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Extreme heat puts tremendous stress on human health and limits people’s ability to work,
travel, and socialize outdoors. To mitigate heat in public spaces, thermal conditions must
be assessed in the context of human exposure and space use. Mean Radiant Temperature
(MRT) is an integrated radiation metric that quantifies the total heat load on the human body
and is a driving parameter in many thermal comfort indices. Current sensor systems to
measure MRT are expensive and bulky (6-directional setup) or slow and inaccurate (globe
thermometers) and do not sense space use. This engineering systems paper introduces
the hardware and software setup of a novel, low-cost thermal and visual sensing device
(MaRTiny). The system collects meteorological data, concurrently counts the number of
people in the shade and sun, and streams the results to an Amazon Web Services (AWS)
server. MaRTiny integrates various micro-controllers to collect weather data relevant to
human thermal exposure: air temperature, humidity, wind speed, globe temperature, and
UV radiation. To detect people in the shade and Sun, we implemented state of the art
object detection and shade detection models on an NVIDIA Jetson Nano. The system was
tested in the field, showing that meteorological observations compared reasonably well to
MaRTy observations (high-end human-biometeorological station) when both sensor
systems were fully sun-exposed. To overcome potential sensing errors due to different
exposure levels, we estimated MRT from MaRTiny weather observations using machine
learning (SVM), which improved RMSE. This paper focuses on the development of the
MaRTiny system and lays the foundation for fundamental research in urban climate science
to investigate how people use public spaces under extreme heat to inform active shade
management and urban design in cities.
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1 INTRODUCTION

The year 2020 marks the Earth’s warmest 10-year period with an
average increase in global temperature of 1.3 °C above pre-
industrial levels. Extreme heat and related heat waves put
tremendous stress on individuals’ health and well-being and
limits their ability to work, travel, and socialize in outdoor
settings. Globally, extreme heat and associated heat wave
events are occurring more frequently and longer (Masson-
Delmotte et al, 2021). Future trends of urban warming
indicate the need for adaption measures to promote resilience
in the population. The outdoor urban environment is a complex
arrangement of urban forms and materials that impact how heat
is experienced by pedestrians at the microscale. In hot, dry cities
pedestrian comfort is strongly dictated by the availability of shade
(Middel et al., 2014; Colter et al., 2019). Pedestrian may respond
to microscale outdoor conditions by changing their walking path
from Sun to shade or vice versa based on their heat exposure.

The most common way to report urban heat is air
temperature, which has been shown to be insufficient to
quantify personal heat exposure (Harlan et al, 2006; Kuras
et al, 2017). A more human-centric metric that emphasizes
the heat load on the human body is the Mean Radiant
Temperature (MRT). MRT objectively quantifies the total
short- and longwave radiation the human body is exposed to
at a given location and time (Kantor and Unger, 2011). This
includes longwave radiation emitted from surrounding surfaces,
such as asphalt parking lots or concrete walls, and shortwave
radiation from the Sun. MRT roughly equals air temperature in
the shade but can be 30 °C higher in the Sun, making a person feel
much less comfortable when it is hot. In warm, dry climates such
as the desert city of Phoenix, Arizona in the USA, MRT is the heat
metric that best describes how people experience heat (Middel
etal, 2016). MRT is also a crucial input parameter for calculating
outdoor human thermal comfort indices such as PET (Hoppe,
1999) and UTCI (Jendritzky et al., 2012).

MRT has been successfully used in urban climate and human
biometeorology research to predict heat-related mortality and
outperformed air temperature as predictor (Thorsson et al,
2014). Using computer simulations, MRT was estimated to
assess the impact of tree planting strategies on human thermal
exposure under climate change in Vancouver, Canada
(Aminipouri et al, 2019) and to perform thermal comfort
routing in Tempe, Arizona, USA (Middel et al, 2017).
Observational studies have quantified the benefit of shade for
thermal comfort of different shade types including trees,
engineered structures, and urban form (Lee et al, 2018;
Middel et al, 2021). Accurate, high resolution MRT
measurements require expensive equipment, such as the
biometeorological instrument platform MaRTy (Middel and
Krayenhoff, 2019), but lower-cost alternatives such as the gray
38 mm globe thermometers and cylindrical thermometers have
been developed (Thorsson et al., 2006; Brown, 2019; Vanos et al.,
2021).

