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Nowadays, wind power is playing a significant role in power systems; it is necessary to
improve the prediction accuracy, which will help make better use of wind sources. The
existing neural network methods, such as recurrent neural network (RNN), have been
widely used in wind prediction; however, RNN models only consider the dynamic change
of temporal conditions and ignore the spatial correlation. In this work, we combine the
graph convolutional neural (GCN) with the gated recurrent unit (GRU) to do prediction on
simulated and real wind speed and wind power data sets. The improvements of prediction
results by GCN in all wind speed experiments show its ability to capture spatial
dependence and improve prediction accuracy. Although the GCN does not perform
well in short-term wind power prediction as the change of wind power data is not so
smooth due to the limitation of turbine operation, the results of long-term prediction still
prove the performance of GCN.
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INTRODUCTION

In order to deal with the crises of fuel energy and environmental pollution, wind energy is being
widely developed all over the world, and wind power is starting to play a hugely significant role in
power systems (Liu and Guan, 2004). However, the large amount of wind power generation also
brings great challenges to the stable operation of power systems due to the variable and stochastic
nature of wind (Defferrard et al., 2016). For example, wind power fluctuation caused a challenge
event reported by the Electric Reliability Council of Texas (ECROT). To mitigate the harmful
impacts, accurate wind prediction is always required by system operators (Zhang et al., 2016).

Wind prediction, including wind speed and wind power prediction, uses a large amount of
historical wind data to train a fitting model between inputs and outputs. Wind speed is the most
relevant factor in determining wind power. In particular, the wind power curves for different types of
wind turbines roughly have the same shape (Pinson, 2013); hence, one approach to modeling wind
power is to model the wind speed and associate it to the wind power using wind power curves suitable
for a given wind farm (Stohl et al., 1995).

Wind speed can be modeled as a spatiotemporal process as it evolves randomly in time and space.
However, wind forecasting has always been a challenge due to its complex spatial and temporal
dependences.

Existing wind speed forecasting models can be categorized as physical, statistical, and machine
learning models. Physical models use mathematical expressions to model highly complex and
nonlinear dynamics of atmospheric flow to produce numerical wind predictions (Yan and Ouyang,
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2019). Gneiting et al. (2006) applied a second order model that
uses the spatiotemporal covariance as a basis for estimation in
Irish wind prediction. This model is quite suitable when the
underlying process can be modeled as a Gaussian spatiotemporal
field and is one basic type of spatiotemporal process used in the
modeling of wind. Statistical methods rely on relevant historical
data to predict future wind generation, traditionally using models
such as the history average model (HA) (Liu and Guan, 2004) or
the autoregressive integrated moving average model (ARIMA). A
multichannel adaptive filter is used to forecast wind speed and
direction using spatial correlations at multiple sites in Dowell
et al. (2014). Markov chain–based statistical methods that
leverage a graphic spatiotemporal learning-based model and
statistical characteristics of aggregated wind generation are
presented in He et al. (2014) to forecast wind generation
output. As for machine learning methods, the recurrent neural
network (RNN) is the most widely used neural network model in
processing time series data. The long short-termmemory (LSTM)
model (Hochreiter and Schmidhuber, 1997) and the gated
recurrent unit (GRU) model (Cho et al., 2014) are variants of
the RNN that can avoid the gradient disappearance and explosion
that can occur in RNN. The basic principles of the LSTM and
GRU are roughly the same; they all use a gated mechanism to
memorize as much long-term information as possible and are
equally effective for various tasks (Chung et al., 2014). However,
due to its complex structure, LSTM has a longer training time
while the GRU model has a relatively simple structure, fewer
parameters, and faster training ability.

However, both LSTM and GRU models only consider the
dynamic change of temporal conditions and ignore the spatial
dependence given that the change of wind condition is also
restricted by the surrounding environment. Intuitively, the flow
of wind in nearby regions affect each other. As there exists a strong
correlation between wind sites located in a vicinity, the information
collected from neighboring sites will help improve the prediction
accuracy of target sites (Liu et al., 2020), which can be effectively
handled by the convolutional neural network (CNN), which has
shown its powerful ability to get spatial structural information
(LeCun et al., 1998). A CNN uses filters to find relationships
between neighboring inputs, which can make it easier for the
network to converge on the correct solution.

