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The emergence of antibiotic resistance genes (ARGs) is a great risk to the ecosystem and
human health; however, there are rare systematic studies about the characterization and
source identification of ARGs in continental rivers. This study examined the occurrence of
bacterial communities and ARGs in the water and soil of the Ili River using bacterial testing
and metagenomic sequencing. Total dissolved solids (TDSs) and total bacterial count
significantly increased from upstream to downstream sites. Enterococcus showed the
highest abundance in Cockdara. Metagenomic sequencing revealed that the bacterial
communities of surface water were different from those of nearshore soils. Among the top
10 ARGs, fluoroquinolone and aminoglycoside resistance genes exhibited dominant
relative abundance, but only the multidrug resistance gene adeF was common in all
water and soil samples. Proteobacteria carried almost 61% of ARGs, suggesting that
these could be the main antibiotic-resistant bacteria (ARB) in the Ili River. Proteobacteria
and ARBwere mainly distributed in Yining city and Cockdara. Furthermore, the distribution
pattern among the five sampling sites indicated that human activity and animal husbandry
greatly contributed to the ARB and ARG contamination. This study first investigated the
occurrence and distribution pattern of ARGs in the Ili River, demonstrating a clear
correlation between bacteria and ARGs, and ARGs and mobile genetic elements (MGEs).

Keywords: bacterial community, antibiotic resistance genes, indicator bacteria, metagenomic analysis, antibiotic-
resistant bacteria

INTRODUCTION

Worldwide, deterioratingwater quality has become a critical environmental problem, causing a great threat
to human health, ecological biodiversity, and even social stability (Landrigan et al., 2020). The river system,
a precious fundamental resource for living species, plays critical roles as was for drinking, agricultural
irrigation, traffic channel, and recreational activities. However, the river system can be a pool of various
pollutants, including physical, chemical, and biological pollutions (Hu et al., 2017). The pollution of surface
water is the most severe environmental concern causing diseases (Landrigan et al., 2020). Several studies
showed a close link between river water pollution and the increasing incidence of gastrointestinal diseases
(Rodriguez-Tapia and Morales-Novelo, 2017), infectious diseases (Johnson et al., 2012), waterborne
endemic fluorosis, and arsenic poisoning (Boelee et al., 2019; Karkman et al., 2019).
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Environmental microbiota, an important ingredient of the
river ecosystem, carries out various essential biogeochemical
processes, including nutrient cycling and pollutant degradation
(Guan et al., 2018). However, the ever-growing economics and
human activities have increased wastewaters discharged to the
rivers, increasing community pathogens from hospitals,
pharmaceutical industries, and animal husbandry (Molina
et al., 2014; Stachler et al., 2017; Jennings et al., 2018). Fecal
indicator bacteria, referred to as Escherichia coli and Enterococci,
are routinely used to assess bacterial pollution of water systems
(Boehm et al., 2018; Aydin et al., 2019). Some polluted waters
such as the Haihe River and Taihu Lake contain high density of
fecal indicator bacteria (Wang et al., 2017). A study showed the
presence of seven potentially pathogenic genera including
Acinetobacter, Enterococcus, and Streptococcus in Taihu Lake
(Vadde et al., 2019). Bacterial pathogens, with low-dose
infection and the possibility of secondary spread, are one of
the most serious pollutants.

Antibiotics are widely used in medicine, animal husbandry,
and agriculture to treat bacterial infections (Liu et al., 2019).
However, the misuse/overuse of antibiotics has induced the
emergence of ARGs and ARB in the natural environment,
posing potential threats to human health and ecosystems
(Stange et al., 2019; Uprety et al., 2020). The transmission and
dissemination of ARGs induce ecological toxicity to aquatic
ecosystems and severe infection to humans and livestock (Guo
et al., 2019). ARGs have been identified as emerging
environmental pollutants and one of the most serious threats
to human health by the World Health Organization (Zheng et al.,
2017; Yang et al., 2018). ARGs have been detected in various
environments, such as surface water, sediments, soils, and
underground water. Among these, surface water is an
important reservoir of ARGs (Zhang et al., 2020). Previous
investigations demonstrated that ARG spread is strongly
related to human activities, like stock farming, and
environmental factors, such as antibiotics, heavy metals,
environmental estrogens, and MGEs (Zheng et al., 2017;
Stange et al., 2019). Surface water such as the riverine system
is more susceptible to human activities and therefore is an ideal
setting for the prevalence of ARGs.