Active shade management in cities is important, especially in
the Southwestern US, to provide shade where people work, travel,
and socialize outdoors, because cooling benefits are hyperlocal.

MaRTiny

While a large body of literature has investigated shade and
microclimate in hot regions (Ali-Toudert and Mayer, 2007;
Emmanuel et al., 2007; Shashua-Bar et al., 2009; Coutts et al.,
2016), little information exists on how people use public spaces
and when and where they are exposed to outdoor heat. We close
this gap by developing a novel low-cost, portable, smart IoT
weather station (MaRTiny) that can measure passively the local
meteorological conditions, the heat exposure at the given location
and count people in the shade and Sun. Connecting hyperlocal
meteorological conditions with space use data captured by a
camera reveals behavioral patterns of shade and Sun preferences
that vary by time of day, location, and ambient conditions.
MaRTiny, as a passive sensor package, designed for hot, dry
climates, can provide local heat exposure, such as MRT, and space
use data without using external database.
Our contributions can be summarized as follows:

1. MaRTiny Weather Station—A low-cost and compact IoT
weather station that records air temperature, relative
humidity, globe temperature, and wind speed at 1-min
intervals. Globe temperature was converted to MRT using
an empirical model in the literature and compared with high-
end MRT measurements, resulting in a root mean square error
(RMSE) of 10.0°C for observed 6-directional measurements vs
globe temperature measurements.

2. MaRTiny Vision System—A low-cost, low-powered, compact
and smart vision system driven by state-of-the-art Al
algorithms. This system counts pedestrian and is also
capable of identifying if a pedestrian is under the cooling
effect of shade. From our observations, we calculate a precision
of 95% for pedestrian detection and an accuracy of 80% for
shade detection.

3. Machine Learning based MRT—We developed a novel
machine learning model that relies only on a few
meteorological parameters and is robust to changes in its
surrounding environment. This model corrects errors
introduced by the low-cost IoT sensor, such as slow
response time, shape, color and material inconsistencies,
etc., and predicts MRT with an accuracy of RMSE = 4°C.

This research paper is focused on the engineering and
development of a low-cost, portable IoT weather stations for
MRT measurement. The study does not focus on a large-scale
scientific study of human exposure in outdoor spaces, but rather
the engineering and data science challenges of estimating MRT
with a combined hardware-software system.

2 BACKGROUND AND RELATED WORK

2.1 Mean Radiant Temperature Sensing
MRT is typically determined with integral radiation
measurements using the so-called 6-directional method
(Hoppe, 1992). Three net radiometers are orthogonally setup
to measure the longwave and shortwave radiation in six
directions. The radiative fluxes are then summarized into a
temperature value using the Stefan-Boltzmann Law:
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Yo Wi(aK; + aiLy)
a0

MRT = \j ~273.15 (1)
where K; and L; are the directional shortwave and longwave
radiation fluxes, respectively; a; and g; are absorption coefficients
for short- and long wave radiation fluxes, respectively; o is the
Stefan-Boltzmann constant; and W; are factors that weigh the
directional fluxes to match the cylindrical shape of the human
standing body (0.06 is used for sensors pointing up and down,
0.22 for lateral sensors). This method is limited by cost with three
net radiometers that cost $5k each.

A more affordable but less accurate method to estimate MRT is
using a black globe thermometer. Globe thermometers such as the
Kestrel Heat Stress meter ($500) have been used to quantify the heat
load of pedestrians, athletes, and outdoor workers in various studies
(Johansson et al., 2014). Thorsson et al. (2006) developed a low-cost
globe thermometer using a thermocouple in a gray ping pong ball
(< $100). The acrylic gray color of the globe almost matches the
average albedo of the combination of the human skin and clothing to
reliably estimate MRT (Olesen et al., 1989; Thorsson et al., 2006).
Albedo variations based on clothing and skin color are large between
people and cannot simply be represented by one color alone, hence
this gray globe can provide an accurate estimate for the average
combined albedo which can be used as a reference.