The traditional CNN can obtain local spatial features in
Euclidean space, but the relation network between each wind
farm is in the form of a graph that is not a two-dimensional grid,
which means the CNN model cannot deal with the complex
topological structure of the wind relation network. However, the
graph neural network (GNN) is good at handling the arbitrary
graph structure data. To model the spatial correlations in graph-
structured data, a graph CNN is developed to capture the spatial
dependence, and a similar approach has been used in traffic
prediction and shown good performance (Zhao et al., 2019).

There has been some work that applied GNN in wind
prediction such as Mei Yu’s (Yu et al., 2020) and Mahdi
Khodayar’s work (Khodayar and Wang, 2018), but all these
works were based on NREL data sets, which are simulation
data sets and do not provide real wind speed or power data.
They showed the results in a one-time experiment only, whereas

the neural network model’s performance will be slightly different
each time as the character of itself.

In this work, to demonstrate that the GNN model does have
the ability to utilize the spatial correlations to improve accuracy in
real wind prediction, we combine the graph convolutional
network (GCN) with the GRU model to do prediction on five
different wind data sets, including three wind speed data sets and
two wind power data sets. Moreover, the GCN-GRU model is
validated not only in 10 m height but also in 100 m height wind
speed prediction. Furthermore, the final results are based on a
collection of 10 experiments for each data set. The forecasting
results show a steady state under different prediction horizons,
which indicates that the GCN-GRU model can not only achieve
short-term prediction, but can also be used for long-term wind
prediction tasks.

REVIEW OF THE LITERATURE

Recently, given RNN’s strong ability in processing time series
problems, improved LSTM and GRU models have been applied
in wind prediction. Zhewen Niu proposed a novel sequence-to-
sequence model using the attention-based gated recurrent unit
(AGRU) that improves accuracy of forecasting processes (Niu
et al., 2020). A novel data-driven approach is proposed by Adam
Kisvari in wind power forecasting by integrating data
preprocessing, resampling, anomaly detection and treatment,
feature engineering, and hyperparameter tuning based on
gated recurrent deep learning models and critically compared
with the algorithm of LSTM (Kisvari et al., 2021). Ruiguo Yu
proposed an improved LSTM-enhanced forget-gate network
model, abbreviated as LSTM-EFG, used in forecasting wind
power (Yu et al., 2019). Xiaohui Yuan’s simulation results
showed that the PIWP obtained by the Beta-PSO-LSTM
model has higher reliability and narrower interval bandwidth,
which can provide decision support for the safe and stable
operation of power systems (Yuan et al., 2019). In Yao Liu’s
work, a wind power short-term forecasting method based on
discrete wavelet transform and LSTM networks (DWT_LSTM) is
proposed. The discrete wavelet transform is introduced to
decompose the nonstationary wind power time series into
several components that have more stationarity and are easier
to predict (Liu et al., 2019).

There is also some work that applies GNN in wind prediction,
such as Mei Yu proposing the superposition graph neural
network (SGNN) for feature extraction, which can maximize
the use of spatial and temporal features for prediction. In the four
offshore wind farms used in experiments, the mean square error
of the method is reduced by 9.80%–22.53% compared with
current advanced methods, and the prediction stability of the
method has also been greatly improved (Yu et al., 2020). Mahdi
Khodayar proposed GCDLA to capture spatial wind features as
well as deep temporal features of the wind data at each wind site.
Simulation results show the advantages of capturing deep spatial
and temporal interval features in the proposed framework
compared with the state-of-the-art deep learning models as
well as shallow architectures in the recent literature (Khodayar
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and Wang, 2018). However, Mei Yu’s work is about offshore
wind, which is more stable than the wind on land as the
surrounding terrain has a great influence on it. Mahdi
Khodayar’s work used the mutual information matrix to
process the graph model. Furthermore, these two studies both
worked on simulation data sets, and their results were based on a
one-time experiment only, so it is hard to say that the
improvement of prediction results by GNN is not occasional.

PROBLEM DEFINITION

In this paper, the goal of wind forecasting is to predict the wind
speed or power in a certain period of time based on the historical
wind information of several sites in a specific area. In our
experiments, the wind information can be wind speed or wind
power data.

Wind Network G
As shown inFigure 1, thewind of the target sitemay be influenced by
thewind flows from its surrounding sites, we describe these wind sites
in a specific area as a wind network although this network is unseen.
We use an undirected graph G � (V,E) to describe the topological
structure of the wind network. We treat each wind site as a node,
where V is a set of nodes, V � {v1, v2, . . . , vN}, N is the number of
the nodes, and E is a set of edges between each wind site. The
adjacency matrix A is used to represent the connection among wind
sites,A ∈ RN×N. In this work, the adjacencymatrixA is processed by
normalization of a distancematrix, which is calculated by the distance
between each wind site in the wind network. Note that distance is
calculated in an “as the crow flies” sense and does not take the
intervening topography into account.

