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Compared with floods occurring over plains, alpine flash floods are formed over scattered
locations with complex terrain and data is often lacking regarding the land topography, flow
and sedimentation, causing difficulties when developing mathematical models to predict
flash floods. The existing flash flood models mainly focus on the influence of water flow,
such as the sharp increase in flow discharge caused by convergence at steep slopes,
disregarding the sediment load carried by the water flow. However, under the effect of
high-intensity sediment transport, the sedimentation in gullies may lead to surges in water
level, causing the phenomenon of “great disasters resulting from minor flooding”. In this
study, an efficient and accurate water-sediment coupling model was established with a
Godunov-type finite volume method based 2D flow model, and a sediment module and
OPENMP parallel computing module were added as well. Firstly, a common gully in
mountainous area with large gradient variations was used as a generalized model to
explore the impact of sedimentation on the flow field of the gully and compared with the
physical model. Then, the alpine flash flood incident in Gengdi Village was simulated with
the computer model. The calculation results show that the high-intensity sedimentation
significantly increased the magnitude of alpine flash floods. Calculated by this
mathematical model, the research results verified that this mathematic model can
efficiently, accurately and concisely predict the occurrence of flash floods in gullies with
large gradient variations. The model also provides a flow and sediment modeling method
that incorporates the effect of high-intensity sediment transport into the traditional flash
flood flow model. Thus, this model can be a powerful tool for detecting flash floods.

Keywords: flash flood, high-intensity sediment transport, 2D flow and sediment simulation, gully with large gradient
variations, Gengdi village

1 INTRODUCTION

Short-term high-intensity rainfall may cause flash flooding in mountainous regions, bringing large
amounts of sediment (Reid et al., 1998). The situation can rapidly evolve into natural disasters such
as landslides and mudslides, causing huge destructions such as the collapse of bridges, damage to
buildings, traffic interruptions, and casualties (Hapuarachchi et al., 2011). Flood waters mixed with
large amounts of sediment flows into the gully, absorbing energy from the flow which leads to
increased flow resistance. Meanwhile, the sediment load in the flash flood is greater than the
sediment-carrying capacity of the water flow. As a result, sediment deposits and quickly builds up in
certain areas, resulting in an increase in water level, which endangers the buildings on the river bank,
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leading to the phenomenon that minor floods can cause great
disasters. Every year in China, the loss of life and property caused
by flash floods accounts for about 40% of the total loss caused by
natural disasters. As shown in Figure 1, the annual average death
toll from flash floods during 2009–2018 was 608, accounting for
78.1% of the death toll from floods. In 2010, the catastrophic
debris flow disaster in Zhouqu, Gansu caused 1,744 deaths and a
direct economic loss of 0.4 billion CNY (Ministry of water
resources of the people’s republic of China, 2018). As flash
floods often occur suddenly in remote mountainous regions
that are lacking in observational data, there is a great degree
of technical difficulty and uncertainty in evaluating pre-disaster
risk, or for monitoring, providing early alerts and planning for
post-disaster emergency rescue. The key to lessening the
destruction caused by flash floods is to provide accurate and
early alerts in time to take remedial actions and respond to the
disaster.

America, Britain, Australia and China have taken the lead in
studying the mechanism of flash floods and forecasting their
occurrence (Penning-Rowsell et al., 2000; Handmer, 2001; Liu et
al., 2018; Shan et al., 2018). As more knowledge was gained
regarding the mechanism, it became clear that establishing an
efficient and reliable flash flood numerical model is of great
significance for the accurate forecasting of flash floods. The
current trend is to establish a 1D or 2D hydraulic model for
areas vulnerable to flash flooding. The hydraulic model is mainly
based on shallow water equations and uses the Saint-Venant
equations for fluid calculations (Piotrowski et al., 2006). Norbiato
et al. (2007) used the CARIMA 1D unsteady flow model to
reproduce the catastrophic flash floods that occurred in the Gard
region of France in September 2002, and they calculated the peak
flow at each key station during the flash flooding. Kobold and
Brilly (2006) used a 1D numerical model to evaluate the impact of

open-channel flash floods on riverbeds and dams in mountainous
areas. Om (1976) used clear water scouring and high-intensity
sediment input to carry out 1D numerical simulations on alpine
rivers with steep slopes, and they analyzed the post-flood
longitudinal deposition form. Compared with 2D models, 1D
models require less data, calculation time and computer memory.
However, 1D models cannot accurately calculate the hydraulic
elements when there are large and irregular changes in the terrain
of the alpine rivers. As a result, the results from flash floods
simulations have been poor (Sirdaş and Şen, 2007).

2D models can provide some calculations for river channel
flow fields under flash flooding, such as the flow depth and
velocity vector at each grid point, and the flow field can also be
accurately simulated with high accuracy without the need to
interpolate by refining the grid. The finite element method and
the finite volume method are numerical modeling methods
commonly used for 2D water flow simulations. In the finite
element method, there is freedom to choose the basic
functions that will be used, and elements of various shapes
can be used to fit the complex geometric shapes. In addition,
simulation accuracy can be improved by establishing higher-
order polynomials in a numerically discrete process (Aizinger,
2004). The finite element method mainly uses implicit algorithms
and the calculation efficiency is relatively fast. However, self-
adaptation and stability problems have always plagued the
development of continuous finite element methods. Therefore,
the accuracy of the algorithm is poor for fluids dominated by
convection. Since only the net flux balance on the domain
boundary can be guaranteed, we can therefore only guarantee
local conservation and not global conservation.