Various convection coefficients have been developed for globe
thermometers to improve MRT estimations from globe
temperature (Oliveira et al, 2019; Manavvi and Rajasekar,
2020; Acero et al., 2021; Alfano et al., 2021). Those coefficients
are usually derived under specific outdoor conditions and cannot
be generalized easily. Here, we will use an empirical model for
acrylic gray globe temperature T, developed by Vanos et al.
(2021) in Phoenix, AZ based on air temperature T,, wind
speed V,, globe thermometer diameter D = 38mm, and
emissivity € = 0.97 of the globe:

MRT = {(1,6Tg - 0.339T, - 8.69 +273.15)'+
(0.24 +2.08V,,°° + 1.14V,*7)
(16T, -0.339T, - 8.69 - T, )10°)} " - 273.15

()

2.2 MRT Modeling

Due to limited sensing resources, MRT measurements across space
and time are usually sparse. To address this gap, microclimate and
radiation models calculate MRT using information on the built form
and meteorological data. For example, RayMan (Matzarakis et al,
2010) is a point-based, single location model that requires
hemispherical fisheye photos as input and calculates MRT based
on the horizon limitation and standard weather information. ENVI-
met (Bruse and Fleer, 1998) is a 3D gridded computational fluid
dynamics (CFD) model in urban climates studies to assess heat at the
neighborhood level. ENVI-met and RayMan calculate MRT based
on Sun position to calculate the direct solar radiation and other
radiative fluxes. However, Crank et al. (2020) found that both
models do not perform well in extreme heat cases and struggle
with complex urban forms. Acero and Herranz-Pascual (2015) also
report deviations in MRT simulations from globe thermometer
readings, especially under clear sky conditions, and Kriiger et al.

MaRTiny

(2014) found that all approaches discussed above (ENVI-met,
RayMan, and globe thermometer observations) overestimate
MRT when compared to ISO calculations. Currently, no model
can accurately estimate MRT in the absence of detailed urban form
parameters.

2.3 Pedestrian Counting

Much research has been developed for pedestrian counting and
crowd estimation. Sensor-based techniques (Zappi et al., 20105
Wahl et al., 2012; Raykov et al., 2016; Lau et al., 2018) use passive
infrared (PIR) and proximity sensors to monitor moving
pedestrians. Although these setups are compact and low-cost,
they have a low accuracy and misclassify often, and work best
only under certain environmental conditions. Alternatively,
network-based techniques (Kjeergaard et al, 2012; Weppner
and Lukowicz, 2013; Depatla et al, 2015) use Bluetooth and
WiFi networks for crowd sensing.

Recently, machine learning techniques low-level image feature
extraction methods (Chen et al., 2013, 2012), such as Haar
cascade (Viola and Jones, 2001) and HOG (Histogram of
Oriented Gradient) (Dalal and Triggs, 2005; Yao et al.,, 2020)
combined with regression models like SVM (Support Vector
Machine) (Yao et al., 2020) or detectors like AdaBoost (Viola
and Snow, 2003). State-of-the-art methods leverage deep
convolutional neural networks for crowd estimation using
individual detection (Wu and Nevatia, 2005; Brostow and
Cipolla, 2006; Wang and Wang, 2011; Stewart et al., 2016; Liu
et al, 2019) and using perspective maps (Chan et al, 2008;
Lempitsky and Zisserman, 2010; Zhang et al., 2015).

Further, there are works revolving around analysis of crowd
behaviour in urban areas (Hoogendoorn and Bovy, 2004;
Hashimoto et al., 2016; Lee, 2020) and their relation with
thermal comfort (Arens and Bosselmann, 1989; Givoni et al.,
2003; Eliasson et al., 2007; Eom and Nishihori, 2021). We do not
aim to outperform any existing pedestrian counting techniques,
but to combine them with a weather station as a single setup.