The abundance and distribution of ARGs in the global ocean
suggest that quinolone, bacitracin, and fosmidomycin ARGs cause
great environmental pressure (Cuadrat et al., 2020). In Italy, Sul1,
ermB, blatem, tetw, and qnrs resistant E. coli were isolated from the
Tiber and Arrone rivers (Pantanella et al., 2020). In China, there have
been numerous investigations into ARGs; a study indicated that the
most prevalent ARGs in the Haihe River were sulfonamide and
tetracycline resistance genes (Dang et al., 2017). In the Bohai Sea,
sulfonamide resistance genes (sul1 and sul2) are highly abundant,
while other ARGs are present in low amounts. In 2021, 11 types of
ARGs including eight tetracycline resistance genes, two sulfonamide
resistance genes, and one β-lactam resistance gene were detected in
the Yangtze River (Zhang et al., 2021). Likewise, in the Ba River in
Xi’an, tetC, blaTEM, ermF, sul1, cmlA, and gyrA were found to be the
predominant ARGs. Most published studies are about the ARB and
ARGpollution in outflow rivers, while there are rare studies onARGs
in inner rivers.

Inner rivers play important roles in regulating the local climate
and biological diversity. Particularly, due to drought and scarce
precipitation, the ARB and ARG pollution of inner rivers is more
vulnerable to human activities. The Ili River, a typical inner river,
originates in the middle of the Tian Shan Mountains, and it is an
international river covering about 1,237 km across China and
Kazakhstan. This river is a critical source of water for agriculture,
husbandry, and industrial production in Xinjiang Province,
China. In addition, the Ili River flows through several cities in
Xinjiang, thereby receiving significant sewage discharge. So far,
there are only few studies about the bacterial and ARG
contamination of the Ili River.

The present study selected different sampling points close to
the towns with low-population density areas, urban areas with
frequent human activities, and grazing areas to investigate the
bacterial pollution, and the distribution and abundances of
bacterial community and ARGs in the Ili River using
metagenomics, bacteriological analysis, and antibiotic
susceptibility testing. The objectives of this study were to
illustrate the effective factors related to the occurrence and
distribution of ARGs and explore the relevance of bacterial
community, MGEs, and ARGs.

MATERIALS AND METHODS

Sampling Sites and Sample Collection
The detailed sampling sites are shown in Figure 1. According to
the climate, ecology, and geographical characteristics of the Ili
River, five sampling sites were selected in the mainstream and
upstream tributary of the river, namely, upstream tributary Kashi
River (BGC), Yining city (YN), Cockdara (KKDL), Huiyuan city
(HY), and the National Highway 219 (B219), respectively. At each
site, triplicate water samples were collected in sterile 10-L
polythene bottles from the selected sampling sites, 100 m
upstream and 100 m downstream from the sampling point. At
the time of sampling, water temperature (T), pH, and total
dissolved solids (TDSs) were measured with a handheld pH
meter (pH808, SMART SENSOR, China) and a TDS-
measuring instrument (AR8011, SMART SENSOR, China),
respectively. Two liters of water from each sample was filtered
through a 0.22-µm filter membrane (Millipore, United States),
and the membranes containing bacterial filtrates were stored in
centrifuge tubes containing phosphate-buffered saline (PBS) at
4°C for the following experiment. In addition to the five water
samples, four soil samples, except for the sampling site B219, were
collected from the respective riverbank sites.

Detection of Total Culturable and Indicator
Bacteria
The total count of culturable and indicator bacteria (total
coliforms, E. coli, and Enterococcus) was estimated for each
water sample after leaving the samples for more than 30 min.
The numbers of total culturable bacteria (CFU/ml) were counted
using the 3M Petrifilm Aerobic Count plate (3M, MN, Unites
States) (Sinclair et al., 2021). The indicator bacteria (MPN/
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100 ml), including total coliforms, E. coli, and Enterococcus were
enumerated for each sample using the Colilert and Enterolert kits
according to the manufacturer’s instructions (IDEXX
Laboratories, Westbrook, ME) (Sercu et al., 2011; Ledwaba
et al., 2019).