Feature Matrix XN×P

We regard the wind speed or power as the attribute feature of the
nodes in the network, expressed as XN×P, where P represents the
number of node attribute features (the length of the historical
time series) andXt ∈ RN×i is used to represent the speed or power
on each site at time i. Again, the node attribute feature can be any

FIGURE 1 | The wind speed of the central site is affected by the wind
from its surrounding site; the thickness of edges indicates the strength of the
correlation.

FIGURE 2 | Flow chart of the GCN-GRU model.
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wind information, such as wind speed, wind direction, wind, or
wind power.

MODEL

To evaluate the GCN’s ability to capture the spatial features in
wind prediction, we combine the GCN model with the GRU
model and then compare the performance of the GCN-GRU
model with the GRU model through several evaluation metrics.
The flow chart of the GCN-GRU model is shown in Figure 2.

Spatial Model
The target site is influenced by a complex wind network formed
by its surrounding sites, and in this work, we use the GCN to
capture spatial correlations. Existing GCNs can be divided into
two main categories: spatial- and spectral-based GCNs (Liu et al.,
2020). Spatial-based GCNs directly define the convolutional
operation by operating on spatially close—the first or second
order neighbors—such that the convolutional operation using
different weight matrices for nodes with different degrees
(Duvenaud et al., 2015). Considering the wind farms are all
connected if we treat them in a graph domain, we choose to
use the spectral-based GCN to capture the effect of surrounding
wind farms.

In 2014, a spectral network was proposed in Bruna et al. (2013).
It transforms the samples into Fourier domains to perform
convolution operations through Fourier transform, and then the
samples are transformed back to the graph domains through
inverse Fourier transform. Specifically, the graph convolutional
operation of the sample X ∈ RN can be defined as

GpX � UGWU
TX, (1)

where p is the graph convolutional operation, U is the
matrix of eigenvectors of the normalized graph Laplacian
L � IN −D−1

2AD−1
2 � U ∧ UT with a diagonal matrix of its

eigenvalues ∧ and UTX being the graph Fourier transform
of X, and GW � diag(UTG) is the filter parameterized by
W ∈ Rn.

In Defferrard et al. (2016), the Chebyshev spectral CNN
(ChebNet) that approximate GW by the truncated expansion
of Chebyshev polynomials Tk(X) up to Kth is proposed. To
circumvent the problem of being computationally expensive,
GW can be approximated by a truncated expansion in terms of
Chebyshev polynomials Tk(X) up to the Kth order:

GpX ≈ ∑K

k�0WkTk( 2L
λmax

− In)X (2)
Tk(X) � 2XTk−1(X) − Tk−2(X)T0(X) � 1T1(X) � X,

where W ∈ RK is a vector that consists of Chebyshev coefficients
and λmax is the largest eigenvalue. Because the operation is a Kth

order polynomial in the Laplacian, it is K-localized.
Moreover, if we set K � 1 and λmax � 2, we can get a linear

function on the graph Laplacian spectrum:

GpX ≈ W0X −W1D
−1
2AD−1

2X. (3)
Furthermore, to restrain the number of parameters and alleviate
overfitting problems, we assume that W � W0 � W1 (Berg et al.,
2017) and then set Â � A + In to do renormalization to avoid
vanishing gradients problems (Kipf and Welling, 2016), which
lead to the following formula:

GpX ≈ W(In +D−1
2AD−1

2)X � D̂
−1
2 ÂD̂

−1
2XW (4)

where D̂ denotes the diagonal matrix of node degree with Dii �∑n
j�1âij.
In summary, we use a two2-layer GCN model based on Eq. 5

to learn spatial features from wind data and it can be expressed as

f(Xt,Λ) � σ(Λ(Relu(ΛXtW0))W1), (5)

FIGURE 3 | The architecture of GRU model.
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where Xt represents the features matrix at time t, Λ is the
adjacency matrix calculated by the distance between each wind
site, Λ � D̂

−1
2 ÂD̂

−1
2 denotes preprocessing step in Eq. 4, Â � A +

IN is a matrix with self-connection structure, and D̂ is a degree
matrix. W0 and W1 represent the weight matrix in the first and
second GCN layer, and σ( · ) and Relu() represent the activation
function.

