103 cells
cumulative annual abundance). Therefore, we decided to
systematically explore conditions for stable coexistence of
MOB species in our model.

To search for combinations of MOB species that form a stable
community in the model, we first examined each potential trait
combination of a single species and determined which of these
trait combinations resulted in a stable abundance in the lake
(Figure 3). The resulting stability map for single species T0 was
monotonous in the sense that T0 was split into two homogeneous
regions: an unstable region towards low growth rates and low
methane affinities and a stable region towards fast growth and
high methane affinity. Interestingly, the transition between
stability and instability was not gradual but limited to a thin,
curved zone (red color in Figure 3).

The trait combinations determined from lake water samples
(Figure 3, black dots) were all located within the stable region,
which means that each individual species in this set would
establish a stable abundance in the model. However, in

FIGURE 3 | Mapping coexisting communities of MOB in Lake Rotsee.
The 3-dimensional space of potential trait values for MOB is depicted as a
cube. Each point in the three-dimensional trait space is shaded according to
the long-term recurrence of the respective trait-combination by itself or
together with the pre-defined species of a stable assemblage. Here, we show
the stability of single species in the simulated Rotsee. The arrows next to the
axes label indicate increasing methane affinity, increasing adaptation to warm
temperatures and increasing maximummethane oxidation rates, respectively.
Regions of trait combinations with stable recurrence after 7 years are shaded
in blue, regions of instable trait combinations in yellow. The transition between
stable and unstable recurrence (0.25<Si > 0.55) is shaded in red. Seven trait
combinations determined for MOB assemblages during a field campaign in
Rotsee (Mayr et al., 2020b, Supplementary Table S1) are indicated as dots.
In model simulations with all these seven species as a community, only two
species remained stable and above the abundance threshold over the 7-year
simulation (blue dots).
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combination with each other, some of the modelled species were
not competitive under the model conditions. In the model, only
two of the measured trait combinations were able to coexist
(Figure 3, blue dots).

To explore which combinations of species would be able to
coexist in the model, we assembled custom communities with the
following procedure (illustrated in Figure 4A): We started by
selecting a species with a custom trait combination close to the
trait combinations measured for Lake Rotsee communities.
Subsequently, we tested this trait combination against all other
trait combinations for stable coexistence (Figure 4A, T1). The
resulting coexistence spaceT1 consisted of confined regions (blue,
Figure 4A) containing all possible stable partners. Interestingly,
the stable regions were at some distance from the selected starting
species, whereas the space in the immediate vicinity was largely
unstable. This is in good agreement with Hardin’s competitive
exclusion principle (Hardin, 1960). Within the confines of the

limited number of traits in our model, a competing species whose
trait values differ only slightly will most likely either replace the
original species, or is not competitive unless changes in several
trait values compensate each other exactly. Species with more
distant trait values are more likely to coexist because they can
occupy a different niche.

Based on this analysis, we again selected one new species with a
trait combination that formed a stable coexistence with the first trait
combination. We then repeated the procedure of combining this
pre-defined pair with all other trait combinations and determined
the regions in the trait space that lead to a stably coexisting three-
species assemblage (Figure 4A, T2). This procedure can be repeated
to combine several coexisting species from different regions of the
trait space. We observed that the parameter space containing further
partners which can coexist with the pre-defined assemblage shrinks
as the number of coexisting species in the model increases
(Figure 4A). The shrinking parameter space remains confined to

FIGURE 4 | (A)Regions of stable trait configurations with an increasing number of pre-defined species. The trait combination of the pre-defined species is indicated
with purple dots. In T1, a single species that was stable in T0 is pre-defined, and the shading corresponds to the long-term coexistence of the pre-defined species with
any second species in the trait space. In T2, two coexisting species are pre-defined, and the shading corresponds to the long-term coexistence of the two pre-defined
species with any third species in the trait space. The same principle applies to T3. The banded pattern of emerging regions with stable coexistence is an artefact of
the map resolution. (B)Depending on the selection process of species from T1 to T3, different configurations of stable communities emerge in T3 (each point in the three-
dimensional trait space is shaded according to the stability of the original community together with the species with the trait combination at that point). (C) Stability
depends on the environmental conditions. We artificially introduced a strong wind-event into our simulations that completely mixed the water column in either
September, October or November in each of the repeated 7 years of the simulation. Depending on the mixing behavior, the region of partners forming a stable
community with a single pre-defined species (dark purple dot) has a different shape. To reduce distraction, axes labeling was omitted. The view and scaling is the same
for all cubes and is equivalent to the cube in Figure 3.
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a thin surface, indicating that the available niche space for additional
partners is limited.