2.4 Research Gaps

In summary, thermal exposure measurements in tandem with public
space use assessments are crucial for active shade management in
cities, but accurate MRT measurement setups are expensive and
bulky. Low-cost systems such as gray globe thermometers have been
developed but are not connected to the cloud for easy data storage
and analysis. In addition, such low-cost sensors can suffer from over-
and under-estimation of MRT at various times of the day as noted in
previous literature. None of the existing MRT sensing platforms have
vision capabilities, and space use is often assessed through time-
consuming manual observations. Finally, physics-based MRT
models require detailed 3D data of the urban environment to
model radiation flux densities and sun-exposure. Our MaRTiny
system aims to address all these gaps.

3 SYSTEM OVERVIEW

The MaRTiny system is a compact, Internet-of-Things (IoT),
low-cost sensing and vision/recording/surveying platform (see
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Figure 1). Its primary functionality is to measure MRT for a given
sun-exposed location using off-the-shelf meteorological sensors
and a custom-made globe thermometer. MaRTiny measures air
temperature, relative humidity, wind speed, and globe
temperature, which are used to calculate MRT (see Eq. (2)).
In addition, MaRTiny is outfitted with a camera to detect and
count people in the shade and Sun. This data helps analyze
pedestrian behavior in public spaces (e.g. identifying the number
of people who utilize shade, umbrella, bicycles and transportation
etc). Privacy is preserved by only storing quantitative metrics (e.g.
pedestrian count) and discarding the captured images after
analysis.

The entire system transmits data to a cloud database via WiFi.
It is powered by a single power source of 20 W which is split
among different components according to their power ratings.
MaRTiny was built under $200 using different micro-controllers
and Al edge devices. MaRTiny is envisioned to be a useful
scientific platform to capture MRT data and correlate it with
pedestrian behavior in outdoor settings at a fraction of the size/
cost of existing solutions. No active human labor is needed for
data collection which helps save funds, time, and heat exposure
for researchers.

3.1 MaRTiny Weather Station

MaRTiny has four types of sensors to collect meteorological data
every minute—multiple temperature probes/thermometers, UV
sensor, humidity sensor, and anemometer (wind speed sensor)
(see Figure 2 and Table 1 and Table 2 for details). Two
temperature probes are utilized for globe and air temperature
respectively. Globe temperature is measured using a gray ping-
pong ball attached on top of its probe. The globe’s gray color
almost matches the albedo of the human skin. The globe
thermometer and the derived MRT emulate the
omnidirectional thermal exposure for a human body as a

MaRTiny

function of radiation, air temperature, and velocity, and thus
are an accurate low-cost solution to net radiometers (Thorsson
et al, 2006). Air temperature is measured using a downward
hanging white cup that shades the attached temperature probe.
The white cup reflects most of the solar radiation instead of
absorbing it to provide an air temperature “free” from the
influence of solar radiations. The UV sensor is used to
measure the UV intensity and train the machine learning
model to estimate MRT based on all measured parameters.
MaRTiny is powered by a DC adapter of 5V/4A, which is
shared by both systems (weather station and vision system).
The anemometer is supplied with 9V power by stepping up
the primary voltage source. This setup can be easily scaled with
more sensors without compromising on space and power. In
practice, low-cost sensors are subject to noise and variation,
which can yield errors in MRT estimation using Eq. (2) as we
show later in Section 5. To solve this problem, we introduce a
machine learning model to robustly estimate MRT despite these
inaccuracies.

3.2 MaRTiny Vision

Along with meteorological parameters, MaRTiny requires vision
capabilities including object detection and identification as well as
shade detection in outdoor areas. We leverage the NVIDIA Jetson
Nano, a low-cost and low-powered edge device to run state-of-
the-art deep learning models. The Jetson Nano features an ARM-
based micro-processor built with a Nvidia V100 GPU
programmed through Nvidia’s low level API TensorRT engine.
It has configurable power consumption modes of 5W and 10 W.
As we perform computationally heavy tasks, we have configured
the Jetson Nano to 10 W mode. To capture video, we utilize a
compact MIPI (Mobile Industry Processor Interface) camera and
stream the data to the Jetson Nano using a gstreamer pipeline.
Vision data is sent to AWS via an external USB WiFi on-board. In

FIGURE 1| Top view of MaRTiny setup. Jetson Nano is attached with cooling Fan along with camera and WiFi module. Arduino boards are connected to different

meteorological sensors.
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MaRTiny

Air Temperature Anemometer

Arduino Uno

Humidity sensor
Serial Communication

UV Sensor

Globe Temperatur

FIGURE 2 | Block Diagram of the MaRTiny setup along with communication protocols. Five sensors are configured to Arduino Uno and the collected data is
transmitted to NodeMCU using Serial Communication which is further sent to AWS database using MQTT Protocol.