Temporal Model
After spatial processing by the GCNmodel, we get a new feature
matrix X’

t, and we can have new time series data to do time
prediction. In this work, as our key goal is to evaluate the GCN’s
performance in wind prediction, a simpler and faster model to
do time forecasting is needed. As the GRU model has a
relatively simple structure and fewer parameters than LSTM,
we chose the GRU model to obtain temporal dependence from
the wind data.

As shown in Figure 3, ht−1 denotes the hidden state at time
t − 1; X’

t denotes the wind information at time t; rt is the reset
gate, which is used to control the degree of ignoring the status
information at the previous moment; ut is the update gate, which
is used to control the degree to which the status information at the
previous time is brought into the current status; ct is the memory
content stored at time t; and ht is output state at time t. The GRU
obtains the wind status at time t by taking the hidden status at
time t − 1 and the current wind information as inputs. While
capturing the wind information at the current moment, the
model still retains the changing trend of historical wind
information and has the ability to capture temporal dependence.

ut � σ(Wu[X′
t, ht−1] + bu)

rt � σ(Wr[X′
t, ht−1] + br)

ct � tanh(Wc[X′
t, (rtpht−1)] + bc) (6)

TABLE 1 | The best results in Canada climate wind speed experiments.

Data set Canada climate wind speed–9 stations data set Canada climate wind speed–18 stations data set

Step Method RMSE MAE Accuracy RMSE MAE Accuracy

1 h GCN-GRU 5.8995 ± 0.0246 4.346 ± 0.0135 0.7981 ± 0.0008 3.3798 ± 0.0365 2.5845 ± 0.0394 0.8046 ± 0.0021
GRU 5.9826 ± 0.0271 4.4271 ± 0.0199 0.7952 ± 0.0009 3.6912 ± 0.0218 2.7659 ± 0.0205 0.7866 ± 0.0013
ARIMA 6.2386 4.5878 0.7864 3.8255 2.8427 0.7788
SVR 6.1082 4.4884 0.7809 3.6949 2.724 0.7815
HA 8.5224 6.3859 0.6556 5.2101 3.9004 0.6409

2 h GCN-GRU 6.9127 ± 0.0825 5.153 ± 0.0609 0.7636 ± 0.0028 3.8814 ± 0.0404 2.9394 ± 0.0348 0.7757 ± 0.0023
GRU 7.0757 ± 0.0648 5.2697 ± 0.0357 0.758 ± 0.0022 4.3106 ± 0.0544 3.3003 ± 0.0859 0.7564 ± 0.0021
ARIMA 7.2344 5.3152 0.7526 4.3832 3.2449 0.7466
SVR 7.0682 5.2229 0.7416 4.2192 3.1079 0.7481
HA 9.6091 7.3293 0.6121 6.0377 4.5414 0.5839

3 h GCN-GRU 7.8451 ± 0.0578 5.8835 ± 0.0398 0.7323 ± 0.002 4.2518 ± 0.0233 3.206 ± 0.0155 0.7548 ± 0.0013
GRU 7.8767 ± 0.1378 5.8586 ± 0.095 0.7313 ± 0.0047 4.6189 ± 0.0286 3.574 ± 0.0267 0.7409 ± 0.0016
ARIMA 8.0936 5.9261 0.7238 4.9996 3.8501 0.7195
SVR 7.9023 5.8444 0.7073 4.643 3.4364 0.7215
HA 10.8836 8.4161 0.5616 6.6606 5.0407 0.5419

TABLE 2 | The results of NREL wind experiments.

Data sets NREL wind speed data set NREL wind power data set

Step Method RMSE MAE Accuracy RMSE MAE Accuracy

1 h GCN-GRU 0.9847 ± 0.0086 0.7151 ± 0.0085 0.8896 ± 0.001 0.1053 ± 0.0006 0.071 ± 0.0012 0.8084 ± 0.0011
GRU 1.0195 ± 0.0084 0.7445 ± 0.0067 0.8857 ± 0.0009 0.105 ± 0.0009 0.0684 ± 0.0017 0.8076 ± 0.001
ARIMA 1.0677 0.7707 0.8803 0.2192 0.1271 0.6417
SVR 1.047 0.7537 0.8804 0.1166 0.0882 0.7718
HA 1.7979 1.3933 0.7913 0.1767 0.1217 0.6625