Finite element methods can work well to model rivers in plain
regions, but they often become invalid when they are used to
model alpine flash floods. This is because intermittent flow of

FIGURE 1 | The number of people affected by flash floods during 2009–1018.
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shallow water often occurs in the flooding process, causing abrupt
changes in the water level and flow rate. Meta-methods often fail
to solve discontinuous problems. In recent years, Godunov-type
finite volume methods are often used to solve hyperbolic
conservation equations, such as shallow water equations, due
to their unique built-in mechanisms to capture shock. Starting
from differential equations in integral form, this method uses the
principles of the Riemann problem to solve the equations, which
makes this method suitable for solving discontinuous problems
(Li, 2006). The solution domain is divided into multiple non-
overlapping sub-domains, and the design variables are assumed
to be constant in the sub-domains, such that the Riemann
problem is formed at the interface of the sub-domains. By
solving the Riemann problem at the interface, the flux through
the interface can be calculated to determine the flux passing
through the interface (Chen et al., 2015). The intermittent
flooding process simulated in this method not only correctly
simulates the discontinuous propagation velocity, but also
simulates the sharp discontinuous shape and essentially solves
the non-physical oscillation problem of the high-order precision
differential scheme near the discontinuity. This method has
become the main method for solving the water flow in
mountainous rivers and gullies with large gradient variations
(Li, 2006).

Based on the finite volume method theory, Wang et al. (2009)
adopted the second-order WAF-TVD scheme to effectively
capture spatial shock waves. They also adopted the first-order
Runge-Kutta method, and utilized an adaptive time step to satisfy
the numerical stability requirement. In this way, their model was
able to maintain high calculation efficiency when dealing with
complex landforms and quantifying the critical rainfall
conditions of alpine flash floods. Juez et al. (2013) first
established a global coordinate system and a local coordinate
system. Subsequently, they used an approximate Riemann solver
to simulate flash flood events for slopes with varying degrees of
steepness in mountainous regions. They obtained good results
with this method. El Kadi Abderrezzak et al. (2009) developed
Rubar20, a 2D hydraulic model, based on the second-order
Godunov format Monotonic Upstream Schemes for
Conservation Laws (MUSCL), and they verified the accuracy
of this model through generalization experiments. Simulations of
the conditions for two different terrains were used to verify the
influence of terrain on flood propagation. Liang et al. (2016) et al.
used a GPU-accelerated High-Performance Integrated
Hydrodynamic Modeling System (HiPIMS) to simulate the
flash flooding processes in the Glasgow region of Scotland and
the Haltwhistle watershed in England based on local precipitation
information. They modified the bottom slope source term to
prevent the Godunov’s algorithm from generating incorrect water
depths.

The current research on the mechanism of alpine flash floods
mainly focuses on studying the sharp increase in water flow
during flash flooding caused by the convergence at steep slopes in
mountainous rivers (Weishuai, 2013). In certain cases, flash
flooding may occur even though the flood flow does not
exceed the standard water flow. High-intensity sediment
transport and the unique features of alpine rivers, such as

slopes with high degrees of steepness, river widths that
alternate between wide and narrow, and a high number of
tributaries, lead to a strange phenomenon in the evolution of
the river bed. When a large amount of sediment is transported
downstream, deposition builds-up on the frontal surface and
begins to extend in reverse upstream, causing the water level to
increase to many times greater than the normal level. In this way,
even minor flooding can lead to great disasters.

Regarding the additional damage caused by high-intensity
sediment transport during flash floods, Zheng et al. (2019)
used a 2D bed flow model to simulate the dynamic and
hydraulic processes of a steep river channel with varying
degrees of steepness, and under conditions of sufficient
sediment replenishment. They proposed the critical triggers for
retrograde deposition in alpine gullies during flash floods. Guan
et al. (2013) simulated the alpine flash flooding process based on a
2D flow and sediment coupling model. They found that the water
flow has a high sediment-carrying capacity at flood peak, leading
to reduced deposition in the river bed. A large amount of siltation
increases the roughness of the river bed, thereby reducing the flow
rate and promoting deposition. Yuntian et al. (2019) reproduced
the “7.21” flash flood in Hongluogu Gully of Beijing by using a
hydrologic and hydrodynamic sediment transport model and
discovered that sediment transport has a significant impact on the
spatial distribution of flood eigenvalues, such as the maximum
flood level and flow rate. Under the combined action of changes
in resistance and riverbed erosion and deposition, the maximum
flood level of each section increased globally versus the fixed bed
state. Pu et al. (2014) proposed a time-varying approach to
simulate the sediment erosion-deposition rate, this method
improved the simulation accuracy for fast moving flows in the
gullies. Roca et al. (2009) conducted a field investigation and 2D
numerical simulation study on a 90° confluence area in the
Mediterranean region. They found that in flash flooding, the
addition of sediment created an interesting effect in the flood
movement; not only did the surface roughness of the tributary
streams increase, but the sediment transport also determined the
topographical changes in the confluence area.

It can be seen that there exist some limitations in the current
alpine flash floodmodels, such as lack of research on the sediment
modules, lack of data on the hydrological and topographical
conditions of alpine rivers, and low efficiency of explicit
algorithms for Godunov-type hyperbolic equations. Therefore,
a new set of models is proposed in this paper to efficiently and
accurately simulate the dynamic water flow and sedimentation
processes during alpine flash flooding events in gullies with large
varying gradients and high-intensity sediment transport.

