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Coronavirus disease 2019 (COVID-19) has become a major public health concern
worldwide. In this study, we aimed to analyze spatial clusters of the COVID-19
epidemic and explore the effects of population emigration and socioeconomic factors
on the epidemic at the county level in Guangdong, China. Data on confirmed cases,
population migration, and socioeconomic factors for 121 counties were collected from 1
December 2019 to 17 February 2020, during which there were a total of 1,328 confirmed
cases. County-level infected migrants of Guangdong moving from Hubei were calculated
by integrating the incidence rate, population migration data of Baidu Qianxi, and the
resident population. Using the spatial autocorrelation method, we identified high-cluster
areas of the epidemic. We also used a geographical detector to explore infected migrants
and socioeconomic factors associated with transmission of COVID-19 in Guangdong. Our
results showed that: 1) the epidemic exhibited significant positive global spatial
autocorrelation; high–high spatial clusters were mainly distributed in the Pearl River
Estuary region; 2) city-level population migration data corroborated with the incidence
rate of each city in Hubei showed significant association with confirmed cases; 3) in terms
of potential factors, infected migrants greatly contributed to the spread of COVID-19,
which has strong ability to explain the COVID-19 epidemic; besides, the companies,
transport services, residential communities, restaurants, and community facilities were
also the dominant factors in the spread of the epidemic; 4) the combined effect produced
by the intersecting factors can increase the explanatory power. The infected migrant factor
interacted strongly with the community facility factor with the q value of 0.895. This
indicates that the interaction between infected migrants and community facilities played an
important role in transmitting COVID-19 at the county level.
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INTRODUCTION

The COVID-19 epidemic has spread worldwide, becoming a
pandemic. It affects a large number of people, regardless of
nationality, ethnicity, gender, or age. To contain the spread of
COVID-19, the harshest measures were employed by the Chinese
government, including a lockdown of all cities in Hubei province
and launch of a first-level public health response (State Council,
2020), to protect people from the epidemic. These measures have
effectively curbed the spread of COVID-19 and eased the growth
of confirmed cases in China (Jin et al., 2020; Tian et al., 2020;
Zhou et al., 2020). With urgent and effective control measures,
the daily new confirmed cases gradually decreased since 14
February 2020 (Tian et al., 2020). As of 20 April 2020, a
cumulative total of 84,250 confirmed cases and 4,642 deaths
were reported in China, with 2,230,384 confirmed cases and
153,205 deaths in over 200 countries globally, outside China,
with a rapid growth of confirmed cases in North America and
Europe. The research studies have been indicating that the travel
may have accelerated the spread of the COVID-19 epidemic
within China and internationally (Deeb and Jalloul 2020; Gibbs
et al., 2020). The travel restrictions may significantly affect the
COVID-19 epidemic trajectory, which leads to a high reduction
of COVID-19 transmission (Chinazzi et al., 2020; Docquier et al.,
2021). However, a relaxation of travel restrictions would increase
the spread risk of the COVID-19 epidemic (Deeb and Jalloul
2020; Geng et al., 2021). At present, the epidemic has been
effectively controlled in China because China adopted the
restricted measures; however, it has been accelerating globally.

COVID-19 has attracted global attention and has been
analyzed and explored in terms of clinical diagnosis (Huang
C. et al., 2020; Guan et al., 2020), transmission, prediction
(Hu et al., 2020a; Chen 2020; Liu et al., 2020; Wu et al., 2020),
and the effects of control strategies (Huang S. et al., 2020; Lin
et al., 2020). SIR (susceptible–infected–recovered), SEIR
(susceptible–exposed–infectious–recovered), and their
improved models have been implemented in predicting the
spread and confirmed cases of the epidemic (Wang 2015;
Avilavales and Cervantesperez 2019; Chen X. et al., 2020; Hu
et al., 2020b; Zhao and Chen 2020) and the transmission of
COVID-19 by integrating population migration data (Yang et al.,
2020a; Chen Y. et al., 2020; Kraemer et al., 2020; Zhong et al.,
2020). Some researchers developed online epidemic maps with
daily statistical data, enabling governments and people to
objectively understand the spatiotemporal patterns and spread
of COVID-19 (Dong et al., 2020). Integrating the multiple data of
populationmigration data, traffic network data, service provision,
residents’ distribution, and community facilities, the
spatiotemporal statistics methods were applied to further
explore the spatiotemporal characteristics and spatial risk
factors of COVID-19 transmission (Li W. et al., 2020; Li X.
et al., 2020; Chen Z. et al., 2020; Pourghasemi et al., 2020; Xia
et al., 2020).

The spatiotemporal statistics have been demonstrated to be
practical methods to investigate spatial correlation and clustering,
the transmission network, and characteristics of epidemics, such
as SARS of 2003 (Wu et al., 2005; Reynolds et al., 2008; Cao et al.,