2 h GCN-GRU 1.2761 ± 0.0266 0.9407 ± 0.0188 0.8549 ± 0.0018 0.1317 ± 0.0004 0.0903 ± 0.0009 0.7604 ± 0.0008
GRU 1.3521 ± 0.0257 1.0013 ± 0.0224 0.8481 ± 0.003 0.1325 ± 0.0012 0.0904 ± 0.0015 0.7573 ± 0.0012
ARIMA 1.3448 0.9764 0.8494 0.2446 0.1487 0.6006
SVR 1.3207 0.9602 0.8478 0.1426 0.108 0.7184
HA 2.4512 1.949 0.7157 0.2276 0.1693 0.5654

3 h GCN-GRU 1.5575 ± 0.0488 1.1631 ± 0.0385 0.8246 ± 0.0042 0.1494 ± 0.0009 0.1063 ± 0.0015 0.7272 ± 0.0017
GRU 1.5938 ± 0.0347 1.2006 ± 0.0312 0.8181 ± 0.0035 0.1522 ± 0.0014 0.108 ± 0.0022 0.7208 ± 0.0015
ARIMA 1.5725 1.1489 0.8239 0.266 0.1675 0.5648
SVR 1.5373 1.1337 0.8213 0.15986 0.1202 0.6836
HA 0.9847 ± 0.0086 0.7151 ± 0.0085 0.8896 ± 0.001 0.2642 0.2077 0.4937
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TABLE 3 | NRGStream wind power experiments.

Data sets NRGStream wind power data set

Step Method RMSE MAE Accuracy

1 h GCN-GRU 32.3046 ± 0.15 22.1363 ± 0.3941 0.8233 ± 0.0008
GRU 32.2158 ± 0.1266 21.3319 ± 0.4801 0.8238 ± 0.0007
ARIMA 33.7329 20.4416 0.8155
SVR 32.5486 20.0331 0.821
HA 27.6618 13.7631 0.6493

2 h GCN-GRU 21.223 ± 15.2436 15.4518 ± 11.0381 0.7591 ± 0.0023
GRU 30.9518 ± 16.0936 21.9504 ± 11.6982 0.7592 ± 0.0015
ARIMA 45.6305 27.3199 0.7499
SVR 44.144 27.0784 0.7536
HA 34.6944 18.4608 0.5594

3 h GCN-GRU 21.3579 ± 16.2888 15.8231 ± 12.2517 0.7158 ± 0.0066
GRU 29.5493 ± 19.6803 21.2965 ± 14.4141 0.7103 ± 0.005
ARIMA 54.9295 33.1688 0.6997
SVR 13.2146 7.4584 0.7105
HA 39.3619 22.5405 0.5011

TABLE 4 | The average value of prediction results of all wind stations in Canada Climate wind speed experiments.

Data set Canada climate wind speed–9 stations data set Canada climate wind speed–18 stations data set

Step Method RMSE MAE Accuracy RMSE MAE Accuracy

1 h GCN-GRU 6.0233 ± 0.0167 4.3714 ± 0.0174 0.7542 ± 0.0007 3.4313 ± 0.0836 2.6277 ± 0.0915 0.7538 ± 0.007
GRU 6.1196 ± 0.0165 4.4138 ± 0.0115 0.7501 ± 0.0007 3.4717 ± 0.0186 2.5915 ± 0.0249 0.7534 ± 0.0015
ARIMA 6.5397 4.6785 0.7326 3.7026 2.7231 0.7381
SVR 6.3514 4.509 0.725 3.5468 2.6136 0.7401

2 h GCN-GRU 6.7617 ± 0.0391 4.9569 ± 0.033 0.7245 ± 0.0015 3.7748 ± 0.0356 2.8443 ± 0.0359 0.7306 ± 0.0029
GRU 6.9655 ± 0.0431 5.0784 ± 0.0221 0.716 ± 0.0018 3.9477 ± 0.0136 2.9254 ± 0.0097 0.72 ± 0.0009
ARIMA 7.3284 5.2737 0.7007 4.1924 3.079 0.7034
SVR 7.1502 5.1283 0.6835 4.0198 2.9614 0.7026

3 h GCN-GRU 7.4551 ± 0.0253 5.5149 ± 0.0224 0.6972 ± 0.001 4.0913 ± 0.0337 3.0755 ± 0.0382 0.7087 ± 0.0027
GRU 7.6366 ± 0.0603 5.5905 ± 0.0324 0.6894 ± 0.0025 4.2831 ± 0.0166 3.1722 ± 0.0133 0.6967 ± 0.0012
ARIMA 7.9607 5.7519 0.6756 4.5974 3.3767 0.6753
SVR 7.7627 5.6278 0.6517 4.3796 3.2382 0.6724

