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The technological innovation of horizontal drilling and high-volume hydraulic

fracturing has promoted the development of unconventional natural gas (UNG)

production worldwide, and hence has aroused public concern about the air

pollution it may bring about. In this study, we have provided (1) an overview of

the study on air pollutants fromUNGemissions in theUSA, focusing on both the air

pollutant characterization and their related observation technologies/platforms;

and (2) the potential air quality measurements of UNG development emerging in

China. This study will provide useful information for Chinese environmental

researchers and the local governments to deal with related air quality issues.
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Introduction

Nature gas is accounting for more percentage of the world’s energy supply from 20% in

2000 to 23% in 2019 (https://www.iea.org), due to its relatively less environmental impact and

more economic advantages compared to oil and coal (Finkel et al., 2013). To seek “energy

independence,” unconventional natural gas (hereafter referred to as UNG, which originates

from shale, sandstone, etc.) production has been promoted extensively in the USA during

recent years at the major basins containing shale gas (i.e., Marcellus Shale Play at Appalachian

Basin; Fayetteville Shale Play at Arkoma Basin; Barnett Shale Play at Ft. Worth Basin, etc.

Figure 1), benefiting from the significant technological innovation of the horizontal drilling

and the high-volume hydraulic fracturing techniques (Finkel et al., 2013;Wang and Krupnick,

2013; Moore et al., 2014; Allshouse et al., 2017; Helmig, 2020). From 2007 to 2019, the annual

UNG production increased from about 560 × 108 m3 to 7900 × 108 m3 with an enhancement
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factor of about 14 (http://www.eia.gov/naturalgas/). However, the

surge of UNG development is accompanied by a significant increase

in air pollutants emissions (McKenzie et al., 2012, Shonkoff et al.,

2014; Allen, 2016; Kort et al., 2016), including carbon monoxide

(CO), nitrogen oxides (NOx), volatile organic compounds (VOCs,

Gilman et al., 2013; Bunch et al., 2014; Helmig, 2020; Pétron, et al.,

2014), primary particulate matter (PM), and their related secondary

productions (i.e., ozone and secondary organic aerosols (SOA),

Kemball-Cook et al., 2010; Pacsi et al., 2015; Lee et al., 2015;

Liggio et al., 2016; Cheadle et al., 2017; Pozzer et al., 2020).

Public concern about the air pollutants has risen with the growth

of the UNG development, which has expanded into urban

residential areas and has promoted related scientific studies

(Pacsi et al., 2015; Adgate et al., 2014; Field et a., 2014;

Vinciguerra et al., 2015; McMullin et al., 2018; McKenzie et al.,

2019).

China has the most abundant shale gas resources with a total

amount of 31 × 1012 m3, which is about 1.5 times of global shale gas

reserves of the United States (https://www.eia.gov/analysis/studies/

worldshalegas/). Although UNG production has quickly picked up

in China, the annual UNG production of the USA is still about

40 times that of China in 2020 (7900×108 vs 200 × 108 m3 (Sun et al.,

2021). Under the most recent Chinese government energy policy,

UNG production is expected to increase continually and reach

2200 × 108 m3 in 2040 (Zou et al., 2017; IEA, 2020). With the surge

of UNG production, the UNG wells will inevitably expand into

human communities, especially in the Sichuan Basin (Ma and Xie,

2018; He et al., 2020; Nie et al., 2020, Figure 2) which is also a

population cluster with two megacities-Chongqing and Chengdu,

and the subsequent air quality issues could occur. Taking the fact

into consideration, we organized this study to summarize the main

air pollution issues detected during the USA UNG developments

and their related measurement technologies, which can provide

useful guidance for Chinese environmental researchers and the local

governments to better understand the air pollution-related to UNG

developments.