2010; Hu et al., 2013; Cao et al., 2016). Cui et al. (2021) have
compared the spatial and temporal transmission differences
between SARS and COVID-19 and analyzed their influence
factors. The results indicated that both SARS transmission and
COVID-19 transmission have obvious spatial aggregation and
proximity propagation characteristics, and their spatial
transmissions were more susceptible to traffic network,
population migration, population density, and service facilities
(Cao et al., 2008). However, the COVID-19 epidemic showed
greater transmission intensity and range than SARS. Wang and
Zhao (2020) analyzed the spatiotemporal distribution pattern of
the COVID-19 epidemic of urban agglomerations in China at city
level by using the spatial autocorrelation and the geographic
detector methods. The results indicated that the COVID-19
epidemic has significant spatial agglomeration characteristics
at city level. The socioeconomic factors, including population
density, urban and rural construction, and transportation, were
closely related to the spread of the COVID-19 epidemic (Zhang
and Schwartz 2020), and their interactions may have strong effect
on the epidemic. Furthermore, other spatial risk factors, for e.g.,
commercial facilities, subway stations, restaurants, hotels, and
tourist attractions, also presented significant influence on the
COVID-19 epidemic severity (Li X. et al., 2020; Zhu and Sun
2020). Some of the influence factors could be extracted and
calculated from the points of interest (POIs). The global and
local Moran’s I statistics have been used to explore the
spatiotemporal pattern of COVID-19 in different countries
(Kim and Castro 2020; Vaz 2021). El Deeb (2021) studied the
spatial spread of the COVID-19 infection in Lebanon using the
univariate Moran’s I statistics. The results showed that clustering
of new COVID-19 infections occurred starting on different dates
between July and August. Xiong et al. (2020) used spatial
autocorrelation and Pearson correlation approaches to explore
factors influencing the epidemic in Hubei province. The results
showed that the cumulative COVID-19 confirmed cases had a
significant global spatial autocorrelation at the county level and
were significantly related to the prefecture-city scale with the
Baidu migration data and population density.

In general, the previous results showed that the detection of
transmission relations among the population migration data has
become the key to the research of the COVID-19 epidemic, and
the transmission had typical network characteristics.
Furthermore, the COVID-19 epidemic showed significant
temporal and spatial heterogeneity in the spatiotemporal
distribution (Zhang et al., 2020; Pei et al., 2021) and had been
significantly related to different spatial risk factors. Due to
differences in epidemic locations, population density,
population migration characteristics, and prevention and
control policies, the COVID-19 epidemic showed different
spatial distribution patterns with different spatial scales,
including the community, county, city, and country scales
(Xiong et al., 2020; Pei et al., 2021).

Guangdong Province with relatively high degrees of economic
development, large population densities, large migrant
population, and developed transportation is the key region
associated with the spread of the COVID-19 epidemic, which
has become the second most affected COVID-19 province in
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China. As the largest foreign trade province in China, Guangdong
Province has been closely linked with the outside world in the
fields of education, science and technology, culture, tourism, and
economy trade. In particular, people-to-people contacts have also
been very close. The spread of the COVID-19 epidemic within the
counties of Guangdong Province was representative. Exploring
the spatiotemporal clustering characteristics of COVID-19 and
analyzing the influencing factors of epidemic transmission at the
county level may provide reference for the domestic and
international epidemic prevention and control. Some
researchers have focused on the spatiotemporal analysis of
COVID-19 spread and risk at the city level in Guangdong by
mainly using population migration (Xing et al., 2020; Ye et al.,
2020). To reveal the risk factors and aggregation characteristics at
the county level, we choose Guangdong as a case study to explore
spatial agglomeration patterns and the effects of population
migration and socioeconomic factors on the epidemic. Here,
we used the spatial autocorrelation and geographical detector
methods to investigate spatial autocorrelation characteristics and
potential factors influencing the epidemic at county level. The
objectives include 1) calculating county-level population

migration of Guangdong from Hubei province; 2) capturing
the spatial agglomeration and heterogeneity of the epidemic;
and 3) investigating the effects of population migration and
socioeconomic factors on the epidemic.

MATERIALS AND METHODS

Study Area and Data
Study Area
Located on the southern coast of the People’s Republic of China,
Guangdong Province borders Hong Kong and Macao and is
adjacent to Southeast Asian countries (Figure 1). It contains 21
cities including Guangzhou, Shenzhen, Dongguan, Zhuhai,
Foshan, Zhongshan, and Jiangmen, with an area of
179,700 km2 and contains 121 counties (Figure 1). Here, we
focused on analyzing the factors influencing the COVID-19
epidemic at county scale. Guangdong is a relatively highly
urbanized province of China, with an urbanization rate of
70.70%. Guangdong Province has the largest gross domestic
product (GDP) among all Chinese provinces: 10.77 trillion

FIGURE 1 | Study area.
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yuan in 2019. As the southern Chinese manufacturing hub,
Guangdong has the country’s largest transient population; over
24 million are migrants from other regions, while another 10.6
million have relocated from the province.

Epidemiological Data
Here, we mainly considered and analyzed confirmed cases of
COVID-19; daily data on confirmed cases from 1 December 2019
to 17 February 2020 were mainly collected from official reports of
the Chinese provincial, municipal, or national health
departments. Data were accumulated for all cities and counties
of Hubei province and Guangdong at the city and county scales,
respectively. The total confirmed cases were matched with
officially reported data from the Chinese government.
However, a small portion of the data on confirmed cases was
discarded before the county-scale summation because such cases
involved people who traveled to Guangdong Province and were
confirmed at bus, railroad stations, and airports and were
immediately rushed to COVID-19–designated hospitals. Such
cases cannot aptly identify the county where they belonged.