TABLE 5 | The average value of prediction results of all wind stations in NREL wind experiments

Data sets NREL wind speed data set NREL wind power data set

Step Method RMSE MAE Accuracy RMSE MAE Accuracy

1 h GCN-GRU 1.0418 ± 0.0056 0.7581 ± 0.004 0.879 ± 0.0006 0.1099 ± 0.0004 0.0731 ± 0.0008 0.7894 ± 0.0008
GRU 1.0548 ± 0.0038 0.7639 ± 0.0031 0.8775 ± 0.0005 0.1103 ± 0.0005 0.0717 ± 0.001 0.7885 ± 0.001
ARIMA 1.1071 0.7956 0.8713 0.2342 0.1367 0.6103
SVR 1.0899 0.7787 0.8706 0.1196 0.0909 0.7528

2 h GCN-GRU 1.348 ± 0.0162 0.9978 ± 0.015 0.8436 ± 0.0019 0.1347 ± 0.0004 0.0928 ± 0.0007 0.742 ± 0.0007
GRU 1.4087 ± 0.0251 1.0516 ± 0.0251 0.8365 ± 0.0029 0.136 ± 0.0005 0.0935 ± 0.0011 0.7396 ± 0.001
ARIMA 1.3754 0.9948 0.8403 0.2577 0.1578 0.5717
SVR 1.3559 0.9816 0.8375 0.1432 0.1088 0.7021

3 h GCN-GRU 1.6184 ± 0.0264 1.2156 ± 0.0231 0.8121 ± 0.0031 0.1519 ± 0.0006 0.1086 ± 0.0013 0.7081 ± 0.0011
GRU 1.6799 ± 0.0207 1.2762 ± 0.0191 0.805 ± 0.0025 0.1545 ± 0.0005 0.1116 ± 0.0012 0.7033 ± 0.0011
ARIMA 1.5947 1.1641 0.8148 0.2776 0.1761 0.5379
SVR 1.5673 1.1579 0.8103 0.1596 0.1207 0.6669
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ht � utpht−1 + (1 − ut)pct
In these equations, X’

t is the new wind information processed by
GCN, W and b represent the weights and deviations in the
training process.

Loss Function
In the training step, the goal of the GCN-GRU model is to learn
the well-fitted parameters by minimizing the error between the
real wind data and the predicted wind value. We useYt and Ŷt to
denote the real wind and the predicted speed or power data,
respectively. The loss function is shown in Eq. 7. The first term
is used to minimize the error between the real traffic speed and
the prediction. The second term Lreg is an L2 regularization
term that helps to avoid an overfitting problem, and λ is a
hyperparameter:

loss � ∣∣∣∣∣∣∣∣Yt − Ŷt

∣∣∣∣∣∣∣∣ + λLreg. (7)

EXPERIMENTS

In this section, we evaluate the prediction performance of GCN-
GRU model on five data sets.

Data Description
(1) Two Canadian climate wind speed data sets. One of them

includes nine stations, and the other includes 19 stations.
These real wind speed data are all recorded at 10 m height,
and the stations are all located in Alberta. We chose the wind
speed data from the historical climate data set, which can be
downloaded from the Canada Environment and natural
resources website. (https://climate.weather.gc.ca/historical_
data/search_historic_data_e.html).

(2) Two Eastern wind integration data sets. One includes
wind speed data from 10 sites, and the other contains the
corresponding wind power data at the same places. The
wind speed data was downloaded from the National
Renewable Energy Laboratory (NREL) website (https://
www.nrel.gov/grid/wind-integration-data.html), and the
corresponding wind power data set was computed by the
Renewable Energy Potential (reV) Model (Maclaurin
et al., 2019) by a given set of latitude and longitude
coordinates. Different from the Canada climate wind
speed data, the NREL wind speed data are simulated
by predictive models at 100 m height.

(3) One NRGStream wind power data set. We chose seven wind
farms listed by the Alberta Electric System Operator
(AESO) and use the hourly wind power data from 2018
to 2019.

In the experiments, the input data was normalized to the interval
[0,1]. In addition, 80% of the data was used as the training set and the
remaining 20% was used as the testing set. We predicted the wind
speed of the next 1, 2, and 3 h. The detailed information of these data
sets can be found in Supplementary Materials.