Air pollutants from UNG production
in the USA

The air pollutants caused by UNG production are mainly

focused on VOCs species [including methane and Non-methane

volatile organic compounds (NMVOCs)] and their related

FIGURE 1
The U.S. lower 48 states shale oil and natural gas maps [source: U.S. Energy Information Administration (June 2016)].
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secondary productions (including Ozone and SOA) due to their

clear effect on the radiative forcing (methane) and on the human

health (NMVOCs, Ozone and SOA).

Methane

Methane (CH4) is the second-most anthropogenic

greenhouse gas (after CO2) for its effect on radiative forcing,

with significant emissions from UNG operations (Helmig, 2020).

Methane emissions from UNG operations were shown to be

about 23 times greater than from conventional ones, due to the

larger size and higher production rate of UNG (Omara et al.,

2016). The reportedly estimated annual CH4 emissions from

UNG production of the main shale regions were about 158 Gg

from Denver-Julesburg Basin in 2015 (Peischl et al., 2018),

270 Gg from Bakken Shale Play at Williston Basin in 2014

(Peischl et al., 2015), 131 Gg from Marcellus Shale Play at

Appalachian Basin in 2013 (Peischl et al., 2015), 342 Gg from

the Fayetteville Shale Play at Arkoma Basin (Peischl et al., 2015),

525 Gg from the Barnett at Ft. Worth Basin in 2013 (Karion et al.,

2015), and 700 Gg from the Haynesville Shale Play at Texas-

Louisiana Salt Basin (Peischl et al., 2015). The locations of each

region are shown in Figure 1. Besides the CH4 emissions from the

gathering/processing plants and well pads during UNG

production, CH4 could also be emitted from the gathering

pipeline, which was used to transport gases to a processing

facility or a transmission line (Zimmerle et al., 2017).

Non-methane volatile organic
compounds

NMVOCs from UNG production contain hazardous

compounds (benzene, toluene, ethylbenzene, and xylenes

(BTEX)) and other compounds (Shonkoff et al., 2014; Bolden

et al., 2015), which act as precursors to O3 and secondary organic

aerosol (SOA) (Liggio et al., 2016; McDuffie et al., 2016).

Enhanced NMVOCs mixing ratios near the UNG wells have

been observed with variable VOCs emission rates under different

FIGURE 2
China’s most prospective shale gas basins [Source: U.S. Energy Information Administration (September 2015)].
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well operations (namely, drilling, fracking, coiled tubing, and

flowback) (Hecobian et al., 2019). The concentration of

hazardous BTEX is reported to be as high as 500 ppb

downwind of oil and gas wastewater disposal facilities, which

highlights the importance of monitoring BTEX concentrations

during UNG operations (Helmig, 2020).

O3 and PM2.5

O3 and PM2.5 are classified as two air pollutants on the EPA

list, whose high concentration levels can cause serious harm to

the human health, respiratory system in particular (Anenberg

et al., 2010). The elevated level of VOCs and NOx from the UNG

emissions are precursors to O3 and SOA (Liggio et al., 2016;

McDuffie et al., 2016). A number of studies have linked UNG

production to nearby O3 exceedances, even in winter (Edwards

et al., 2014). The studies at the Denver basin showed about

20 ppb of O3 enhancement (Benedict et al., 2019) and about 38%

of SOA (Bahreini et al., 2018) being associated with VOCs and

NOx emitted from UNG production.

Prospected air quality measurements
in China

Themeasured air pollutants from the US shale plays based on

the previous studies will be useful for narrowing the Chinese

environmental researchers’ focus and comparing the different

emission rates of the air pollutants due to the different types of

the shale basins comparing China and the United States. The

measurements used in the USA also highlighted the necessity of

the integration of multiple platforms for the air pollutants,

including the (1) site observation platform, (2) mobile lab,

drone, and airplane observation platform, and (3) satellite

observation platform, for a better understanding the air

pollutants emissions, while, the platforms and the related

instruments mentioned below will quickly help the

environmental researchers build their suitable platforms.