Population Migration Data
The population migration (PopM) data were collected from
Baidu map service (http://qianxi.baidu.com/) and analyzed for
their correlation with confirmed cases, represented by the Baidu
migration index data. As one of the most popular map service
providers in China, the Baidu migration index data provide
historical indicative daily volume of travelers to/from and
between 367 cities in China, which is used to indicate the
intensity of population migration. Although it cannot capture
all migrants as it is based on the big data system recording
movements of smartphone users, it is useful to conduct the
comparisons among different cities in general migration
patterns (Wei and Wang 2020). The Baidu migration data
have been applied for the analysis of the population flow
network and its effect on the spread of COVID-19 during the
COVID-19 epidemic in China (Yang et al., 2020b; Wei andWang
2020). Here, we collected two kinds of information about
population migration: first, a series of daily migration data for
movement out of each city of Hubei province from January 1 to
27, 2020, the days before the Spring Festival; second, the
proportions of daily population migration data, bound from
each city of Hubei province to that of each city of Guangdong

Province, for the same period. However, Baidu Qianxi gave the
proportions of population migration for only the top 100 cities.

Socioeconomic Data
Here, county-scale socioeconomic data of Guangdong Province
were also taken into consideration to explore their influence on
COVID-19 transmission. It included resident population,
residential communities, enterprises, community facilities,
restaurants, transport services, and traffic network. In this
study, the traffic network was represented with rail and main
roadways. The detailed explanation of socioeconomic data is
shown in Table 1.

ResP: According to the sixth national population census of
China, the resident population mainly consists of two groups: the
local hukou-registered population and long-term migrants, both
who stayed in a city for over six months. Here, data for 2018 on
the city-scale resident population of Hubei and Guangdong
provinces and the county-scale resident population of
Guangdong province were collected from the provincial and
municipal bureaus of statistics: Data for Hubei cities were
collected from the Hubei Provincial Bureau of Statistics
(http://tjj.hubei.gov.cn/), which were used to calculate the city-
scale incidence rate of COVID-19; data for Guangdong cities and
counties were collected from the Guangdong provincial and
municipal bureaus of statistics (http://stats.gd.gov.cn/). Last,
the county-scale population migration from each city of Hubei
and the counties of Guangdong was estimated by integrating the
city and county-scale resident population data and the total
population migration.

POIs: Points of interest (POIs) were obtained from Gaode
Map Services (https://www.amap.com/), a well-known location-
based service (LBS) application. The Gaode Map classified these
POIs into 23 first-level, 264 second-level, and 869 third-level
categories. Five categories, the factors influencing the COVID-19
epidemic in Guangdong, were selected in this study: residential
community (ResC), companies (Comp), community facilities
(ComF), restaurants (Rest), and transport services (TraS). The
transport services include airport, railway station, subway station,
bus station, and parks. Table 1 presents these five categories and
the number of POIs for each category. A total of 2,117,740 POIs
located in Guangdong were used as auxiliary variables to analyze
the relationship between COVID-19 transmission and the
socioeconomic factors. The number of POIs for each category

TABLE 1 | Abbreviations of the socioeconomic data used in this study.

Data Abbreviation Count Data source

ResP Resident population (million) 113.46 Hubei Provincial Bureau of Statistics (http://tjj.hubei.gov.cn/) and
Guangdong provincial and municipal bureaus of statistics (http://stats.gd.gov.cn/)

ResC Residential community 72,483 POIs (https://www.amap.com/)
Comp Company 994,589 POIs (https://www.amap.com/)
ComF Community facility 32,367 POIs (https://www.amap.com/)
Rest Restaurant 782,632 POIs (https://www.amap.com/)
TranS Transport service 235,669 POIs (https://www.amap.com/)
RailL Railways (km) 14,864 OpenStreetMap (https://www.openstreetmap.org/)
RoadL Roadways (km) 120,206 OpenStreetMap (https://www.openstreetmap.org/)
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falling in Guangdong’s counties was counted using the “count
points in polygon” function of QGIS Desktop 3.2.2.

RailL: Railway vector data (rail length) were obtained
from OpenStreetMap (OSM, https://www.openstreetmap.org/
) which collected enormous amounts of free spatial data.
The total rail lengths of each county in Guangdong Province
were calculated with the railway vector data using ArcGIS
Desktop 10.2. Only rail, light-rail, and subway-railways were
selected.

RoadL: Roadway (road length) data of each county in
Guangdong Province were calculated with road vector data
using ArcGIS Desktop 10.2. Such data were also downloaded
fromOpenStreetMap. Only major roads were selected to calculate
county-scale road lengths, including motorways, trunk, primary,
secondary, and tertiary roads.

METHODS

Estimation of County-Scale Population
Migration Data
The distribution of COVID-19 in China was highly correlated
with population emigration from Hubei, especially fromWuhan.
To explore the county-level spatial distribution of the epidemic in
Guangdong, county-level population emigration from Hubei to
Guangdong was estimated using Baidu Qianxi’s daily population
migration data. The county-level population migration of
Guangdong was estimated by integrating the total confirmed
COVID-19 cases of Hubei, the population migration data from
Hubei to Guangdong, and the resident population data of Hubei
and Guangdong. First, we calculated the COVID-19 incidence
rate of each city in Hubei using the following mathematical
expression:

incidence ratei � confirmed casesi
populationi

, (1)

where “i” represents the number of cities of Hubei province,
confirmed casesi represents the total confirmed COVID-19 cases,
and populationi is the resident population of city “i.” Combining
the incidence rate of COVID-19 and the total population
migration data from each city of Hubei with other cities of
Guangdong, we estimated the possible number of infected
migrants as follows:

infected migrantsj � ∑m

i�1infected migranti,j (2)
infected migranti,j � incidence ratei × migranti,j, (3)

where “i” and “j” represent the number of cities of Hubei and
Guangdong provinces, respectively, infected migrantsj is a
summation of the possible number of infected migrants
traveling from Hubei to cities “j” of Guangdong, while infected
migrantsj is the number of possible infected migrants from city “i”
of Hubei to city “j” of Guangdong, and migranti,j stands for total
population migration from city “i” of Hubei to city “j” of
Guangdong, obtained from the population migration data
from Baidu Qianxi. Last, the county-level, possibly infected