Isolation and 16S rDNA Gene Identification
of Pathogenic Bacteria
Bacteria in water samples (2 L each) were collected through filtration
using a 0.22-µm microporous membrane (Millipore, United States).
Then, the trapped bacteria on the microporous membrane surface
were resuspended in sterile phosphate-buffered saline (PBS). The
bacterial suspension was streaked on the respective selective medium
plate to grow Enterococcus (Enterococcus chromogenic medium,
Hopebio, Qingdao, China), Staphylococcus aureus (Staphylococcus
chromogenic medium, Hopebio, Qingdao, China), Salmonella
(Salmonella chromogenic medium, Hopebio, Qingdao, China),
and Coliform (E. coli/Coliform Chromogenic Medium, Hopebio,
Qingdao, China) at 37°C for 24 h. Typical colonies were picked
up according to the color, shape, and properties of the colony as
described in the manufacturer’s instructions. Streak plate isolations
on the respective selective medium plate were repeated at least
three times.

After bacterial isolation, theDNAwas extracted from bacterial cell
pellets using the TIANamp Bacteria DNA Kit (Tiangen, Beijing,
China). DNA samples were sent to the Allwegene Technologies
(Beijing, China) for Sanger sequencing. The sequencing results were
matchedwith theNCBI database. The preselected bacterial 16S rRNA
sequence and the bacterial sequence were aligned by ClustalW in
MEGA 5. After deleting non-aligned bases, the neighbor-joining
method was used to construct a phylogenetic tree with 1,000
bootstrap replicates.

Antibiotic Susceptibility Testing
After incubation for 24 h, the bacterial suspension was soaked in
Mueller–Hinton agar (MH). Then, the antibiotic susceptibility
was tested using the disc diffusion method (Kirby–Bauer). The 13
types of antibiotic disc used in this study are listed in Table 2. The
antibiotic discs were placed on the plate at a distance of no less
than 25 mm, and the results were analyzed after incubation for
18–24 h at 30°C.

DNA Extraction and Metagenomic
Sequencing
The genomic DNA of the soil samples was extracted using the
TIANamp Soil DNA Kit (Tiangen Biotech, Beijing, China)
following the manufacturer’s instructions. The DNA
concentration was measured using the Qubit dsDNA Assay
Kit in a Qubit 4.0 Fluorometer (ThermoFisher Scientific,
Waltham, MA, United States). To examine the diversity and
abundance of bacteria and ARGs, a total amount of 1 μg DNA per
sample was used as an input material. Sequencing libraries were
generated using the NEBNext® UltraTM DNA Library Prep Kit
for Illumina (NEB, United States) following the manufacturer’s
recommendations, and index codes were added to attribute the
sequences to each sample. The raw data obtained from the
Illumina HiSeq sequencing platform was processed using
Readfq (V8, https://github.com/cjfields/readfq) to acquire the
clean data for subsequent analysis. The specific processing
steps were as follows: a) reads containing low-quality bases
(default quality threshold value ≤38) above a certain portion
(default length of 40 bp) were removed, b) reads with a certain
percentage of N bases (default length of 10 bp) were removed, and
c) reads sharing an overlap with the adapter above a certain
portion (default length of 15 bp) were also removed.

FIGURE 1 | Sampling sites of the Ili River.
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Gene Prediction and Abundance Analysis
The scaftigs (≥500 bp) assembled from both single and mixed
were all predicted the open reading frame (ORF) by
MetaGeneMark (V2.10, http://topaz.gatech.edu/GeneMark/)
software, and length information was filtered to be shorter
than 100 nt from the predicted result with default parameters.
For ORF prediction, CD-HIT software (V4.5.8, http://www.
bioinformatics.org/cd-hit) was adopted to avoid redundancy
and obtain the unique initial gene catalog (the genes here refer
to the nucleotide sequences coded by unique and continuous
genes), and the parameter options were −c 0.95, −G 0, −aS 0.9, −g
1, and −d 0.