Within the trait space an unlimited number of configurations
of coexisting species exists, which raises the question which trait
distribution is effectively realized in nature. In our model, the
shape of the region where coexisting trait combinations are
located depended on the selection of pre-defined species
(Figure 4B). This implies that there could be an exclusion
mechanism, where the abundances of a few “founder” species
in the beginning of the season already define which additional
species are able to coexist with those already present.

To allow setting up reasonable criteria for stable coexistence,
our lake model repeats the same meteorological conditions each
simulated year, thus also the environmental conditions and the
same mixing patterns unrealistically re-occur over the seven
modelled years. We explored the potential impact of variable
mixing conditions by artificially introducing mixing events at
different times of the repeated annual cycle and evaluating the
effect on the coexistence space with a single pre-existing species
(T1). This scenario analysis showed that the shape of regions of
coexistence depended on the seasonal dynamics of lake
stratification and mixing (Figure 4C). Different annual
weather conditions will influence the stable species composition.

Both the effect of the pre-existing species and the
environmental impact discussed above would suggest that
under real-world conditions, the MOB community in lakes

may differ from year to year, and a perennial stable
community may never truly occur—instead changing
conditions and species assemblies would continually open new
niche spaces while other niches become obsolete. Multi-year
Datasets on MOB communities in stratified lakes that would
allow us to test if this prediction of our model is true in nature are
currently not available. Longer-lasting modeling runs could
include variable dynamics of annual warming, mixing and
cooling. Such an extended approach could further explore the
effects of the chaotic part in the annual oscillations on the long-
term stability of the MOB community.

Abundance Patterns of Simulated Species
in Space and Time
We analyzed abundance patterns of a large number of species
(Figure 5) whose trait combinations were located on a
coexistence surface that was selected to fall close to the
measured trait combinations. Based on self-organizing map
classification, we found at least 4 distinct abundance patterns
(Figure 5, blue, orange, yellow, pink). One pattern was associated
with species that were mainly abundant in the hypolimnion
(Figure 5, pink), a pattern observed for example in the
Methylococcales species ASV_4 in Rotsee (Mayr et al., 2020a).
Two patterns showed an abundance maximum at the interface of
the mixed layer and the hypolimnion during stratified conditions

FIGURE 5 | Classification of normalized (0 = least abundant/white, 1 = most abundant/black) spatiotemporal abundance patterns using a self-organizing maps
approach (Asan and Ercan, 2012). We ran a 7-year simulation with an initial set of 1,564 species whose trait combinations were sampled from a regular grid on the shown
coexistence surface within the trait space. The coexistence surface approximates the regions of coexistence in Figure 4A, T3. A self-organizing map with eight neurons
was trained on all 1,564 normalized abundance patterns. We colored the surface of trait combinations to indicate the associated neuron that shows highest
activation for the specific abundance pattern. Only five of the eight neurons specialized to a specific region on the surface. Each of the five neurons can reproduce the
input/pattern to which it has specialized. The four clearly distinct abundance patterns are shown as heat maps (dark colors indicate high abundance, light colors indicate
low abundance, i.e., white = 0, black = 1) representing abundance over depth and time in year 7 of the simulation. The neuron associated with the abundance pattern in
green showed a combination of the two neighboring patterns.
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or in the mixed layer (Figure 5, blue, orange). Overall, these
modelled patterns approximate the three main spatial niches
quite well, which we proposed under stratified conditions
(Epilimnion, Interface, Hypolimnion) previously (Mayr et al.,
2020c). This indicates that the simple kinetic trait combinations
used in our model suffice to reproduce this fundamental niche
partitioning pattern of MOB in stratified lakes. Three patterns
were further associated with species that became abundant in the
mixed layer during different stages and different durations of the
mixing period (Figure 5, blue, orange, pink). This matches
observations from our previous study where we reported
temporal succession of species dominating in the mixed layer
during lake overturn (Mayr et al., 2020a). A pattern observed in
nature, in Rotsee, e.g., forMethylocytis (Guggenheim et al., 2020),
but not in our model was that of an abundance increase towards
the lake surface during summer stratification. This indicates that
certain traits or processes that determine the distribution of this
taxon are not represented in our model. Overall, our custom
assembled communities showed spatiotemporal abundance
patterns remarkably similar to previously observed depth
profiles and temporal dynamics of methanotroph species in
Lake Rotsee (Mayr et al., 2020a). Considering the simple trait
space used in the model, this finding is noteworthy and provides
considerable support to the hypothesis that kinetic traits of the
methane oxidation are a central adaptive strategy, and thus a basis
for niche differentiation in freshwater methanotrophs.