migrants from Hubei to Guangdong were estimated using the
following formula:

infected migrantskj � infected migrantsj × pop ratekj (4)

pop ratekj �
popk

j

popj
, (5)

where “j” and “k” represent the cities and counties of Guangdong
Province, infected migrantskj represents the final possible infected
migrants from Hubei to county “k” of city “j” in Guangdong,
pop ratekj is the population proportion of county “k” as
compared with city “j” in Guangdong, popk

j is the resident
population of county “k” of city “j”, and popj is the resident
population of city “j” in Guangdong. Here, the county-level,
number of possibly infected migrants were used to explore
COVID-19 transmission in Guangdong.

Spatial Autocorrelation Analysis of the
COVID-19 Epidemic
Spatial autocorrelation can always be used to measure spatial
similarities between nearby observations; it describes the degree
to which observations of a variable (e.g., epidemic disease) are
similar to each other at a given spatial scale. Here, a global and
local spatial autocorrelation analyses were applied to analyze the
spatial agglomeration pattern of the confirmed COVID-19 cases
at the county level in Guangdong, including the global and local
Moran’s I indices. The global Moran’s I index was applied as
shown in Eq. 6 (Moran 1950).

Moran’s I � n

∑n
i�1∑n

j�1wij

∑n
i�1∑n

j�1wij(xi − �x)(xj − �x)
∑n

i�1(xi − �x)2 , (6)

where n indicates the number of counties in Guangdong, xi and
xj indicate the confirmed COVID-19 cases of counties “i” and “j”,
�x is the average number of confirmed COVID-19 cases of
Guangdong, wij indicates the spatial matrix of counties “i”
and “j”, which was defined as “1” if county “i” is contiguous
with county “j” and “0” if otherwise. The Moran’s I value ranges
from “-1” (strong positive spatial autocorrelation) to “1” (strong
negative spatial autocorrelation), while a value of “0” indicates no
spatial autocorrelation. In this study, p-value was used to indicate
whether the index value was statistically significant or not.

Furthermore, the local indicator of spatial association (LISA)
(Anselin 2010) was also applied to reflect the spatial correlation
between the COVID-19 cases of a county and its adjacent
counties. The LISA index was defined by (Anselin 2010):

Local Moran’s I � n(xi − �x)∑m
j�1wij(xj − �x)

∑n
i�1(xi − �x)2 , (7)

where m indicates the number of counties geographically
adjacent to county “j.” LISA consists of five types of local
spatial autocorrelation: high–high clusters (high number of
COVID-19 cases surrounded by the same), low–low clusters
(low number of COVID-19 cases surrounded by the same),
high–low clusters (high number of COVID-19 cases
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surrounded by low number of cases), low–high clusters (low
number of COVID-19 cases surrounded by high number of
cases), and spatial randomness (no significant spatial patterns).
In this study, the spatial autocorrelation analysis of the COVID-
19 epidemic was implemented by using GeoDa software (Anselin
et al., 2006).

Geographical Detector
Because of its advantages (without assuming linearity between
geographical phenomenon and the driving factors and without
being affected by multicollinearity), the geographical detector
(Wang and Xu 2017) has been widely applied to detect spatial
variation of geographical phenomena and reveal their potential
driving forces; it contains four detectors: factor, risk, ecological,
and interaction. The geographical detector was implemented
using GeoDetector software (http://www.sssampling.org/Excel-
Geodetector). An essential assumption of this method is that the
spatial distribution of COVID-19 transmission is similar to that
of its potential driving forces. Here, only the factor and
interaction detector were involved in the driving force analysis.

Here, the factor detector was used to quantitatively measure
the relative importance of the factors influencing COVID-19
transmission, which could be expressed with the power
determinant (q). The mathematical expression of PD is as
follows (Wang et al., 2010):

q � 1 − 1
nσ2

∑m

j�1njσ
2
j , (8)

wherem is the grade number of potential driving factors (j = 1, 2,
. . . ,m). n and nj are the number of counties in the whole area and
the j grade, respectively, and σ2 and σ2j are the variances of the
confirmed COVID-19 cases in all counties of Guangdong and the
j grade, respectively. In general, the value of q ranges from “0” to
“1”, which indicates that the driving factor can explain 100 × q%
of the spatial pattern of the epidemic. A larger q value indicates
the stronger influenced effects of the factors on COVID-19
transmission.

Furthermore, the interaction detector was used to investigate
the interactive effects of two different factors x1 and x2 on
COVID-19 transmission, which was assessed by comparing
the values of q(x1 ∩ x2), q(x1), and q(x2). The value of
q(x1 ∩ x2) indicates the power determinant for a new factor
created by overlaying the two factors x1 and x2. The interaction
between factors x1 and x2 can be divided into the following
categories (Wang et al., 2010; Wang and Xu 2017):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(x1 ∩ x2)<min(q(x1), q(x2)) Nonliner − weaken
min(q(x1), q(x2))< q(x1 ∩ x2)<max(q(x1), q(x2)) Uni − enhance/weaken
max(q(x1), q(x2))< q(x1 ∩ x2)< (q(x1) + q(x2)) Bi − enhance
q(x1 ∩ x2) � (q(x1) + q(x2)) Independent
q(x1 ∩ x2)> (q(x1) + q(x2)) Nonlinear − enhance

(9)

where ∩ indicates the interaction between factors x1 and x2.
Nine factors, in terms of population migration and

socioeconomic data at the county level in Guangdong, were
selected. In particular, the socioeconomic data were
represented by infected migrants (InfM), resident population
(ResP), residential communities (ResC), companies (Comp),

community facilities (ComF), restaurants (Rest), transport
services (TranS), railways (RailL), and roadways (RoadL).
According to the input requirements of the geographical
detector, these factors were categorized on considering prior
information as well as the range and distribution of the data.
The number of categorized types of each factor is shown in
Figure 2.