Bacterial Community, ARGs, and MGEs
Annotation
For bacterial community identification, the bacteria, fungi,
archaea, and virus sequences were searched against the NR
database (version: 2018-01-02, https://www.ncbi.nlm.nih.gov/)
of the NCBI using DIAMOND blastp, with a cutoff e-value of
1e−5. In case a sequence was aligned to multiple results, the result
with the E-value ≤ the smallest E-value *10 was selected to help
the LCA algorithm to ensure the species annotation of sequence.
A table containing the number of genes and the abundance
information of each sample in the taxonomic hierarchy
(kingdom, phylum, class, order, family, genus, and species)
was prepared based on the LCA annotation results. The
abundance of a species is equal to the sum of the gene
abundance annotated for that species; the gene number of a
species in a sample equals the number of genes whose abundance
is non-zero.

Resistance Gene Identifier (RGI) software was used to align the
Unigenes to CARD database (https://card.mcmaster.ca/) with the
parameter setting are blastp and E-value ≤ 1e−30. Based on the
aligned result, the relative abundance of ARO, the resistance
genes’ abundance distribution in each sample, and the species
attribution analysis of resistance genes were conducted, and the
“relative abundance” (ppm, parts per million) was defined as one
hit in one million aligned sequencing genes.

Mobile genetic elements (MGEs) were identified using
BLASTP to compare the ARG-carrying genes to A
CLAssification of Mobile genetic Elements (ACLAME) amino
acid database for plasmids, using an e-value ≤ 10−5 and a cutoff of
≥50% query coverage. The ISfinder database (Siguier, 2006) was
used to find insertion sequences (ISs) with an e-value ≤ 10−5 and a
cutoff of ≥45% query coverage. In addition, the IntegrALL
nucleotide database (Moura et al., 2009) was used to identify
integrons, with an e-value ≤ 10−5 and a cutoff of ≥45% query
coverage.

Network Analysis
The networks were created as follows: a correlation matrix was
constructed using ARGs and metagenomic data to explore the
potential correlations among ARG subtypes, MGEs, and
taxonomy (at the genus level) that occurred in at least 70% of
samples, using R (psych package, v3.4.0). A correlation between
two nodes was considered statistically significant if r ≥ 0.85 and

p ≤ 0.05 and was adjusted using the Benjamini–Hochberg
method. The correlation between two nodes was termed the
edge file, and a description was added to the node file
comprising the phylum taxonomy at the genus level and the
ARG type or the ARG subtype. The network analysis was
visualized using the interactive platform Gephi (v 0.9.2)
(Bastian et al., 2009).

Statistical Analysis
Data were presented as mean ± SD and analyzed using one-way
analysis of variance (ANOVA), followed by the
Student–Newman–Keuls test (SNK) and Spearman’s
correlation analysis using SPSS 22 statistical software. PCA
analysis was performed using R (ade4 package, version 2.15.3),
showing the different distribution of bacterial community
between water and soil samples. Diversity analysis was used to
demonstrate the diversities of ARGs and bacterial communities in
different sampling sites. Simpson, Shannon, and inverse Simpson
indices were calculated using R (vegan package, version 2.15.3). A
p value < 0.05 was considered statistically significant.

RESULTS

Overview of Ili River Quality
The physical and biological characteristics of surface water
samples are shown in Table 1. The sample pH ranged from
8.1 to 8.3, showing a significant difference among the five
sampling sites. TDSs and total bacterial count showed a
significant increase from upstream to downstream, that is, the
total number of culturable bacteria was the lowest at the sampling
site BGC and the highest at B219 (p < 0.05). Concerning the
indicator bacteria, the amounts of E. coli showed no significant
difference, ranging from 21 to 50 MPN/100 ml (Figure 2).
Enterococcus amounts ranged from 18 to 183 MPN/100 ml,
and sampling sites BGC and HY had the least amount of
Enterococcus, followed by YN, B219, and KKDL. Notably, the
KKDL site showed significantly high numbers of Enterococcus
compared to the other four sampling sites. After 24-h incubation
of the supernatant, Coliform and Enterococcus faecalis were
cultured from all five samples, and Staphylococcus aureus was
found except for the BGC site (Table 2). These results were
proved by 16S rDNA gene identification and phylogenetic
analysis (Supplementary Figure S1).