Destabilizing a MOB Community
Moving from the stability pattern T1 to T3 reduces the stable trait
space significantly (Figure 4A). Therefore, we hypothesize that
with increasing number of community members, the region of
stable trait configurations ultimately narrows down to a thin layer

or surface. This would indicate that “stable” communities are
actually easily disturbed if a new species invade them or if one of
the members of the community acquires new trait values through
adaptive evolution. In order to explore this idea further, we
iteratively assembled a stable community C1 of three species
(Figure 6A, red dots) and determined its stability when added
additional species. The region of additional species that would
destabilize the original community covered the entire space on
one side of the narrow layer of coexistence: the side towards
higher growth rates, high affinity and adaptation to low
temperatures. Members of the original community C1 will be
replaced by additional species with such trait combinations and
therefore, the shape of the region with stable partners would
change accordingly. We iteratively assembled a new stable
community C2 with species from the region that would
destabilize the original community C1 (Figure 6B). When we
again determined the stability of this community C2 after the
addition of a new species, we observed the same distribution of
stability and instability. Within our simplified model,
unrestricted evolution towards optimized trait combinations
would cause the surface of coexistence to shift gradually
towards an increasingly optimized community and ultimately
a “superorganism” that would outperform all other species. The
observed diversity of the methanotrophic assemblage in real lakes
points to a clear limitation of our model and to barriers
precluding the evolution of such a superorganism,
i.e., physiological limits or tradeoffs between and with
additional traits. This further suggests that, if methane
oxidation kinetics and adaptation to temperature are the
dominant traits that explain coexistence and niche
differentiation, the observed trait combinations should be
aligned on a specific surface within the trait space T where

FIGURE 6 | (A) Stability space (P3) of a stable community C1 of three species (red dots) when an additional species is added. In P3, each point in the three-
dimensional trait space is shaded according to the stability of only the original community, when the species with the trait combination at that point is added to the
community. The thin layer of coexistence in the stability space T3 (Figure 4B, first cube on the left) is shown as an approximated smooth surface (red wire frame). Regions
where the additional species would destabilize the original community are shaded in yellow. The stable community is destabilized and replaced by the addition of
any “better adapted” species in this yellow region. (B) A stable community C2 with three species (green dots) from the yellow region in panel (A). The three species of
community C1 are shown as red dots. The thin layer of coexistence in the stability space T3 (Figure 4B, second cube from the left) is shown as an approximated smooth
surface (green wire frame). The stability space (P3) of this community shows the same property of destabilization. Thus invasion or evolution of better adapted species
would invariably lead to a contraction of the stable community (red arrows in panel (A)) towards a highly optimized community or ultimately even to a “superorganism.”
Compared to Figure 4, the trait-spaces are shown from a slightly tilted angle.
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physiological restrictions and tradeoffs prevent further
optimization of the trait values.

As noted earlier, trait values observed for MOB communities in
Lake Rotsee did not result in a stable community in our model.
Assuming that the three traits we modelled are the main explanatory
variables for the observed niche differentiation, we would expect that
observed trait values should be positioned at least approximately near
one of the thin layers of potential coexistence.We approximated such
a layer of coexistence that runs close to observed values (Figure 4B,
first cube from the left) shown also as the smooth surface of
community C1 in Figure 6A (red wire frame). Even though the
curvature of this surface roughly approximates the trait combinations
actually observed in Lake Rotsee, several values diverged
considerably, e.g., towards adaptation to lower temperature than
allowed for stable coexistence (Supplementary Figure S3). As
temperature optima were not measured but simply assumed to
correspond to in-situ temperatures, it may not be surprising that
we see such a divergence. The limited number of observations and the
uncertainty associated with the measured values do not allow
assessing how well kinetics and temperature adaptation can
explain the observed trait distribution. Other traits not considered
in our model may be important and may allow coexistence despite
incompatible methane oxidation kinetics or temperature adaptation.
Such additional traits could include oxygen tolerance (Nguyen et al.,
1998), syntrophic strategies (Milucka et al., 2015; Skennerton et al.,
2017), starvation metabolisms (Kalyuzhnaya et al., 2013) or
acquisition strategies for other nutrients, such as nitrogen or
copper (Auman et al., 2001; Semrau et al., 2013). Clearly, our
physical and biogeochemical model is likewise a highly simplified
representation of reality, that does not account for stochastic
variability in the environment.