Evaluation Metrics
To evaluate the performance of the GCN model, we use three
metrics of the difference between the real wind data Yt and the
prediction Ŷt, including

(1) Root mean squared error (RMSE)

RMSE �
��������������
1
n
∑n

i�1(Yt − Ŷt)2√
.

(2) Mean absolute error

MAE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣Yt − Ŷt

∣∣∣∣∣∣∣∣∣.
(3) Accuracy

Accuracy � 1 −
∣∣∣∣∣∣∣∣Yt − Ŷt

∣∣∣∣∣∣∣∣F
||Y||F .

Parameter Settings
Our goal is to see whether the GCN can capture the
environment information and improve the prediction result.
As the GCN-GRU and GRU share the same GRU model, we use
the same parameters for GCN-GRU and GRU, such as the
amount of GRU unit, the learning rate, the training epoch, and
batch size.

For the input layer, the training data set (80% of the overall
data) is taken as input in the training process, and the remaining
data is used as input in the testing process. The GCN-GRUmodel
is trained using the Adam optimizer.

Experiment Results
In this part, we compare the performance of the GCN-GRU
and GRU models and also show the prediction results with
some other baseline methods, includin: (1) HA (Pinson, 2013),

TABLE 6 | The average value of prediction results of all wind stations in
NRGStream wind power experiments.

Data sets NRGStream wind power data set

Step Method RMSE MAE Accuracy

1 h GCN-
GRU

12.3121 ± 0.0284 8.5175 ± 0.0901 0.7756 ± 0.0013

GRU 12.0442 ± 0.0571 8.133 ± 0.1196 0.7814 ± 0.0029
ARIMA 12.4423 7.3886 0.7826
SVR 11.9899 7.078 0.7885

2 h GCN-
GRU

15.7505 ± 0.122 11.5557 ± 0.1454 0.7248 ± 0.0037

GRU 15.7717 ± 0.1568 11.2753 ± 0.1789 0.7234 ± 0.005
ARIMA 16.3477 9.8913 0.718
SVR 15.5462 9.2681 0.7281

3 h GCN-
GRU

18.5172 ± 0.2087 13.8651 ± 0.2239 0.6829 ± 0.0056

GRU 18.6734 ± 0.3189 13.795 ± 0.373 0.6798 ± 0.0082
ARIMA 19.624 12.3354 0.662
SVR 18.1365 11.1136 0.6824
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which uses the average wind information in the historical
periods as the prediction; (2) ARIMA (Stohl et al., 1995),
which fits the observed time series into a parametric model
to predict future wind data; and (3) the support vector
regression model (SVR) (Smola and Schölkopf, 2004), which
uses historical data to train the model and obtains the

relationship between the input and output and then predicts
by giving the future wind data. We use the linear kernel, and the
penalty term is 0.001.

As the GCN-GRUmodel is also based on GRU, according to
the experiments, we find that the GRU’s prediction is not quite
stable; that is, the result is a little different each time as the

FIGURE 4 |Comparison of three wind speed prediction experiments between GCN-GRU and GRU; the light green areas are where GCN-GRU’s prediction curves
closer to the real curve, namely, GCN-GRU performs better than GRU in one-step wind speed prediction.

FIGURE 5 |Comparison of two wind power prediction experiments between GCN-GRU and GRU; the gray areas are where GRU’s prediction curves closer to real
curve, namely, GRU performs better than GCN-GRU in one-step wind power prediction.
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neural network optimization based on stochastic gradient
descent to find the global minimum is different each time.
To show that the prediction improvement by the GCN is not
incidental, we repeat each experiment 10 times to calculate the
standard error and show the range of the prediction results. As
prediction accuracy of each station is different, Tables 1–3 give
the result of a specific station whose prediction accuracy
is best.

We can see that the neural network models, including the
GCN-GRU and GRU models, achieve better prediction
precision than other baselines, such as ARIMA, SVR, and
HA. For example, for the 1-h wind speed prediction on the
data set of “Canada climate wind speed experiment–nine
stations,” the RMSE of the GCN-GRU and the GRU models
are approximately 5.4% and 4.1% lower than that of the ARIMA
model, and the accuracy of these are improved by 1.4% and
1.1%. Compared with the SVR model, the RMSE of the GCN-
GRU and the GRU models are reduced by 3.4% and 2.1%, and
the accuracy is approximately 2.2% and 1.8% higher than that of
the SVR model. The RMSE error of the GCN-GRU and GRU
models are reduced by approximately 30.7% and 29.8%
compared with the HA model, and the accuracies are
approximately 14.2% and 13.9% higher than that of HA.
Next, we focus on the comparisons between GCN-GRU’s and
GRU’s results.