RESULTS AND DISCUSSION

Spatial Distribution of Confirmed COVID-19
Cases
Figure 3 shows the spatial distribution of cumulative confirmed
cases from 1 December 2019 to 17 February 2020 at the city level
in Hubei and Guangdong. Cumulative confirmed cases of Hubei
and Guangdong were up to 59,989 and 1,328, respectively.
However, 24 cases in Shenzhen city of Guangdong Province
that were confirmed at railroad stations and airports were not
considered because the infected persons were immediately rushed
to COVID-19–designated hospitals. Thus, the final number of
cumulative confirmed cases of Guangdong was 1,304. In
Figure 3A, Wuhan showed the largest number of COVID-19
cases, accounting for most cases in Hubei. There were over 1,000
cases in seven of seventeen cities in Hubei, including Wuhan,
Xiaogan, Huanggang, Jingzhou, Ezhou, Suizhou, and Xiangyang.
Figure 3B indicates that Shenzhen and Guangzhou had the most
confirmed cases, with 392 and 339 cases, respectively, together
accounting for 56% of all cases in Guangdong. COVID-19 mainly
spread across the Pearl River Delta (PRD). However, Zhanjiang
City had up to 22 confirmed cases, being a tourist-city located in
the southernmost part of Guangdong. This could be as many
people from Hubei province might have traveled to Zhanjiang
City for the Spring Festival. Only five cities in Guangdong had less
than 10 confirmed cases: Jieyang, Shanwei, Chaozhou, Heyuan,
and Yunfu (no cases).

The incidence rate and the corresponding confirmed cases at
the city level in Hubei are shown in Figure 4A where it can be
seen that the largest incidence rate of COVID-19 occurred in
Wuhan with up to 38.58 cases per 10,000 people, followed by
Ezhou, Xiaogan, Suizhou, and Tianmen with incidence rates of
12.42, 6.75, 5.77, and 5.18, respectively. Although Ezhou had the
second largest incidence rate, its confirmed cases were less than
that of Xiaogan, Huanggang, and Jingzhou. Tianmen and Xiantao
showed high incidence rates with few confirmed cases, i.e., 500
and 544, ranking 14th and 13th, respectively, among 17 member
cities in Hubei. Enshi had the lowest incidence rate (less than one)
with 250 confirmed cases, as shown in Figure 4B. Shennongjia
only had 10 confirmed cases, far less than 100, but its incidence
rate was higher than one. It can be indicated from Figure 4 that
most cities adjacent to Wuhan might have greater confirmed
cases and higher incidence rates. This may be attributed to the
population migration from Wuhan, which can be deduced from
Baidu Qianxi.

Figure 5 depicts the spatial distribution of confirmed COVID-
19 cases of each county in Guangdong. The epidemic mainly
occurred in the PRD region, an economically developed area,
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FIGURE 2 | Categorized maps of nine factors in relation to the COVID-19 epidemic at the county level in Guangdong Province.

FIGURE 3 | Spatial distribution of the city-level confirmed COVID-19 cases. (A) Hubei and (B) Guangdong.
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with a good flow of people and convenient transportation.
Among 121 counties of Guangdong province, only Bao’an
District of Shenzhen city had confirmed cases greater than
100. In addition, eight counties had confirmed cases greater
than 50, including Dongguan city; Nanshan, Futian, and
Longgang districts of Shenzhen; Baiyun and Haizhu districts
of Guangzhou city; Zhongshan city; and Xiangzhou District of
Zhuhai city. These high-risk areas were mainly distributed in the
Pearl River estuaries, except for Nansha District of Guangzhou
city. In this study, Dongguan and Zhongshan cities have no
county administrative units. Thus, counties in Dongguan and
Zhongshan cities were not considered.

To examine the spatial autocorrelation of the COVID-19
epidemic at the county level in Guangdong, the global and
local Moran’s I indices were estimated using the confirmed
cases of each county. Figure 6 shows that the global Moran’s I
value was 0.66 with a p-value of <0.0001, indicating significant
positive autocorrelation with the COVID-19 epidemic.

FIGURE 4 | Spatial distribution of the COVID-19 incidence rate in Hubei. (A) spatial distribution; (B) the amount of COVID-19 confirmed cases and their incidence
rate.

FIGURE 5 | Spatial distribution of county-level COVID-19 confirmed cases in Guangdong.

FIGURE 6 | Global Moran’s I index of county-level COVID-19 confirmed
cases in Guangdong.
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Furthermore, the local Moran’s I values at the county level were
calculated using Eq. 9; the results represented detailed local
clusters and local spatial outliers in relation to confirmed
cases. Figure 7 shows cluster maps identified with the local
Moran’s I values and significance of p < 0.05. High–high
spatial clusters were mainly concentrated in the central
Guangdong Province, along the Pearl River estuaries. Out of
121 counties, 15 showed significant high–high clusters, including
five counties of Shenzhen, five of Guangzhou, two of Foshan, one
of Zhuhai, one of Dongguan, and one of Zhongshan. However,
other counties showed no significant spatial clustering patterns,
thus illustrating a spatial stochastic distribution of the COVID-19
epidemic.