Amazon Web Services

10T Core Dynamo DB

MQTT Protocol MQTT MQTT Protoco|
Bridge

TABLE 1 | List of meteorological parameters measured by MaRTiny.

Meteorological parameters

Parameter Description Unit
Ta Temperature of the surrounding air °C

Tg Temperature in the gray globe °C

uv Medium and long wave UV radiation mW/cm?
RH Relative Humidity %

WS Wind speed m/s

the next section, we describe in detail our deep learning networks
to detect pedestrians in shade.

3.3 Data Logging and Communication

To read meteorological sensor data, we use an Arduino Uno
microcontroller. The Uno board communicates with a
NodeMCU micro-controller featuring an ESP8266 architecture
that has an inbuilt WiFi module, flash memory, and supports the
PEM (Privacy Enhanced Mail) file system (see Figure 2). Sensor
data are continuously read in a loop by the Uno with a small 1 ms
delay to avoid overheating. Data are collected in a buffer, and an
average is calculated for every minute, which is then transmitted
to the NodeMCU board. The Uno acquires around 80 readings
per minute. Both boards communicate via the serial
communication protocol UART (universal Asynchronus
Receiver/Transmitter).

The NodeMCU communicates securely with the online database.
We utilize AWS DynamoDB, a NoSQL flexible database that can
handle unstructured data. All the necessary security PEM files are
stored in the NodeMCU’s flash memory for authentication of
MaRTiny. Using these files;, NodeMCU establishes a
communication path with AWS through the MQTT protocol, an
extremely lightweight publish/subscribe messaging protocol

TABLE 2 | List of electrical MaRTiny parts, costs, and meteorological sensor
accuracies.

Part List

Sensor Part no Cost ($) Accuracy
Temperature Probe  DS18B20 9 +0.5 °C from -10 °C to +85 °C
Humidity Sensor DHT22 5 2-5% from 0 to 100%

UV Sensor ML8511 5 1%

Anemometer Adafruit 40 worst case 1 m/s

Arduino Uno 20

Node MCU ESP8266 7

CSI Camera IMX219 20

Nvidia Jetson Jetson Nano 108

designed for IoT. Once the communication is established, Node
MCU waits for bytes of data to be received from the Uno board.
Sensor data collected by Uno is sent to NodeMCU via serial
communication every minute, which is then transmitted to
DynamoDB using the MQTT protocol.

4 MACHINE LEARNING ALGORITHM
DEVELOPMENT

4.1 Machine Learning for Accurate MRT

Estimation

As MaRTiny is a low-cost, compact alternative to the MaRTy
sensing platform (Middel and Krayenhoff, 2019; Middel et al.,
2020, 2021), the replacement of highly accurate sensors has
drawbacks including less accuracy and sensor lag (Hib et al,
2015). We noticed these inaccuracies caused serious errors in the
calculated MRT values (Figure 7). In particular, MRT was
sensitive to the positioning and orientation of the MaRTiny
relative to MaRTy (e.g the MaRTiny was shaded in one of the
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test, which resulted in lower MRT values, while MaRTy’s net
radiometers were partially sun-exposed).