The reliability of this mathematical model was verified with
data from a variable-slope gully model and the flash flood event in
Gengdi Village. When the boundary conditions, such as the water
flow, sedimentation and topographical features were missing
(such as in the flash flood event in Gengdi Village), the flow
discharge in the disaster area was forecasted based on a
Geomorphologic Instantaneous Unit Hydrograph (GIUH)
model, the rainfall data at the actual location of occurrence
and time of flash flooding, and the DEM data of a 12 m local
grid. The flow and sediment model adopted the standard
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Godunov method to solve the shallow water equation that splits
the source term of shear stress. Next, the second-order weighted
average flux (WAF) method with TVD format was used to
calculate the flux of unit interface, where the Riemann solver
was an HLL solver and the WAF limit function was Van Leer’s
limit function (Zhou et al., 2001). In order to eliminate the
iterative error in the calculation of the source term, the surface
gradient method was used to solve the source term, where the
surface elevation of each point was used instead of the water
depth. The sediment module includes calculations for the
suspended load and bed load. The upwind method was used
to calculate the suspended load content in flash floods, and Zhang
Ruijin’s improved formula was used to calculate the sediment-
carrying capacity of the water flow. Next, the saturated sediment
transport model was used to calculate the bed load and sediment
transport rate, and finally the deformation of the river bed was
predicted. Furthermore, an OPENMP interface was added to the
model based on the flow and sediment modules to performmulti-
core parallel calculations of the flash flooding process, which
greatly improved the calculation efficiency compared with
conventional serial computation methods.

2 MATERIALS AND METHODS

2.1 Flow Model
2.1.1 2D Shallow Water Equation
During flash floods, the water flow movement and the load
transported by the flow generally behave like 3D flow, and the
mathematical model should simulate the hydrodynamic process
in 3D form in order to fully reflect its features. However, due to
the complexity of 3D water flow, many research studies have
often simplified the flow of shallow water by averaging the
moving elements in the direction of water depth, thus
transforming the 3D problem into a 2D problem.

Given the assumption that vertical acceleration can be ignored
and the water pressure is distributed as hydrostatic pressure along
the direction of water depth, an average value was introduced in
the direction of water depth in the Cartesian coordinate system,
and viscous stress was ignored. Based on NS equation, the 2D
shallow water equation can be derived.

zU
zt

+ ∇ · F � S (1)

In the equation, U is the vector of conserved variables; F is the
vector flux; and S is the source term vector. U and F (U) are
calculated as follows:

U � ⎛⎜⎝ ϕ
ϕu
ϕv

⎞⎟⎠ (2)

F �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕV

ϕuV + 1
2
ϕ2i

ϕvV + 1
2
ϕ2j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

In the equations, ϕ � gh is the gravitational potential; u is the
flow rate in the x direction; v is the flow rate in the y direction;
V � ui + vj represents the velocity vector; g � 9.81m2/s is the
acceleration of gravity; and h is the water depth.

In many engineering applications, the source term S
includes components such as the geostrophic deflecting
force, wind force, and bottom friction. For the simulations
performed in this research, the source term S is composed of
the bottom slope source term Sb and the bottom friction source
term Sf, namely S � Sb + Sf, where Sb and Sf can be expressed
as follows:

Sb �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

gϕ
zH
zx

gϕ
zH
zy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

Sf �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−g
ρ
τfx

−g
ρ
τfy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

τfx � ρgn2u
������
u2 + v2

√ 1

R
1
3

(6)

τfy � ρgn2v
������
u2 + v2

√ 1

R
1
3

(7)

In the equations, H is the difference between the fixed
horizontal base level and the bottom elevation; ρ is density;
τfx and τfy are the friction stresses of the river bed in the x
and y directions; n is the roughness coefficient; and R is the
hydraulic radius, which is used to approximate the water depth, h,
in the open channel.

2.1.2 Godunov-type Method
The shallow water equation is a nonlinear hyperbolic partial
differential equation and calculating the grid interface flux is an
important step in solving the hyperbolic equation. The first-order
algorithm has too much dissipation when it uses the unit average
to calculate the flux of the interface, smoothing out what should
be a steep shock wave (Roe, 1997). Therefore, higher-order
formats, such as the second-order TVD method, are favored
by researchers around the world. For higher-order Godunov
problems, the second-order format is usually obtained using
piecewise linear reconstruction of the local variables in the
center of the grid.

Due to the existence of non-zero source terms (bottom slope
source term and shear stress source term), the non-homogeneous
partial differential Eq. 1 can be separated and decomposed into
the homogeneous partial differential, Eq. 8, and the ordinary
differential Eq. 9, using only the bottom slope source term and
the shear stress source term. The equations were solved in two
steps: estimation and correction. Namely, the estimation step
with a step size of (Δt)/2 was first used to solve the source term U;
then, the solved U was substituted into the correction step with
step size of Δt.
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zU
zt

+ ∇ · F � 0 (8)
dU
dt

� Sb + Sf (9)

When the source term of the bottom slope is 0 and the
viscosity of the water is ignored; the water depth h can be
used to accurately calculate the gravitational potential gradient
δϕi. However, the impact from changes in the river bed surface
should be considered during an actual flash flood. Hence, the
water depth at the unit interface cannot be accurately determined
if the gravitational potential is taken as the conserved term. This is
because the depth gradient cannot reproduce true water depth
variations. So various numerical methods have been developed to
improve the treatment of source terms in the shallow water
equations (Pu et al., 2012). The surface gradient upwind
method (SGUM) proposed by Hui Pu et al. (2013) and surface
gradient method (SGM) proposed by Zhou et al. (2001) proved
that the hyperbolic equation is conserved when using surface
elevation instead of water depth for gradient calculations.
Therefore, the algorithm subtracts the river bottom elevation
from the surface elevation ηi of each point, instead of using the
water depth, hi, to calculate the conservation term, ϕ, thereby
ensuring the conservation of the bottom slope source term.

In this paper, to solve the Eq. 8, the numerical solution
consists of two steps: prediction and correction, and they are
shown, respectively, in Eqs 10, 11.