Site observation platform

Large-sized temporarily fixed observation sites, generally

modified from mobile shelters (EPA, 2017), are most

commonly used, which could support numerous monitors

with a stable power supply for long-term measurements, such

as (1) the commercial on-site instruments for O3, NO/NO2,

PM2.5 (e.g., 2B Model 205 O3 Analyzer, Thermo Model 42C NO/

NO2/NOx Analyzer, GRIMM EDM 180 FEM PM2.5 Monitor),

(2) the mass spectrometry technology-based instruments for

VOCs species [e.g., IONICON Proton-transfer-reaction mass

spectrometry (PTR-MS), Thermo thermal desorption gas

chromatography-mass spectrometry (TD-GC-MS)] and

aerosol species [e.g., Aerodyne Aerosol mass spectrometry

(AMS)], (3) the laser technology-based instruments for VOCs

species [e.g., Aerodyne quantum cascade lasers (QCLs)], (4) the

LiDARs for O3/PM2.5 vertical profiles, (5) VOCs canister

collection system for further high-sensitivity VOC species

analysis, and (6) the meteorological sensors (e.g. temperature,

RH, wind speed, wind direction, solar radiance, precipitation). In

addition to the larger temporarily fixed sites, temporary smaller

sites with low-energy and low-cost sensors have also been

established and widely used (https://www.epa.gov/air-sensor-

toolbox/evaluation-emerging-air-sensor-performance), which

could compensate for the shortcomings of the larger fixed

sites (e.g., lack of mobility, high cost to deploy quick-response

situations or wide range). When equipped with a photoionization

detector (PID) trigger system (Hecobian et al., 2019), the

temporary smaller site can capture the high VOC plume using

small canisters, which could provide useful information for the

VOCs identification from UNG emissions.

Mobile lab, drone, and airplane
observation platform

The mobile lab, generally converted from a van or a truck, can

carry the above instruments to conduct on-road measurements

using a multi-battery system or power generated from the engine

(Boanini et al., 2021). The mobile lab could be used to capture the

transport of air pollutant plumes, estimate the emission flux based

on circle-route measurements, observe the spatial concentration

distribution of air pollutants, act as a fixed site at some high

concentration spots, etc (Mohr et al., 2011; von der Weiden-

Reinmüller et al., 2014; Huang et al., 2020; Zhang J et al., 2020).

However, given the terrain or the UNG factory regulations, the

mobile lab could miss some areas. In this case, an unmanned aerial

vehicle (UAV) carrying light-weight sensors could be used for such

region observations and also for concentration vertical profile

measurements (McKinney et al., 2019). The airplane platform

could be used for large-scale observation, but the number of

flights or aircraft could be limited due to the high cost.

Satellite observation platform

Satellite observations could provide temporary and spatial

concentration variation of some species, such as NOx, CH4, O3,

etc, which could be used to evaluate the influence of UNG

emissions on a large scale (Jacob et al., 2016; Goldberg et al.,

2019; Varon et al., 2019). Combining the model simulation using

existing emission inventories and comparing it with the current

satellite observations, the current species emission rate could be

estimated (Zhang Y et al., 2020), which would be very useful for

updating the existing emission inventories.
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Conclusion

Benefiting from the horizontal drilling and hydraulic

fracturing techniques innovation, the USA has experienced the

boom of the UNG development and reached its goal of “energy

independence.” However, UNG development in China is still in

its infancy and has a great potential for rapid growth, which will

inevitably result in air pollution, as has been seen in the Denver

Basin. These issues should be given top priority due to the clean

air action from the current Chinese government. The studies on

the air quality in the USA for the UNG-related air pollutant

emissions provide solid knowledge, either on the air pollutants

characterization or their related observation technologies/

platforms, which can provide very useful guidance for Chinese

environmental researchers and the local governments to deal

with the air quality issues caused by the further surging of UNG

production.
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