Spatial Distribution of the Population
Migration
Integrating the COVID-19 incidence rate of Hubei, the
population migration data of Baidu Qianxi, and the resident
population of Guangdong, the county-level population migration
from Hubei to each county of Guangdong was calculated using
Eqs 1–5. First, the possible number of COVID-19 infected
migrants from each Hubei City to that of Guangdong was
calculated using Eqs 1, 3, shown in Tables 2, 3, from which it
can be seen that most of the infected migrants traveled from
Wuhan City in Hubei into Guangdong, especially the Pearl
River cities. Most of the infected migrants moved into Shenzhen,
Guangzhou, Dongguan, Foshan, Zhuhai, Huizhou, and
Zhongshan. Shenzhen and Guangzhou had up to 39 infected
migrants, followed by Dongguan and Foshan with about 10.
However, cities such as Jieyang, Maoming, Yunfu, Chaozhou,
Shanwei, and Yangjiang had fewer infected migrants from
Wuhan or other Hubei cities. The results may be reliable
since these cities are economically underdeveloped. In
general, many people would tend to migrate to developed
cities with convenient transportation while some would tend
to travel to the PRD and tourist cities of Guangdong over the
Spring Festival. However, the results are subject to the limited
population migration data; Baidu Qianxi provided data only for
the top 100 cities.

Then, the cumulative infected migrants from Hubei to each
city of Guangdong Province were calculated using Eq. 2, as shown
in Figure 8A, which showed that 4 out of 21 cities had >10
infected migrants, while 13 cities had <1. The highest number of
infected migrants mainly occurred in the PRD, including
Shenzhen, Guangzhou, Dongguan, Foshan, Huizhou, Zhuhai,
and Zhongshan. However, Zhanjiang had 1.66 infected
migrants, distant from that of the PRD, possibly as Zhanjiang
is a tourist city that would attract many people during the Spring
Festival.

FIGURE 7 | Spatial distribution of local Moran’s I at the county level in
Guangdong.

TABLE 2 | COVID-19 infected migrants from each city of Hubei to that of Guangdong.

Shenzhen Guangzhou Dongguan Foshan Zhuhai Huizhou Zhongshan Zhanjiang Jiangmen Zhaoqing

Wuhan 39.3262 39.9168 11.0950 9.1415 7.4651 7.1233 4.6134 1.3025 0.0510 0.0000
Ezhou 0.5905 0.3560 0.2248 0.1258 0.0852 0.1140 0.1388 0.0482 0.0835 0.0072
Enshi 0.0581 0.0590 0.0385 0.0256 0.0081 0.0155 0.0165 0.0060 0.0088 0.0062
Huanggang 1.7500 0.8670 1.0932 0.3351 0.1207 0.3832 0.1942 0.0052 0.0802 0.0093
Huanshi 0.6042 0.3091 0.2789 0.1400 0.0699 0.1434 0.0881 0.0062 0.0905 0.0029
Jingmen 0.5535 0.3824 0.3146 0.1629 0.0541 0.1037 0.0759 0.0393 0.0449 0.0257
Jingzhou 1.1156 0.9263 0.6551 0.3888 0.1235 0.1951 0.2016 0.0626 0.0878 0.0126
Qianjiang 0.0646 0.0619 0.0370 0.0182 0.0080 0.0110 0.0103 0.0032 0.0081 0.0035
Shennongjia 0.0041 0.0077 0.0025 0.0041 0.0008 0.0015 0.0021 0.0000 0.0011 0.0006
Shiyan 0.1298 0.1278 0.0755 0.0447 0.0302 0.0315 0.0163 0.0000 0.0219 0.0000
Suizhou 0.8330 0.4656 0.6781 0.2273 0.0792 0.3400 0.3412 0.0120 0.0598 0.0068
Tianmen 0.2571 0.3875 0.1443 0.0737 0.0264 0.0440 0.0359 0.0169 0.0194 0.0102
Xiantao 0.3635 0.3125 0.1481 0.0944 0.0367 0.0504 0.0473 0.0153 0.0329 0.0058
Xianning 0.8837 0.5084 0.6953 0.2018 0.0578 0.1855 0.1315 0.0396 0.0485 0.0267
Xiangyang 0.6912 0.4556 0.4220 0.1462 0.0710 0.1544 0.1199 0.0595 0.0722 0.0017
Xiaogan 1.5315 1.0727 0.9986 0.4537 0.1188 0.2870 0.3783 0.0204 0.1154 0.0016
Yichang 0.3615 0.3339 0.1633 0.0926 0.0492 0.0694 0.0532 0.0194 0.0588 0.0000
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Figure 9 shows the relationship between confirmed COVID-
19 cases and population migration at the city level; the
coefficient of determination of the regressive equation

between the infected migrants and confirmed cases was as
high as 0.981 with statistical significance larger than that of
the regressive equation between the migrants and confirmed
cases. This could be as Figure 9A considered not only the Baidu
Qianxi migration data but also the risk of COVID-19 infection
of each Hubei City. Figure 9B estimated the number of migrants
using only the Baidu Qianxi migration data and assumed
identical risk of infection for each Hubei City. However, this
was unreasonable. In general, a high incidence rate could
represent high risk of infection, i.e., migrants from Wuhan
(with the highest incidence rate) should have the highest risk
of infection, while migrants from Enshi (with a low incidence
rate) should have a lower risk of infection.