(AU)n+1
2

i � (AU)ni −
Δt
2
(∑M

m�1F(Um)n · Lm) (10)

(AU)n+1i � (AU)ni − Δ · t(∑M

m�1F(UL
m,U

R
m)n+1

2 · Lm) (11)

where, A is the area of the grid; Lm is the side vector of the grid,
which is defined as the cell edge length multiplied by the outward-
pointing unit normal vector; M is the number of cell edges;
F(Um)n is the unit interface flux of the m-th side of each grid at
the n-th time; F(UL

m,U
R
m)n+

1
2 is the m-th edge unit grid interface

flux of the correction step after the prediction step.

The computational workload required to solve the equations is
relatively large; hence, approximate Riemann solutions in formats
such as Roe, Osher, and HLL are often used to reduce the
processing time. In this paper, the WAF method and HLL
format were used to calculate the interface flux. The WAF
interface flux (Cao et al., 2004) can be written as follows:

Fi+1
2
� 1
2
(Fi + Fi+1 − 1

2
∑N

k�1ckΔF
(k)
i+1

2
) (12)

where, ck is the Courant number corresponding to the velocity Sk
of the k-th train wave.

ck � ΔtSk
Δx (13)

The HLL scheme (Hubbard and Dodd, 2002) is a two-wave
train model. The Riemann problem is simplified into three
conserved regions separated by two waves, SL and SR. The
interfaces of the three regions are as shown in Figure 2.

In Figure 2, UL and UR represent the conservation vectors on
the left and right sides of the interface; U* represents the intra-
interface vector; while SL and SR represent the velocities of waves
on the left and right sides of the interface. The HLL scheme can be
calculated using the following formula:

Fhll
i+1

2
�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FL 0≤ SL
SRFL − SLFR + SLSR(UR − UL)

SR − SL
SL ≤ 0≤ SR

FR 0≥ SR

(14)

where, SL and SR (Toro, 1992) can be estimated as:

SL �min(ui −
��
ϕi

√
,us −

��
ϕs

√ ), SR �max(ui+1 +
���
ϕi+1

√
,us +

��
ϕs

√ )
(15)

us � 1
2
(ui+1 + ui) +

��
ϕi

√
−

���
ϕi+1

√
(16)��

ϕs

√
�

��
ϕi

√ + ���
ϕi+1

√
2

+ ui − ui+1
4

(17)

The wave velocity algorithm described above is applicable for
wet boundaries. For dry and wet mesh boundaries, Da Silva
(2017) proposed a corrected model. When the left river bed is dry,
the following calculation can be used:

SL � ui −
��
ϕi

√
, SR � ui + 2

��
ϕi

√
(18)

When the right river bed is dry:

SL � ui+1 − 2
���
ϕi+1

√
, SR � ui+1 +

���
ϕi+1

√
(19)

After the homogeneous equations were corrected, the total
differential Eq. 9 was decomposed, and the estimation step
discrete equation of Sb is determined as follows:

Sb � gϕ
zH
zx

� z

zx
(1
2
ϕ2) (20)

(AU)n+1
2

i � (AU)ni +
Δt
2
∑M

m�1(12ϕ2)n

· Lm (21)

FIGURE 2 | Approximate Riemann solver of HLL scheme.
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For Sf, the algorithm adopted a forward difference
scheme to solve the final flux (AU)n+1

2
i of the estimation

step; then the final flux was substituted into Eq. 11 before
iteration of the correction step. Finally, Δt was used as the
step size to calculate (AU)n+1i in the total differential
equation.

In order to ensure the stability of the numerical scheme, the
display algorithm needs to adjust the time step Δt at each
calculation step to reduce the deviation in the propagation of
the source term along the characteristic line, thereby ensuring the
stability of the algorithm and the accuracy of the numerical
solution. The Courant number CFL should satisfy the
following condition (LeVeque, 2002):

0≤CFL≤ 1 (22)
In this paper, the value of CFL was assumed to be 0.9 to ensure

the stability of the algorithm. Step Δt was calculated as per the
following formula:

Δt � CFL
Δx

max 1≤ i≤M(∣∣∣∣ui − ��
ϕi

√ ∣∣∣∣, ∣∣∣∣ui+1 − ���
ϕi+1

√ ∣∣∣∣) (23)

2.2 Sediment Model
Flash floods are a type of disaster that can occur suddenly, and
not only do they carry small-sized sediments, but they can also
carry large-sized sediments, such as pebbles and gravel. This
ability to carry large-sized sediments is a unique feature of
alpine rivers and the rivers are subjected to long-term
coarsening. Large calculation errors will occur if the
sediments are assumed to be uniform. Therefore, the
calculation of the grouped sediment transport capacity of
non-uniform sediments is one of the key issues to be
resolved in the mathematical modelling of river sediment.
The idea of a grouped sediment model was first proposed
by Einstein. Based on Einstein’s initial idea, Misri, Chiodi et al.
established and verified a grouped sediment transport model
(Misri et al., 1984; Chiodi et al., 2014). In this research study,
the sediments were grouped and arranged by particle size,
from small to large. The median size of each sediment group
was used for detailed calculations.

The sediment settling velocity was used as the basis for the
sediment calculation module. Zhang Ruijin’s formula was used in
this research study, and the formula is as follows (Tan et al.,
2018):

ω �

��������������������������������(13.95 νt
di
)2

+ 1.09
γs − γ

γ
gdi − 13.95

νt
di

√√
(24)

where, ]t is the horizontal eddy viscosity coefficient; and di is the
median size of a sediment group.