To overcome this limitation, we formulate MRT estimation as
a supervised learning problem. This requires labeled ground-
truth MRT values to be provided in correspondence with our less
robust meteorological sensor data. In Section 5, we discuss data
collection consisting of paired MaRTy and MaRTiny
measurements to create this labeled data. This allows us to
train a machine learning model to estimate MRT accurately
from MaRTiny sensor data. We explored both traditional
machine learning methods using a support vector machine
(SVM) as well as a deep learning-based artifical neural
network. These two algorithms are versatile and well-known
in machine learning as they satisfy universal approximation
theorems (Cybenko, 1989; Hammer and Gersmann, 2002). In
particular, we observed an SVM with RBF (Radial Basis Function)
kernel achieved the highest accuracy on our evaluation dataset in
Section 5. This method is also computationally lightweight and
can be easily deployed on the Jetson Nano for performing
inference, i.e. the process of using a trained machine learning
algorithm to make a prediction.

4.2 People and Shade Detection

4.2.1 Shadow Detection

To perform shadow detection in an image, we use the deep
learning model Bi-directional Feature Pyramid with Recurrent
Attention Residual Modules (BDRAR) (Zhu et al., 2018),
visualized in the upper branch of Figure 3. BDRAR network
takes a single image as input and outputs a binary shadow map as
output in an end-to-end manner. First, it leverages a
convolutional neural network (CNN) to extract feature maps
at different spatial resolutions. It then employs two series of
recurrent attention residual modules to fully exploit global and

MaRTiny

local context for these feature maps. The features captured by
shallow layers exploit shadow details in the local regions and the
features captured by deep layers understands the overall shadow
region of the image. Figure 4 provides an example of shadow
maps produced by the network.

4.2.2 Object Detection

For object detection, we utilize the state-of-the-art YOLOv3
network (AlexyAB, 2016) visualized in the lower branch of
Figure 3. The model is trained on 80 different classes of the
Microsoft COCO dataset. The YOLOvV3 algorithm can be built
using two different frameworks - DarkNet and MobileNet
(Redmon et al, 2016). The MobileNet framework is
computationally light but has low accuracy, hence we decided
to use the Darknet framework. YOLOv3 has a mAP (mean
Average purpose) of around 57 (Redmon and Farhadi, 2018)
and has been proven to be efficient in crowd places (Hsu et al.,
2020). Since the YOLOv3-darknet model is large and
computationally expensive to run on the NVIDIA Jetson
Nano, we converted it into a simple neural graph using
Nvidia’s TensorRT. This allowed the model to run successfully
on the Nano with a application-sufficient frame-rate of 4fps.

4.2.3 Pedestrian in Shade Detection

An image is a 2D representation of the 3D world, so it is difficult
to determine the exact location of a pedestrian on the ground and
their distance from the camera. We introduce a simple approach
to identify pedestrians in shade without determining their
position in 3D space. First, a binary shadow map from
BDRAR indicating the presence of shade per pixel is
computed periodically (in our case, every 15min as shade
does not vary significantly). For every MIPI camera frame,
YOLOV3 outputs objects with their bounding boxes consisting

Shade Detection

15 Minu!#

m
Attention
Fusion

ﬂ RAR

Result A
People | People in shade | People in sun 4—@ in Shade
| 0 | 2 %

Object Detection - YoloV3

Backbone

1/4 second

Neck Dense Prediction

TensorRT

shade and sun.

FIGURE 3| System Overview of the MaRTiny Vision using different types of Neural Networks. The top network represents BDRAR network, responsible for shade
detection and the bottom network represents Yolov3. Shade map and bounding box of pedestrian is fed into the pedestrian algorithm to check number of people in
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MaRTiny

FIGURE 4 | Examples of shadow maps produced by BDRAR network. Note how the network works well for dark pixels without mistaking them for shade effect.

of pixel coordinates for the corners. Our algorithm calculates the
IOU (Intersection over Union) of the bounding box with the
shade map. We consider a person to be in shade if 40% of the
bounding box region is inside the shade map (i.e. IOU = 0.4).