Bacterial Community Structure in the Ili
River
In total, 15 water samples and four soil samples were analyzed.
The results of metagenomic sequencing showed a significant
difference between the community composition of soil and
surface water samples (Figure 4B). Proteobacteria was the
most abundant phylum in water samples followed by
Bacteroidetes (Figure 3A). In addition to BGC, Cyanobacteria
and Planctomycetes were also found in water samples,
Proteobacteria showed a higher abundance (75.3%) in BGC
samples than others (p < 0.05). Importantly, Acidobacteria,
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Thaumarchaeota, Gemmatimonadetes, and Chloroflexi were also
detected in the soil samples, which showed higher species
abundance than water samples (Figure 3A).

As for the genus level, the bacterial community in the water
samples of BGC showed a higher α-diversity than other sites
(Table 3). Pseudomonas (most abundant), Hydrogenophaga,
Limnobacter, and Flavobacterium were the dominant bacteria
in water samples (Figure 3B). This was completely different
from the soil samples, which showed a higher abundance of
Nocardioides and Sphingomonas. Pseudomonas in BGC and
YN water samples showed higher relative abundance than the
other sampling sites, while B219 had the highest abundance of
Flavobacterium (Supplementary Figure S2). The relative
abundance of Streptomyces (almost 5.3%) was higher in
BGC samples than in other soil samples. All these
indicated the different relative abundance of species at

different sampling sites. In addition, the species abundance
of water and soil samples varied within the same sampling site.
These results agreed with PCA of the water and soil samples
(Figure 4A).

Diversity and Abundance of ARGs in the Ili
River
As shown in Figure 5A, the composition of ARGs in water
samples is more complex than that in soil samples. Also, almost
all soil ARGs were present in water samples. Among the top 20
ARGs, 13 belong to antibiotic efflux genes that were extensively
present in both water and soil samples. The top 20 ARGs were
classified into multidrug resistance, fluoroquinolone,
aminoglycoside, and tetracycline resistance genes. The relative
abundance of multidrug resistance gene adeF was highest
(40–95 ppm) among all target ARGs and distributed in all the
water and soil samples. This indicated fluoroquinolones,
tetracyclines, or ARB pollution in the whole Ili River.

Notably, the relative abundance of ARGs at the BGC site was
higher than that at the other sampling sites, and the overall trend
was BGC > YN > KKDL ≈ HY > B219. Diversity analysis also
showed a higher α-diversity of ARGs in BGC samples
(Figure 5B). The target ARGs in riverbank were
approximately the same (Figure 6). Among the top 10
selected ARGs in water samples, the relative abundance of
multidrug ARGs smeF was higher in the YN samples than in
the other sampling sites (Supplementary Figure S3), but the
other seven ARGs (adeF, ANT2-Ia, APH3-Ib, APH6-Id, qacH,
sul1, and tet39) were higher in BGC samples (Supplementary
Figure S3). ACC-3 was mainly found in the soil samples of KKDL
(35 ppm) while remaining undetected in other soil samples and
water samples. Also, the bacteria of BGC sites primarily carried
fluoroquinolone, tetracycline, aminoglycoside, and sulfonamide
ARGs, while multidrug ARGs TEM-116wasmainly carried by the
bacteria of the KKDL site.

Correlation Among ARGs, MGEs, and
Bacteria
Antibiotic susceptibility testing of the total bacteria suggested that
YN showed the utmost variety of culturable ARB, while BGC and
B219 showed least diversity (Figure 7A). In addition to
ampicillin, all the water samples were resistant to vancomycin,
which is considered the last line of defense (Figure 7B;
Supplementary Tables S1–S4). Enterococcus faecalis, purified
from water samples of YN, HY, and B219, was resistant to several
antibiotics, suggesting the serious pollution of antibiotic-resistant

TABLE 1 | Physicochemical properties in the Ili River.