The sediment transport model consists of the sediment
transport equation and the river bed deformation equation.
The sediments can be divided into bed load and suspended
load according to their particle size. The basic equations of the
2D sediment model are as follows:

zhS
zt

+ zuhS
zx

+ zvhS
zy

� z

zx
(hνtzS

zx
) + z

zy
(hνtzS

zy
) + αω(Sp − S)

(25)
(1 − λ) zzb

zt
+ zgbx

zx
+ zgby

zy
� αω

ρs
(S − Sp) (26)

In the above equations, ω is the deposition velocity, Sp and S
are the suspended load carrying capacity and the suspended load
content, respectively; and α is the scouring coefficient. When
deposition is obvious, α = 0.25; when scouring and deposition are
alternated, α = 0.5; when scouring is obvious, α = 1. zb is the
thickness of the movable layer; λ is the porosity; gbx and gby are
the bed load transport rates.

Liu et al. (1991) proposed the Rz number to differentiate the
particle sizes of the suspended load and bed load, where:

Rz � ω

kup
(27)

In the above equation, k � 0.41 is the Karman constant and u*
is the friction velocity. When Rz> 4.166, the sediment is in the
bed load, and when Rz≤ 4.166, the sediment is in the
suspended load.

2.1.3 Suspended Load Calculation
The key to calculating the suspended load is to determine the
suspended matter content, S, and sediment-carrying capacity, S*,
of the river. S was calculated using the finite volume method with
a first-order upwind finite volume method. The regions upstream
and downstream of the adjacent grids were judged according to
the flux in the normal direction of the common grid interface, and
the sediment flux at each interface of the grid was calculated.
Furthermore, the sediment flux at each interface was integrated at
the specified time step to obtain the suspended load content of the
grid. This algorithm can unconditionally guarantee the stability of
the suspended load content calculations.

There has not been much research on the sediment-carrying
capacity of 2D water flow. Therefore, the sediment-carrying
capacity of most 2D mathematic models is usually calculated
directly using a 1D sediment-carrying capacity formula or a
modified formula. Since the suspended load particles are small,
the sediment particles were divided into finer groups in the
algorithm. The median size of each group of particles is
directly used to calculate the sediment-carrying capacity for
the suspended load group. The most commonly used formula
is the one developed by Zhang Ruijin, which is given below (Tan
et al., 2018):

Sp � k( ������
u2 + v2

√
ghω

)m

(28)

In the above equation, k and m are the empirical constants of
the model’s sediment-carrying capacity, which were derived
based on the experimental data collected from the Yangtze
River, the Yellow River, several reservoirs, and indoor water
channels. Hence, the empirical constants have a high degree of
universality. Theoretically, Zhang Ruijin’s indexless formula can
be coordinated with Bagnold’s energy formula; and by improving
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Zhang Ruijin’s formula, the comprehensive coefficient K1 can be
obtained as shown below:

Φ � K1
γm

γs − γm

������
u2 + v2

√
ghω

(29)

K1 � 0.102( ������
u2 + v2

√
ghω

)0.6346−0.21611lg( ���
u2+v2

√
ghω )

(30)

In the above formula, γm and γs are the bulk densities of clear
water and sediment, respectively; and Φ is the sediment-carrying
capacity, which is equivalent to the S* term in Eq. 28.

In flash floods, the finest and coarsest sediments can differ
by more than 100 times, resulting in differences of thousands
of times for the settling velocity. Therefore, the mathematical
model should calculate the sediment-carrying capacity per
group. The sediment-carrying capacity needs to be
considered in the transport of sediments suspended in the
water and the erosion of the river bed. When the sediment-
carrying capacity is greater than the sediment content in the
water, the bed surface is eroded. The sediment movement
should be considered when calculating the erosion sediment-
carrying capacity. The sediment can only be scoured when the
flood flow rate exceeds the sediment starting velocity. Hence,
Eq. 29 can be improved as follows:

Φ′ � K1
γm

γs − γm

( ������
u2 + v2

√ − Uc)(u2 + v2)
ghω

(31)

In the above formula, Uc is the initial particle size for the
group. The formula from the School of Water Resources and
Hydropower Engineering of Wuhan University was applied as
follows (Tan et al., 2018):

Uc � (D
di
)0.14(17.6 γs − γm

γm
di + 0.000000605

10 + D

d0.72
i

)1 /

2

(32)

Therefore, the total carrying rate ϕi of the grouped sediment
group is as follows (taking the i-th sediment group as an
example):

ϕi � ϕs
i + ϕe

i � σPiΦ(ωs) + (1 − σ)p′biϕ′(ωi) (33)
σ � min[S/Φ(ωs)] (34)

ωs � Piωi (35)
In the above formula, ϕsi is the sediment-carrying capacity of

the water flow used for transporting sediment in the water; ϕei is
the sediment-carrying capacity of the water flow used for
activating the sediment bed; Pi is the mass ratio of the
suspended sediment with this particle size versus the total
suspended sediment content; σ is the weight coefficient; and
p’
bi is the effective gradation of the sediment bed.
The key to solving Eq. 33 is to calculate the effective

gradation of the sediment bed, which is affected by many
factors. First, the scouring energy remaining in the water is
fully distributed along the water depth so the height of
suspended sediments that can be scoured is limited. When
the sediments cannot be suspended, the scouring energy that

exists in the local water body cannot be used for scouring.
Hence, the small sediment transport invariant used for
scouring should be related to the suspended height of the
scoured sediments. Moreover, the effective gradation of the
sediment bed is also greatly affected by how the coarse bed
sediments conceal the finer sediments, the effective action of
the current drag along the sediment bed surface, and the action
of the shear stress on the bed surface (Yang et al., 2020).

Based on the above factors, the effective gradation of the
sediment bed can be expressed as follows:

pebi �
ηiδiPi

di∑ηjδjPj

dj

(36)

In the above formula, δi is the suspended sediment height; and
ηi is the concealment coefficient. These two values were calculated
using the formulas proposed by Lane and Kalinske (1941) and
Wu et al. (2000).

2.1.4 Bed Load Calculation
The model utilizes the Mayer-Peter formula to calculate the bed
load for particle sizes greater than 0.2 mm and the Sharmov’s
formula is used to calculate the bed load when particle sizes are
less than 0.2 mm.