Tables 1, 2 show the prediction results of theGCN-GRUmodel,
GRU model and other baseline methods for Canada climate wind
speed data sets, NREL wind speed data, and NREL wind power
data, respectively. By comparing the experiments of GCN-GRU
and GRU in these four experiments, we can see that all the GCN-
GRU results are better than the GRU model. It shows that GCN
can capture some geographical information and improve the
prediction performance.

In the nine-station Canada climate wind speed prediction,
we can see that, comparing with GRU, there is 0.0831
improvement for RMSE evaluation and approximately 0.3%
improvement in accuracy. In the nine-station Canada climate
wind speed prediction, we can see that there is 0.3114
improvement for RMSE evaluation and approximately 1.8%
improvement in accuracy. To explain the difference in the
Canada climate nine- and 18-station experiments, although
they are all wind prediction at 10 m height, we note that
more wind stations can provide more surrounding
information; that is why the 18 stations experiment’s result is
much better than nine stations.

By comparing the experiment results of NREL wind speed
with the Canada climate wind speed experiment, we can see that
the accuracy is much higher for all models. It mainly because the
NREL data is about the wind at 100 m height, and the change of
the wind is more stable than the wind of the Canada climate at
10 m height, which makes the model easier to predict. From these
four experiments, we can see that the GCN model can improve
the prediction accuracy.

However, we find that the prediction accuracy of all these
models gets lower in NREL wind power prediction when we
compare with NREL wind speed prediction. What is more, the
GCN-GRUmodel almost achieves same prediction accuracy with

the GRU model in 1-h step prediction. The reason for these
unsatisfactory results mainly is that the NREL data sets are
simulated by mathematic models other than real recorded
data. Thus, we do another experiment based on the
NRGStream data set, which records the real wind power from
wind farms in Alberta, Canada.

According to the NRGStream wind power experiment, we
can find that the GCN-GRU model has even worse
performance in 1 h prediction. In the simulated and real
wind power experiments, we can see that the GCN does
not perform as well as in wind speed prediction. It is
mainly because the wind power data is not so smooth as
the wind speed data due to the operation intervention of wind
farms, such as when the wind speed is higher than the
limitation of the turbines; the wind power data will always
be the highest value other than keeping increasing when the
wind speed increases. If the wind speed is less than the
specific speed that the turbines need, the wind power data
is zero directly other than a small value like the wind speed.
What is more, some wind farms may directly shut down wind
turbines to protect them when the wind is extremely strong
while others nearby may keep running. The character of wind
power data leads to the lower prediction accuracy.

What is more, for the sake of showing the improvement of
prediction results by GCN is not occasional, we also calculate
the average value of prediction results of all wind stations in
wind speed and power forecasting experiments. From
Tables 4–6, we can see that GCN not only improves the
prediction result for a specific station, it also owns the
ability to enhance prediction accuracy for all wind stations
although it still has a drawback when predict the wind power
directly.

Comparison of the Prediction Between
GCN-GRU and GRU
Figures 4, 5 are the prediction comparisons between GCN-GRU
and GRU in wind speed and wind power prediction. In Figure 4,
we can see that the change of wind speed is smooth although the
curve fluctuates strongly. However, the interventions of wind
turbines are obvious in both the NREL and NRGStream wind
power, there exist many horizontal lines in the wind power data,
and these interventions may lead to the bad performance of GCN
in wind power predictions.

CONCLUSION

In this paper, a GCN model is proposed to improve precision
of wind prediction; we evaluate the GCN-GRU model not
only on 10 and 100 m height wind speed prediction, but also
through wind power prediction. To show the performance of
the GCN-GRU model, the final results are based on a
collection of 10 experiments for each data set; the
forecasting results are quite stable in different prediction
steps. Although the GCN-GRU model does not achieve
better performance than the GRU model in short-term
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NRGStream wind power prediction, the results of five
different wind data sets prove GCN’s ability to capture
spatial influence and improve the prediction results.
Finally, our study offers new findings and may add
considerable value to the energy management field; our
finding confirms that the GCN model has positive
influence on wind prediction. What is more, the failure of
GCN in short-term wind power prediction also tells us that, if
we want to achieve a higher accuracy in wind power
prediction, it is better to combine the wind speed
prediction with the wind power data.
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