Calculating IOU without considering the pedestrian’s
position with respect to shade can lead to errors. For
example, in Figure 5, one person is sun-exposed and the
other person is in the shade. The IOU of the bounding box
with the shadow map equals 60% in the first case and 40% in
the second case. The IOU for the first case is high due to
background shade and shadow cast by the person’s body. This
is the most common type of error that occurs at different
orientations of a person; therefore, it is necessary to
distinguish between shade from a person and shade from
the surroundings. Our algorithm first checks if the
bounding box edge is in the shade. A person does not have
to be completely in shade to feel the cooling effect, hence we
consider only the bottom halfi.e. 50% of the bounding box as a
ROI (Region of Interest). We then calculate the IOU between
this region and the shadow map. An IOU of 80% (which
implies an IOU of 40% of the complete bounding box) is
considered as the optimum value for a person to experience the
cooling effects of shade. The ROI and IOU can change based
on the environment and application. Pedestrian count under
Sun and shade along with other relevant counts (umbrellas,
pets, and bicycles) are reported to the online database, and the
frame with identifying features is discarded. This allows our
device to preserve the privacy of the individuals being observed
which is necessary for public deployment.

5 SYSTEM EVALUATION
5.1 Data Collection

For evaluation, we collected a custom dataset of ground truth
MRT values for two sun-exposed outdoor locations for 3 days in

Tempe, Arizona, United States. For validation purposes, the
MaRTy human-biometeorological platform (Middel and
Krayenhoff, 2019) was paired with the MaRTiny system for
simultaneous data logging. Figure 6 illustrates the paired
setup, the top box corresponding to MaRTiny and the bottom
setup corresponds to MaRTy. We can clearly see the difference in
scale between both the setups. In addition, an image dataset was
collected for evaluating object and shade detection. Images from
the MIPI camera were stored at random intervals along with the
bounding boxes of the interested objects. Ground truth bounding
boxes were drawn manually using tools such as AlexyAB, (2016);
Tosmonav, (2020) for 30 images consisting of around 50 different
objects. Precision and Recall for each object were calculated and
then used to calculate mAP (mean Average Precision). The same
images were used to evaluate shade detection using IOU
(Intersection Over Union) metrics. Small video snippets were
stored at random intervals which helped to cross-verify the
number of people in a given time frame. All the images and
videos were stored in an AWS S3 bucket and were deleted after
testing.

5.2 MRT Estimation

We first evaluated the performance of MaRTiny in estimating
MRT values. We utilize Eq. 2 with the sensor data on-board to
calculate MRT. MaRTy logs data every 2s, and MaRTiny stores
data every minute, hence we calculated 1-min averages for
comparison. Ground truth MRT was calculated using Eq. 1.
Figure 7 shows MaRTiny MRT results in green and MaRTy’s
ground truth calculation in red. A significant error in MaRTiny’s
estimation of MRT was found in the mornings with an MSE of
around 10°C. The error is due to the spatial offset between the two
devices, which caused the gray globe thermometer of the
MaRTiny sensor to be partially shaded by a nearby palm tree
in the mornings while MaRTy’s net radiometers were sun-
exposed. A palm tree has a narrow shadow pattern covering
only portions of the whole MaRTy and MaRTiny setup (see
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FIGURE 5 | Images of a person with bounding box and shadow map of the surrounding. Using our algorithm, we can detect that the person in the firstimage is sun-

exposed and the person in the second scenario is in shade.

Figure 6). For a detailed discussion of limitations, please see
section 6 (Discussion and Limitations).

To overcome these issues, we utilized our supervised
learning approach using both SVM and ANN. Machine
learning models were trained on selected meteorological
parameters - air temperature, globe temperature, humidity
and UV intensity, which were comparatively more accurate
and less prone to noise. We used around 12,000 data points for
training and 3,000 for testing from a range of dates, times, and
locations in the sensing period. These training points were fed
as vectors into the scikit-learn package in Python for training
SVMs and ANNs. 5-fold cross-validation was used to tune
model hyperparameters such as learning rate. A separate
dataset for evaluation consisted of around 700 data points
from a single location collected in a day as is the usual
application for this algorithm.

Since there is a non-linear relation of globe temperature and
air temperature with MRT given in Eq. 2, machine learning
models need to understand complex non-linear relations between
these parameters. A SVM with RBF kernel and a neural network
with ReLU (Rectified Linear Unit) activation function are
example of such models. In Table 3, we present a comparison
of SVMs with three different kernels and a traditional artificial
neural network (ANN). We report the Root Mean Square Error
(RMSE) for both the testing and evaluation datasets. Note that the
results of linear and polynomial SVM kernels justify our earlier
assumption and the results of SVM with RBF kernel as well as the
ANN achieved the best performance in quantitative metrics.
From Figure 8 we can see the performance of SVM with RBF
kernel, which is almost linear with the ground truth.