CONCLUSION AND OUTLOOK

With the observation of a fascinating diversity, vertical structure
and seasonal succession of methane oxidizing bacteria in
stratified lakes, the question arose how this diversity is
maintained. Here we investigated with our trait-based
mechanistic model of microbial methane oxidation if and how
well we can reproduce and explain the observed patterns of
lacustrine MOB diversity in a seasonally stratified lake.

With our model, we successfully recreate diversity and niche
differentiation patterns of methanotrophs very similar to observed
patterns in seasonally stratified lakes. This finding provides support
to the hypothesis that the traits used in our model—kinetic traits of
the methane oxidation and different temperature optima—are
indeed central adaptive strategies, and thus a basis for niche
differentiation in freshwater methanotrophs. However, in the
model, the combination of trait values that allowed coexistence
was rapidly confined to narrow regions in the parameter space as we
increased the number of species, raising the question how these exact
combinations would be realized in nature or whether there are
mechanisms that widen these narrow regions. We argue that
evolutionary convergence to the physiological limit that is
inherent in the underlying biochemical and cellular systems is
one mechanism that pushes trait values to these narrow regions

on evolutionary time scales. In addition, the sequence of colonization
or the annual variability of the stratification and mixing behavior of
the lake may allow different stable configurations from year to year
or on even shorter timescales, which may provide another way to
maintain a higher diversity than expected from the competitive
exclusion principle. Additional physiological traits (e.g., oxygen
tolerance, symbiotic strategies or starvation tolerance) not
considered here might be important for niche differentiation and
may widen the space for coexistence.

The modeled environment was necessarily simplified; the data used
to build ourmodel of the Rotsee water column focused on the turnover
period, and we have only a coarse representation of the methane-
oxygen interface in the model. Specifically, we excluded the possible
effects of nutrients (nitrogen, phosphorus), micronutrients such as
copper (Guggenheim et al., 2019), and we neglected lateral exchange in
our 1-D model (Thalasso et al., 2020). In particular, the
parameterization of the sediment model can be questioned and
improved as well. Adding more detail and expanding the kinetic
parameter space will add more niches and more potential for a
stable diversity of the MOB community. Nevertheless, our approach
is the first attempt to combine a fundamentally realistic lake physical
and biogeochemical model with a trait-based population model and
thus provides the first opportunity to test the validity of a trait-based
approach for MOB ecology against environmental data. Further, our
model approach provides ample opportunity for future expansion, e.g.,
to test the importance of further traits, and for application in other lakes.

In this study, we have not yet analysed whether the trait-based
approach formodellingmethane oxidation affects the accuracy of the
biogeochemical model. The question whether MOB diversity has to
be taken into account when modelling methane emissions and
microbial methane oxidation in lakes remains to be investigated.
We found that the rough shape of themethane gradient in the studied
lake is largely controlled by the physical stratification and mixing
process, but, e.g., methane concentrations in the mixed layer during
overturn would be overestimated without considering methane
oxidation - and thus methane emissions would be overestimated.
There may thus be a number of situations and research questions
where knowledge of changes in methane oxidation kinetics, which
our trait-based approach could provide, may be of importance. For
example, the amount of outgassing of methane will depend on
whether the most abundant MOB in the epilimnion in summer
or in the mixed layer during lake overturn is a high affinity MOB or
not. The improvement of incorporating trait diversity in a
biogeochemical model may also become important when
conditions change rapidly. Under such conditions, a trait-based
model may predict how oxidation kinetics change and may
provide a better system description. Finally, it would be interesting
to explore if a high trait diversity results in more efficient methane
oxidation in a system, especially if this diversity is independently
controlled by other factors, such as, e.g., temperature, micronutrient
availability or pollution.
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accession number(s) can be found below: Physico-chemical data
is available at the ETH Research Collection (https://doi.org/10.
3929/ethz-b-000350091).

The source code of the physical model is available on GitHub
(http://doi.org/10.5281/zenodo.3274379). The source code of the
numerical discretization of the reaction-diffusion equation used
for the biogeochemical model is available as a Julia package
(https://github.com/zimmermm/FiniteVolumeRDS.jl). The
actual implementation of the biogeochemical model as well as
the microbial growth model for Lake Rotsee is available on
GitHub (https://github.com/zimmermm/MOBDiversityModel).
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