Parameter Sampling sites

BGC YN KKDL HY B219

pH 8.3 8.1 8.1 8.2 ± 0.1 8.1
TDS 302.7 ± 8.5 336.3 ± 2.1 343.3 ± 1.2 358.0 ± 2.7 391.3 ± 2.3
Bacteria (CFU/ml) 30.0 ± 4.4 198.0 ± 24.6 212.0 ± 31.8 294.0 ± 65.1 305.0 ± 13.0

FIGURE 2 | Concentration of fecal indicator bacteria (FIB) in five
sampling sites.

TABLE 2 | Results of purification of bacteria.

Sampling site Identification of strains

Coliform Enterococcus Staphylococcus aureus

BGC + + −

YN + + +
YN + + +
HY + + +
B219 + + +

“+” means detected, and “−” means not detected.
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Enterococcus faecalis. Enterococcus strains were resistant to
Streptomycin (Supplementary Table S2). Antibiotic-resistant
Staphylococcus aureus was detected only in YN and KKDL
samples, while Staphylococcus aureus from HY and B219 was
not antibiotic-resistant (Supplementary Table S3). Coliform
acquired from the water samples of YN was resistant to
multiple antibiotics, especially at downstream sampling sites
(Supplementary Table S4). In general, Enterococcus faecalis
and E. coli were resistant to a wider variety of antibiotics. The
ARB pollution was more serious at YN and KKDL sites, which
can be attributed to crowd activities.

To investigate the association between ARGs and the
bacterial community, a correlation analysis was carried out
between the relative abundance of ARGs (based on CARD
analysis) and bacteria. The results indicated a significant
correlation between ARGs and bacteria in the Ili River. As
shown in Supplementary Figure S4, Proteobacteria carried
the most multidrug ARGs (61%), and Bacteroidetes mostly
carried fluoroquinolone ARGs (such as mfpA and mdtk),
macrolide, and glycopeptide ARGs. AxyY and pgpB
negatively correlated with Actinobacteria (Figure 8A),
indicating their low transfer risk. Also, aminoglycoside
APH3-Ib and sulfonamide sul1 positively correlated with
many kinds of MGEs (Figure 8B), indicating a high risk of
horizontal transfer.

DISCUSSION

The Ili River is important for agriculture, husbandry, and
industrial activities in Xinjiang Province, China. Drought and
scarce precipitation promote the accumulation of ARB and ARGs
in the Ili River, causing serious challenge to humans, agriculture,
and animal husbandry.

The present study examined the bacterial community and
ARG profile in the Ili River. The concentration of fecal indicator
bacteria (FIB) is routinely used to report the bacterial pollution in
the water environment. This study showed that the total bacteria,
E. coli, and Enterococcus were significantly lower in the Ili River
than in other rivers with frequent human activities, such as the
Haihe and the Songhua rivers (Lee et al., 2013; Ren et al., 2020;
Wang et al., 2017). It can be attributed to relatively low
population density along the Ili River (Ili Kazakh Autonomous
Prefecture 10 people/km2, Haihe River Basin 384 people/km2),
which emphasizes that bacterial pollution in rivers is potentially
affected by human activities. Similarly, the number of non-
redundant genes in the sparsely populated town (BGC) was
considerably lower than that in crowded cities (YN and
KKDL) and grazing areas (HY and B219) (Supplementary
Figure S5). This again suggested that the bacterial pollution in
rivers probably originating from human activities or animal
husbandry pollution. Also, the higher levels of indicator
Enterococcus in KKDL samples (urban areas) indicated that
this river environment might be extensively affected by urban
sewage discharge (Lutterodt et al., 2012; Lu et al., 2018). In
addition, TDSs and total bacterial count were significantly
higher at downstream sites, suggesting the poorer water
quality downstream than upstream regions.

Analyzing the types of ARGs, fluoroquinolone,
aminoglycoside, sulfonamide, and tetracycline resistance genes
were the most prevailing types in the Ili River. The antibiotic
susceptibility testing also indicated that isolates from the Ili River

FIGURE 3 | Relative abundance of bacterial groups of top 10 genera. Phylum level (A); genus level (B). BGC, YN, KKDL, HY, and B219 refer to the relative
abundance of bacterial community in water samples, S. BGC, S.YN, S. KKDL, and S.HY refer to the relative abundance of bacterial community in soil samples.