Last, based on city-level infected migrants and the resident
population, the county-level infected migrants from Hubei to
Guangdong were estimated using Eqs 4, 5. County-level
infected migrants in Guangdong are shown in Figure 8B.
Dongguan city and Longgang and Bao’an counties of
Shenzhen city showed the largest number of infected
migrants, being >13, followed by eight counties from
Guangzhou and Shenzhen cities with >5 infected migrants.

TABLE 3 | Continuation to Table 2.

Shaoguan Qingyuan Shantou Heyuan Jieyang Maoming Meizhou Yunfu Shanwei Chaozhou Yangjiang

Wuhan 0.0000 0.0306 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ezhou 0.0535 0.0726 0.0040 0.0136 0.0000 0.0003 0.0306 0.0039 0.0000 0.0000 0.0030
Enshi 0.0019 0.0092 0.0088 0.0000 0.0034 0.0000 0.0000 0.0000 0.0000 0.0060 0.0000
Huanggang 0.0793 0.0281 0.0078 0.0994 0.0083 0.0000 0.0136 0.0000 0.0000 0.0000 0.0000
Huanshi 0.0548 0.0061 0.0091 0.0113 0.0028 0.0000 0.0047 0.0000 0.0033 0.0000 0.0000
Jingmen 0.0482 0.0686 0.0020 0.0043 0.0000 0.0339 0.0000 0.0000 0.0000 0.0000 0.0000
Jingzhou 0.0696 0.1138 0.0497 0.0051 0.0458 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qianjiang 0.0089 0.0048 0.0030 0.0016 0.0044 0.0049 0.0016 0.0012 0.0019 0.0000 0.0000
Shennongjia 0.0008 0.0002 0.0011 0.0014 0.0006 0.0003 0.0002 0.0006 0.0000 0.0008 0.0000
Shiyan 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Suizhou 0.0731 0.0914 0.0000 0.0400 0.0349 0.0000 0.0041 0.0000 0.0000 0.0000 0.0010
Tianmen 0.0220 0.0230 0.0122 0.0159 0.0196 0.0138 0.0063 0.0084 0.0064 0.0057 0.0048
Xiantao 0.0279 0.0272 0.0147 0.0226 0.0111 0.0075 0.0028 0.0096 0.0115 0.0000 0.0000
Xianning 0.0664 0.0532 0.0419 0.0356 0.0375 0.0030 0.0164 0.0296 0.0000 0.0027 0.0000
Xiangyang 0.0592 0.0639 0.0747 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Xiaogan 0.1292 0.1032 0.0697 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Yichang 0.0313 0.0072 0.0004 0.0000 0.0002 0.0309 0.0000 0.0000 0.0000 0.0000 0.0000

FIGURE 8 | Spatial distribution of possible COVID-19 infected migrants in Guangdong at the city (A) and county (B) levels.

FIGURE 9 | Relationship between confirmed COVID-19 cases and
population migration. (A) Number of infected migrants calculated using the
Baidu Qianxi migration data and incidence rate and (B) number of migrants
calculated directly using the Baidu Qianxi migration data.
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In summary, 29 counties (located mainly in the PRD) had >1
infected migrants, and 22 counties (mainly in eastern and
southwestern Guangdong) had <0.01 infected migrants.
However, due to a lack of actual population migration data
between counties of Guangdong Province, shortcomings exist in
calculating the number of county-level infected migrants. In the
future, population migration data between counties can be
accurately estimated by integrating location data from mobile
phones and social media.

Related Factors Analysis
Using the geographical detector technique, the power of
determinant (q) values were calculated to evaluate the
intensity of factors significantly influencing COVID-19
transmission (Table 4). As shown in Table 4, the q values of
these factors were ranked as follows: from the highest to the
lowest: infected migrants, company, transport services,
residential communities, restaurants, community facilities, and
railways and each of the p values was <0.01. The results indicated
that infected migrants, companies, transport services, residential
communities, restaurants, and community facilities had
significantly promoted the spread of the COVID-19 epidemic,
among which infected migrants had the greatest impact. These
spatial risk factors can predominantly help interpret the spatial
heterogeneity of the epidemic in Guangdong. Railways proved to
have a weak association with the epidemic. Furthermore, the q
value of roadways was 0.333 with a p value > 0.05, indicating that
it had no significant correlation with COVID-19 transmission.
Except the infected migrant factor, the company and transport
service factors showed the second and third highest explanatory
power in predicting the spread risk of the epidemic, respectively.
This may be reasonable that these places of companies and
transport services were a place of people gathering, where these
persons may be across many locations. These may increase the risk
of COVID-19 transmission. The transport services, including
airport, railway station, subway station, bus station, and parks,
were the essential components of traffic network, where some of
the infected migrants from Hubei province may across to

Guangdong Province to work or travel by car, train, and plane.
A small gathering with the infected patients was also unsafe for
other people, who may gather at the places of residential
communities, restaurants, and community facilities. This may
be because that the infected patients may pass on their infection
to others through direct contact or close proximity. Thus, these
places also belonged to high-risk areas, whichmay contribute to the
result that the spread risk was high in the county.