The Mayer-Peter formula (Chien and Wan, 1999):

qbx � 8
����������
(G − 1)Gd3

i

√ U�������
U 2 + V2

√ max(τp − τp,c, 0)1.5 (37)

qby � 8
����������
(G − 1)Gd3

i

√ V�������
U 2 + V2

√ max(τp − τp,c, 0)1.5 (38)

τp � n2(U 2 + V2)1.5
(G − 1)diD

1
3

(39)

In the formula,G is the relative weight of sediment to water; τp
is the drag force; τp,c � 0.047 is the initial drag force; and n is the
roughness coefficient.

According to Sharmov’s formula, UOH is critical maximum
velocity of the sediment.

qbx � 0.95
��
di

√ ( U
UOH

)3

(U − UOH)(di

D
)0.25

(40)

qby � 0.95
��
di

√ ( V
UOH

)3

(U − UOH)(di

D
)0.25

(41)

UOH � 3.83d
1
3
i D

1
6 (42)

2.1.5 River Bed Deformation Calculation
The river bed deformation calculation includes the elevation
changes caused by scouring and deposition of bed and
suspended matter. Eq. 26 adopts the time forward difference
and integrates the spaces in the grid. Next, the Gaussian
deformation was calculated as per the following equation:∫

ΔS
(1 − λ) zbnew − zbold

Δt
ds + ∫

Δl
�gbd �l � ∫

ΔS

αω

ρs
(S − Sp) (42)

Namely,
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zbnew � zbold −
Δt
ΔS

1
1 − λ

∑m

1
gnidli +

Δt
1 − λ

αω

ρs
(S − Sp) (43)

In the equation, zbold and zbnew represent the thickness of the
movable layer before and after this step, respectively; Δt is the
time step;m is the number of grid interface edges; gni is the single-
width sediment transport rate perpendicular to the element
interface, which is positive when pointing outwards, i is the
interface serial number, 1~m; ΔS is the grid; Δt is the time
step; dli is the unit interface length, where i is the unit
interface serial number, 1~m.

3 RESULTS AND DISCUSSION

3.1 Verification by Generalized Models
After a large amount of sediment enters an alpine gully with large
gradient, the frontal deposition can develop quickly and in
retrograde, potentially causing the water level to increase to twice
the normal level with clear water. Such a situation can lead to the
phenomenon where minor floods can cause great disasters. In this
section, the sharp increase inwater level that is typical in alpine gullies
with large gradient variations and sediment-carrying capacities is
reproduced in combination with experiments on physical models
andmathematicmodels. The purpose is to study the laws of sediment
transport, investigate how sediments deposit and extend upstream
due to changes in the sediment-carrying capacity of the water flow,
and to verify the accuracy of the algorithm.

Since alpine gullies are steep upstream and gentle downstream,
an experiment was conducted at the State Key Laboratory of
Hydraulics and Mountain River Engineering of Sichuan

University using a water channel with varying gradients, as
shown in Figure 3A. For the water channel, the upstream
slope was designed to 5% (length: 3.2 m) and the downstream
slope was 2% (length: 3.8 m). Considering that there will be some
influence from local mixing after the addition of sediment at the
inlet, the effective test section was set to 6.5 m above the water
channel outlet. The water channel was made of Plexiglas, with a
width of 20 cm and a depth of 30 cm. The upstream water was
controlled by a measuring weir, and a self-designed sediment
feeding machine was used to add the sediment. The parameters of
the mathematical model are shown in Figure 3B and the
calculation area was composed of 9,292 triangular meshes. To
optimize the drawing effect, the numerical results of this model
were drawn as a 2D representation of the water channel with a
horizontal scale of 5:1. The upstream flow rate for the experiment
was 4.48 L/s; the downstream flow was allowed to discharge
freely; the water channel had a rectangular cross-section, with
a roughness factor of 0.035; the sediment content at the inlet
boundary was 0.343 kg/s, with particle size of 0.5 mm. In the
mathematical model, there is no sediment in the water channel
before experiment, only the supplement of sediment at the inlet
contributed to the change in bed form.

Figure 4 presents the actual images of sediment deposition
and water level changes in the physical model experiments. At the
beginning of the test, the upstream and downstream water flows
at the slope break point were approximately the same as uniform
flow, and only the location near the slope break point showed any
local changes in water level (Figure 4A). When sediment was
added upstream, the sediment-laden water flowed steadily in the
steep slope section; however, after entering the downstream
section with a slope of 2%, sediment deposits began to form
and extend upstream. As the intensity of deposition began to
increase, the depth of sediment deposition on the bed surface
increased, and the water level at the frontal surface of the
deposition increased significantly (Figure 4B). When the
deposition extended to the variable slope, the unaffected
upstream jet stream velocity was relatively higher, and the
hydraulic jumps in the front of the deposition became more
obvious (Figure 4C). When the water flow entered the
downstream section of the water channel with slope of 5%, the
retrograde deposition and increases in water level progressed
stably. However, after further retrogradation upstream, the
hydraulic jump at the retrograde sediment wave front
gradually became unstable, and even resulted in breakage,
followed by unsteady fluctuations in the river bed in the
frontal section of the retrograde sediment wave (Figure 4D).

The calculated results from the mathematical model are
similar to the experimental results from the physical model. At
first, sediment was not added to the upstream inlet until the water
flow in the entire water channel became stable. Figure 5 shows a
diagram of the water levels produced from the mathematical
model when the clear water is at steady-state. When the water
flow was clear, the upstream water depth at the slope break point
was 0.015 m; the water level at the slope break point increased and
gradually stabilized at 0.021 m. Although the water depth in the
downstream 2% slope section was larger than that in the
upstream, the impact of the backwater did not transmit upstream.