TABLE 3 | Diversity index at genus level.

Sample Shannon Inverse Simpson

BGC 3.165 ± 0.02 6.103 ± 0.32
YN 3.058 ± 0.06 5.021 ± 0.14
KKDL 3.058 ± 0.03 4.954 ± 0.02
HY 3.091 ± 0.01 5.086 ± 0.03
B219 3.084 ± 0.04 4.875 ± 0.05
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displayed resistance to fluoroquinolone, aminoglycoside,
sulfonamide, chloramphenicol, polypeptide, and tetracycline
antibiotics. Previous studies report that tetracycline and
sulfonamide resistance genes were prominent in livestock
manures (Ji et al., 2012); fluoroquinolone, sulfonamide, and
tetracycline are also frequently used in animal husbandry
(Zhao et al., 2010), while aminoglycoside, macrolides, and
lactams are used in a hospital setting (Jia et al., 2014).
Therefore, the ARG pollution in the Ili River might result
from animal manures, community sewage, or medical waste.
Getahun et al. (Agga et al., 2019) found that the concentration of
ARGs remained consistently higher in the feeding area than in the
grazing area in the pasture–feedlot-type setting for beef cattle
cultivation. Likewise, the free grazing farming in Xinjiang may
alter the distribution of ARGs elsewhere. Compared with
traditional husbandry (Ji et al., 2012), the ARGs in the Ili
River showed significantly lower relative abundance such as
for sulfonamide (approximately 10−6 to 10−5 in Ili River, 10−5

to 10−2 in animal husbandry) and tetracycline resistance genes

(approximately 10−7 to 10−5 in the Ili River, 10−6 to 10−3 in animal
husbandry). Accordingly, the four downstream sites showed no
significant difference in the ARGs. Therefore, in contrast to
traditional animal husbandry (Ji et al., 2012; Zhu et al., 2013;
Agga et al., 2019), we speculate that free grazing did not cause
severe pollution of ARGs in the Ili River.

Magnanimous evidence indicates that human activities
exacerbate the spread of ARGs (Chen et al., 2019). The
present study also suggested the same. This raises the question
of whether the presence of an abundant bacterial community
would be a potential reservoir for ARGs. This study found that the
upstream sampling site BGC had the lowest total bacterial count
but the highest abundance of ARGs. The phenomenon can be
explained as follows: 1. Proteobacteria showed the highest relative
abundance in BGC samples, which carried the most ARGs (61%);
therefore, it led to the highest abundance even with a low total
bacterial count. 2. Proteobacteria showed a significant relation
with adeF, which accounted for almost 15% of the total ARGs,
adeF, and thus an antibiotic efflux-related gene might induce

FIGURE 5 | Diversity and relative abundance of ARGs. (A) Diversity analysis of ARGs in all water samples; (B) relative abundance of ARGs of top 20.

FIGURE 4 | Bacterial diversity between water and soil at the genus level. (A) PCA and (B) ANOSIM.
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other multidrug resistance genes. 3. Much evidence indicates that
the spread of ARGs greatly contributes to severe pollution
situations (Munro, 2015; Han et al., 2018); apart from adeF,
other ARGs such as APH3-Ib, sul1, tet39, APH6-Id, and ANT2-Ia
accounted for about 30.5% abundance in BGC samples, which

positively correlated with many kinds of MGEs that possibly
aggravated the spread of ARGs.

Normally, the abundance of the total ARGs reduces with water
flow (Xu et al., 2015; Liu et al., 2019). This study also supported this as
the total and relative abundances of seven types of ARGs (adeF,

FIGURE 7 | Numbers of antibiotic-resistant bacteria. (A) The numbers of antibiotic-resistant bacteria in different sampling sites. (B) The numbers of bacteria
resistant to different antibiotics.