The interaction detector was used to investigate the interactive
effects of any two factors on COVID-19 transmission (Table 5).
As roadway was not significantly related to COVID-19
transmission, it was not considered in this analysis. Table 5
shows that the interactive effects between any two factors were all
bi-enhanced as compared to their independent influence. The
geospatial risk of COVID-19 transmission was intricate and
complicated by multiple spatial risk factors. According to the
interaction detector analysis, we found that there were
interactions between different factors. Among them, the
infected migrant factor interacted strongly with the
community facility factor and the company factor, and their q
values were 0.895 and 0.891, respectively. This indicated that the
combined effect produced by the intersecting infected migrant,
community facility, and company factors had a strong explaining
capacity on the COVID-19 transmission at the county level.
Besides, Tables 4, 5 also demonstrated the interaction of
infected migrants with restaurant, transport service, residential
community, and railway factors could enhance the ability to
explain the spatial distribution of the COVID-19 epidemic
because they all had a high q value greater than 0.880. The
places of company, restaurant, transport service, residential
community, and railway were the public places of big
population density and strong fluidity, which were important
places for clustering transmission (Yang Z. et al., 2020). If the
infected people carrying the COVID-19 virus gathered at these
public places and were in close contact with other persons, which
may make the healthy persons be exposed to the virus. This may
result in accelerating the COVID-19 transmission. Furthermore,
the combined effect produced by the intersecting railway and
transport service factors may increase the explanatory power to
the COVID-19 epidemic. The railway and transport services were
a part of traffic network, which may increase the risk of the large-
scale spread of COVID-19. Residents’ feasting, shopping, and
other activities may increase the chances of contact between
people, and there may be the possibility of mutual infection.
Thus, to reduce the risk of COVID-19 transmission, measures
such as social distancing, reducing crowds, reduce visits, and limit
travel may be necessary (Hellewell et al., 2020; Linka et al., 2020;
Fowler et al., 2021; Pei et al., 2021). Companies, restaurants,
transport services, and other places were closely related to the
spread of the virus; thus, disinfection should be carried out, and

TABLE 4 | Power of determinant (q) for the eight factors influencing the COVID-19 epidemic transmission.

InfM ResC Comp ComF Rest TranS RailL RoadL

q statistic 0.862 0.780 0.798 0.723 0.775 0.784 0.436 0.333
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.057

TABLE 5 | Interaction among these factors on the COVID-19 epidemic
transmission.

InfM ResC Comp ComF Rest TranS RailL

InfM 0.862
ResC 0.883 0.780
Comp 0.891 0.821 0.798
ComF 0.895 0.829 0.828 0.723
Rest 0.889 0.832 0.822 0.819 0.775
TranS 0.887 0.828 0.823 0.798 0.811 0.784
RailL 0.881 0.823 0.809 0.809 0.793 0.886 0.436
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the humans should be reminded to pay attention to their own
protection.

In general, this study quantitatively analyzed the spatial
distribution characteristics of the COVID-19 epidemic at
county scale by using a series of confirmed cases, population
migration, and socioeconomic factors before the Spring Festival.
The spatial risk factors of the COVID-19 epidemic were also
summarized at the county level. The results showed that the
regions with more community facilities, companies, and
restaurants may have high-risk of COVID-19 transmission.
Before the Spring Festival, although a large-scale population
moved out of Guangdong to go home for the Spring Festival,
most of the infected migrant population may still be back from a
business trip and travel to Guangdong for the Spring Festival with
their family and loved ones through Hubei. These infected
migrant populations may mainly gather in companies,
community facilities, and restaurants, and their high mobility
also increased the chances of their contact to other persons. This
may significantly increase the COVID-19 risk. These places with
more community facilities and companies, where the infected
migrant population have visited, should been paid close attention
to and could be monitored by integrating the trajectory
population-data from mobile phones and social media.
However, limited by data-availability, only population
migration and a few socioeconomic factors were used here,
which may result in lack of in-depth research of
spatiotemporal transmission mechanisms of COVID-19.
Besides, the Baidu migration data may have a certain bias in
the sample statistics, which may introduce potential errors in the
estimation of the infected migrant population. In future, the
mobile phone data will be integrated to adjust the Baidu
migration data to improve the accuracy of the potential
number of infected migrant population. Then, the
spatiotemporal transmission process of COVID-19 and its
mechanisms at county (even street) levels can be analyzed and
mined by integrating spatiotemporal social, environmental, and
economic data and big data of social media (Xiong et al., 2020;
Zhou et al., 2020). Furthermore, to better understand the
consistent relationship between the spatial risk factors and the
COVID-19 epidemic situation, a more detailed spatiotemporal
analysis approach may be conducted by integrating the infected
population and the cross-regional migrant population.

CONCLUSION

This study analyzed the spatial distribution of the COVID-19
epidemic at county level in Guangdong, China, from 1
December 2019 to 17 February 2020. Our results showed that
the COVID-19 epidemic had significant positive
autocorrelation at county level. The high–high spatial clusters
of confirmed cases were detected andmainly concentrated in the
Pearl River Estuary region. Based on the incidence rate, Baidu
population migration data, and the resident population, the
number of county-level infected migrants of Guangdong,
moving from Hubei, was calculated and analyzed. The

regions with migrants from cities with high- and low-
incidence rates may have high-and low-epidemic risks,
respectively. Furthermore, we used the geographical detector
technique to analyze the effect of potential risk factors,
including infected migrants and socioeconomic factors, on
the transmission of COVID-19. The results showed that the
infected migrants greatly influenced the spread of COVID-19.
Companies and transport services affected the spread of
COVID-19 more than residential communities, restaurants,
and community facilities. Although the power determinant
(q) value of community facilities was small, once it was
coupled with infected migrants, it significantly enhanced its
influence on the transmission of COVID-19 at the county level,
with the largest q (infected migrants ∩ community facility) value
of 0.895. In other words, infected migrants gathered at places
with more community facilities may increase the transmission
risk of COVID-19.
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