FIGURE 3 | (A) Actual image of the variable slope water channel (B)
Planar dimensions of the variable slope water channel.
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Figure 6 presents the water level distribution and sediment
deposition in the water channel at different times after sediment
was added in the channel. After the sediment-laden water left the
5% slope section and entered the 2% slope section, the slope
decreased and the sediment deposition caused interference,
leading to reductions in water flow energy and flow discharge.
Accordingly, the sediment-carrying capacity of the water flow
also decreased. When the sediment-carrying capacity was lower
than the actual sediment content in the water flow, sediment

began to build-up at about 1.8 m behind the slope break point for
the first time (Figure 6A). The deposition not only increased the
bed resistance but also caused a decrease in the local slope of the
bed. The combination of these two effects further reduced the
hydraulic conditions of the water flow at the deposition site.
When the upstream flow passed through the deposition front, the
high flow rate caused the water to flow downstream along the
surface of the deposited sandbank. As a result, the actual water
level at the deposition location was far higher than the normal
water depth of the upstream water flow. Furthermore, sediment
from upstream would continue to be deposited here. With the
constant deposition at this downstream location, the water level
in the local area gradually increased, the water flow energy
consumed by the hydraulic jump also increased. The sediment
carrying capacity of the water flow was significantly reduced, and
serious deposition occurred at the deposition front, and extended
upstream continuously. In turn, the hydraulic jumps extended
upstream, first reaching the slope break point (Figure 6B) and
then the upstream section with slope of 5% (Figure 6C). Due to
the high sediment content, deposition occurred at the upstream
surface, while the downstream surface was scoured. The sediment
scoured in this area was deposited on the upstream surface of the
next sediment ridge. As the deposition extended, a continuous
retrograde sand dune was formed, causing multiple reverse
hydraulic jumps downstream (Figure 6D).

Graphs of the water level and water depth along the central
axis of flow are shown in Figure 7. Processes 1–5 in the figure
represent the calculated results of the mathematic model at
different time. For clear water discharge, the model produced
a section of backwater starting from the slope break point, and the
water depth was stable at 0.021 m from the from the backwater to
a distance of 1.8 m from the outlet. With the addition of sediment,

FIGURE 4 | Actual images of the physical model at different times: (A) flow state without added sediments; (B) state at the start of deposition (at a slope of 2%); (C)
deposition with gradient variations; (D) deposition in the section with 5% slope.

FIGURE 5 | Hydrograph of clear water flow.
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the downstream water depth increased rapidly from the
deposition starting point, and dynamic hydraulic jumps
gradually appeared and extended upstream. With the
continual deposition of sediments on the upstream face, the
depth of the dynamic hydraulic jumps increased. The water
depth rose from 0.014 m in clear water to 0.029 m when the
dynamic hydraulic jump reached 5.8 m from the outlet. As the
water depth increased, the water level increased as well due to the
continuing deposition of sediments, which aggravated the
disaster effect caused by minor flooding.

The model results showed that under the action of high-
intensity sediment transport and retrograde deposition with large
variations in slope, a sharp increase in water depth occurs at each
cross section along the gully. In areas unaffected by the retrograde

deposition, the water flow state and water depth are also not
affected. During deposition, the most drastic changes in water
depth occurs at the deposition front, and the increase in water
depth is mainly due to the superposition effect of uplift of the
river bed caused by sediment deposition on the river bed and the
hydraulic jumps in the junction of local rapid and subcritical flow
areas. In other words, the relative reduction of power is the
premise for the rapid silting up of the river bed, and the frontal
surface of deposit forms the basis for subsequent deposition.

3.2 Applying the Model in a Case Study
On 8 August 2017, heavy rainfall caused a flash flood in Gengdi
Village, Liangshan Yi Autonomous Prefecture, Sichuan Province
(Figure 8), resulting in 24 deaths. Upstream of the village is a
middle mountain area in Yanyuan County, Xichang City, with
serious soil erosion. There are two erosion gullies on the
mountain, with average longitudinal slope reaching 365%. The
right gully, Shaba Gully, abruptly becomes flat after reaching the
residential area, causing disasters in the affected area. The left
gully, Guangjiahe Gully, is deep and the slope is relatively small,
which prevents flood waters from submerging the residential
area, avoiding disasters. Due to poor vegetation cover in this area,
the heavy rainfall resulted in the convergence of a large amount of
sediment entering the gully, and heavy deposition appeared in the
left gully, causing water blockage. After the flood waters entered
the downstream residential area with the small slope, severe
flooding occurred from the small flow in the gully, and the
sediment heavy water flowed beyond the protective barriers
and submerged the houses, causing a catastrophic flash
flood event.

Due to the lack data on the actual flow, water level, and
incoming sediment load, the model first forecasted the flow
discharge of the two gullies in the disaster area based on the
GIUH model, the rainfall data at the actual occurrence place and
time of the flash flood, and the DEM data of the local 12 m grid.
The time curve of flow discharge at the gully inlet is shown in
Figure 9. The inlet of Shaba Gully is 1,840 m away from the
disaster area, while that of Tangjiahe Gully is 1,637 m from the
disaster area. Zemu River is the outlet, and water flowed freely to
the outlet. The DEM data was used to create an irregular grid
terrain with a grid length of 4 m, and the number of irregular
grids is 210209. Besides, the roughness factor is 0.035 along the
gully. Themodel calculation area is presented in Figure 10. As the
DEM terrain data was coarse, the calculation area was larger than
the actual drainage area of the gullies. For the hydrodynamic
calculations, if the water depth at the grid was less than 0.01 m, it
was judged as dry mesh and not included in the calculations. No
additional sediment was added at the entrance of the model, and
the sediment bed that was formed by the ditch erosion was used
as the supply of silt and sand to the disaster area. The gradation of
the sediment bed sediment is shown in Table 1.