FIGURE 6 | Distribution of ARGs in every sampling sites. The ARG classes on the left and the sampling locations on the right side are presented as colored bands.
Bar lengths on the outer ring represent the percentage of ARGs in each sample. The inner layer numbers indicate the relative abundances of ARG classes from a given
sample (left) and the relative abundance of specific ARG classes in samples (right).
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FIGURE 8 | Correlation between ARGs and bacteria, and ARGs and MGEs based on network analysis. Co-occurrence patterns between the bacteria and ARG
subtypes (A); ARG subtypes and MGEs (B). The red line indicates a positive correlation between two nodes. The blue line represents a negative correlation. The size of
each node is proportional to its number of connections.
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ANT2-Ia, APH3-Ib, APH6-Id, qacH, sul1, and tet39) were
significantly higher in BGC samples than in the downstream sites,
and the diversity analysis indicated that a higher α-diversity of ARGs
was observed in BGC samples than in other sites. The other possible
causemight be the inflow of additional tributaries. As the bacteria are
critical hosts of ARGs (Zhou et al., 2017), similar composition of the
bacterial community in the four downstream sampling sites led to a
similar occurrence and distribution of ARGs.

The potential main hosts of ARGs in the Ili River were
Proteobacteria, Bacteroidetes, and Actinobacteria, which is
consistent with other findings in the Yellow River Delta,
Chongqing municipality, and the Karst River (Li et al., 2020;
Wang et al., 2020; Xiang et al., 2020); however, the distribution of
ARGs was different in different studies. It is reported that human
activity promoted the spread of sulfonamide and tetracycline
resistance genes in many rivers like the Yangtze River, Liaohe
River, and the northern Yellow Sea, while this study found the
fluoroquinolone, tetracycline, and aminoglycoside resistance
genes as the most abundant ARGs. This could be due to
different antibiotic usage in this area. The frequently reported
antibiotics in both influents and effluents include sulfonamides
and tetracyclines ranged from a few ng/L to 10 μg/L (Qiao et al.,
2018), while some studies in Xinjiang showed that quinolone was
present in the highest concentration with hundreds to thousands
ng/L, followed by sulfonamides and tetracyclines ranging from
tens to hundreds ng/L along the sewage treatment process (Liu
et al., 2017). Previous studies demonstrated the correlation
between ARGs and other pollutants induced by human
activity, such as the concentration of antibiotics, heavy metals,
sewage, and livestock (Zhou et al., 2017; Zhang et al., 2018; Ma
et al., 2019; Ohore et al., 2020). Therefore, lower antibiotic
discharge may alleviate the pressure of ARG pollution. The
relative abundance of sulfonamide resistance genes ranged
from 4.12 × 10−5 to 2.47 × 10−2 in the Ba River, Xi’an (Guan
et al., 2018); however, the most abundant ARGs (adeF) in the Ili
River ranged from 9.49 × 10−6 to 1.09 × 10−4. These results
indicated that the relative abundance of ARGs in the Ili River was
much lower than that in outflow rivers due to the low population
density and lesser use of antibiotics in this region. Also, the
different usage of antibiotics between free grazing and intensive
farming areas seems to be a critical factor. Overall, the humanities
and environmental factors that caused the different discharge of
ARGs must be further explored. The concentration of antibiotics,
heavy metals, physicochemical properties of the river water,
season, and rainfall should be evaluated to examine the source
identification, prevalence, and subduction of the bacterial
community and ARGs in the Ili River.

CONCLUSION

This study showed that TDSs, total bacterial count, E. coli, and
Enterococcus were significantly lower in upstream sampling

sites than in the downstream, indicating a deteriorating river
environment with increased human and animal husbandry
activities. However, the relative abundance of ARGs in the Ili
River was much lower than that in outflow rivers; free grazing
did not cause severe pollution of ARGs in the Ili River.
Fluoroquinolone, aminoglycoside, sulfonamide, and
tetracycline resistance genes were the most prevailing types
in the Ili River, and the ARGs in crowded cities and grazing
area showed no significant difference. The present study first
investigated the occurrence and distribution pattern of ARGs
in the Ili River and demonstrated the potential risk of ARGs,
which will provide a profitable reference to the treatment of
water environment of Ili River.

The sequencing data have been uploaded to https://www.
ebi.ac.uk/ena/browser/view/PRJEB49834? Accession:
PRJEB49834.
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