Figure 11 shows the water depth diagram of the disaster area
at certain times under the flow duration curve. In the numeric
calculations, the rainfall start time was regarded as the starting
point, 0 h. At 0 h, the rainfall volume gradually increased and
formed a flash flood, which entered the gully inlet and gradually
flowed to the disaster area. At 1.5 h, the flash flood was 1 km from

FIGURE 6 | Water level distribution (left part) and sediment deposition
(right part) at different times: (A) deposition begins; (B) extension to slope
break point; (C) extension to the section with slope of 5%; (D) extension to
the inlet.
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the disaster area (Figure 11A). At 2 h, the flood reached Gengdi
Village. As the gully slope decreased, the drainage area widened,
the flow rate decreased, and sediment began to deposit in the
disaster area (Figure 11B). At 2.5 h, the flash flood passed
through the entire village. As the rainfall volume continued to
increase, and the flow discharge gradually increased as well
(Figure 11C). At 4 h, the flow discharge reached a peak and
the residential area adjacent to Shaba Gully was submerged. The
maximum water depth in the disaster area exceeded 3 m
(Figure 11D). After passing through the two gullies, the floods
converged at Zemu River.

Figure 12 illustrates the water depth and sediment deposition
distribution in the affected area of Gengdi Village at 2, 4, 6 and
12 h. It can be seen that during the flash flood, high-intensity
sediment transport and the presence of slopes with large gradient
variations greatly affected the sediment transport, which
aggravated the destructive force of the flood. When the peak
flow discharge reached 11.84 m3/s, the flood flowing from Shaba
Gully to Gengdi Village passed through an area with gradient

FIGURE 7 | Hydraulic factors on the central axis of the water channel at different times: (A) water level; (B) water depth. Processes 1–5 in the figure represent the
calculated results of the mathematic model for clear water discharge, start of sediment deposition, and the hydraulic jumps at the slope break point, at the upstream
section with 5% slope and in the area near the inlet.

FIGURE 8 | Actual images of the flash flood event in Gengdi village: (A) position of the affected area; (B) post-disaster situation in the affected downstream area.

FIGURE 9 | Time-lapse curve of flow at the gully inlet.
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variations, from steep slopes to the gentler slopes in the river
section. In this area, the flow slowed down, followed by an increase
in water level, resulting in a great decrease in the sediment-carrying
capacity of the water flow. Sediment rapidly deposited in the gully

and enlarged the flooded area. At the flood peak, the water depth in
the residential area of the disaster area near the gully exceeded 3 m,
with maximum deposition reaching 2.71 m. Due to the sharp
increase in water level and heavy sediment content, the houses
close to the gully were seriously damaged. In contrast, the
Tangjiaba Gully in Gengdi Village is deep and the slope
variations are low. Hence, the flood in Tangjiaba Gully flowed
closely along the mountain, then downstream to converge with
Zemu River. At the flood peak, the maximum water depth and
deposition were 1.52 and 0.81m respectively, which was not
enough to extend to the residential area (Figure 12B). With the
decrease in rainfall volume during the retreat of the flash flood, the
water level in the disaster area decreased gradually, but the
deposition continued and reached a maximum of 5.06m after
12 h. At this time, the gully was filled with sediment (Figure 12D).

TABLE 1 | Sediment Gradation for the Gengdi village flash flood model.

Diameter, in mm >50 10–50 1–10 0.2–1 0.035–0.2 <0.035

Percentage, in % 0.3 16.8 19.8 27.5 25.4 10.2

FIGURE 11 | Model calculated water levels at different times: (A) 1.5 h; (B) 2 h; (C) 2.5 h; (D) 4 h.

FIGURE 10 | Calculation area of the model.
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4 CONCLUSION

In this paper, the finite volume method with Godunov
scheme was used to calculate the flow discharge of flash
floods in alpine regions with large slope variations, and
SGM was used to eliminate the error caused by the source
term of the bottom slope. The sediment module was then
added over this foundation to explore how the river flow field
will change under the action of high-intensity sediment
transport and an OPENMP parallel calculation module
was incorporated to improve the calculation efficiency. An

efficient and accurate flash flood flow and sediment coupling
model was established and verified using a generalized
experimental model and the actual water level, flow rate
and deposition data of the flow field. Finally, the following
major conclusions were obtained:

1) Through the physical model experiments and the results
from the mathematical model, it was verified that under the
action of high-intensity sediment transport, sedimentation
will form at the slope break point, leading to an increase in
water level and a decrease in the sediment-carrying capacity
of the water flow. As a result, sediment quickly accumulated
in that location and gradually extended upstream.
Eventually the water flow was impacted and hydraulic
jumps formed at the interface between rapid and slow
flowing waters, causing a sharp increase in water level.
Finally, the water depth at the hydraulic jumps near the
inlet section increased to more than twice the initial
water depth.

2) The flash flood in Gengdi Village was reproduced accurately.
Due to the lack of terrain and flow discharge data, a GIUH
model was established based on DEM data of a 12 m local grid
and the actual rainfall volume during the event to predict the
flow discharge in the disaster area and simulate the disaster
range and process for average rainfall conditions in the village.
The results revealed Shaba Gully experienced a large flooded
area, a high amount of sediment deposition and high water
levels. The maximum water depth at peak flooding exceeded
3 m, which seriously affected the safety of the residential area.

All the computations were carried out on a workstation
equipped with Intel(R) Xeon(R) Platinum 8280 CPU: 28 cores,
56 threads, 2.7 GHz, and 384 GB memory. It cost 40 min of CPU
time for 24 h of water and sediment simulation in section 3.2.
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