We trained our ANN on a i7 CPU. We set our learning rate «
to 0.001, which took around 5 min and 300 epochs to converge.
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FIGURE 6 | MaRTy and MaRTiny setup. The top white box corresponds to MaRTiny and the entire bottom setup corresponds to MaRTy.

Comparion of SVM model with Calculated MRT and Ground Truth MRT
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FIGURE 7 | Part I: Performance of MaRTiny weather station along with trained ML model tested between 05-21-2021 to 05-23-2021 in Tempe, Arizona.
Comparison of calculated MRT values with SVM model. Note the dips in the calculation due to the shading effects of the environment experienced by the MaRTiny
system, which is corrected by the SVM Model.
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TABLE 3 | Performance of different supervised machine learning models for MRT
estimation.

Machine Learning Algorithms for MRT

Algorithm RMS-Test RMS-Eval
SVM-Linear 16.8 20.2
SVM-Poly 12.0 10.0
SVM-RBF 4.6 3.9
ANN 3.2 3.8

Although this model performs slightly better on the test dataset
than the SVM-RBF model, performance is identical on the
evaluation dataset. The SVM model is also computationally
lighter and can be easily trained and deployed on edge devices
such as Jetson Nano.

5.3 Shade and Object Detection

For object detection, we leverage the YOLOV3 architecture
(Redmon and Farhadi, 2018). While not a state-of-the-art
object detector, this model is computationally lightweight in
comparison to more modern object detection models. Further,
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FIGURE 8 | Part II: Performance of MaRTiny weather station along with
trained ML model tested between 05-21-2021 to 05-23-2021 in Tempe,
Arizona. Performance of SVM Model on test dataset, which is almost linear
with ground truth.

MaRTiny

the object detector needed to be compatible with both the
TensorRT engine which we utilize on the NVIDIA Jetson
board as well as the Python dependencies and packages
necessary to run BDRAR as well as itself. Future research
could investigate the optimal choice of object detector with
shade detection (or a joint-model) for enhanced application
performance. Although the model is out-of-box, we wanted to
evaluate its performance in the environment suitable for the
MaRTiny device and hence, we collected a small custom dataset
and evaluated performance on these images. This evaluation on
custom dataset should only be considered as a secondary
evaluation while we still refer the reader to the main
evaluation mentioned in the original study (Redmon and
Farhadi, 2018) for the full performance of the object detector.

The standard evaluation metric used for any object detection is
mAP (mean Average Precision). Bounding boxes were manually
drawn using the tool for the dataset consisting of 30 images and
IOU was calculated with the bounding boxes predicted by our
model. Precision and recall is calculated for a series of different
IOU thresholds ranging from 0.5 to 0.95. A precision-recall graph
is constructed and the area under this graph provides us the mAP
value of around 55%, which is close to the value reported in their
study (Redmon and Farhadi, 2018). For our application IOU
threshold of 0.5 gives us the optimal results. We also achieved an
Average Precision of more than 85% for the class of Pedestrian,
which is important for our application (Figure 9).

Evaluation of shadow detection is done on a per pixel basis,
which is a binary evaluation method. A dataset consisting of
30 shade images was collected from different location and
time. We manually annotated these images using the tool
Tosmonav, (2020). We use the pre-trained BDRAR model to
evaluate these images and calculated IOU of the shadow map
with the ground truth and found a precision of 90%. This is
not the most effective method to calculate model accuracy
due to the irregular shapes, human error in annotation and
small dataset and hence we also refer readers to the evaluation
metrics of the original paper (Zhu et al.,, 2018). We evaluate
our pedestrian in shade detection algorithm on a custom
dataset of 50 images collected using MaRTiny. We have
manually compared the detected values from our
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FIGURE 9 | The graph shows the performance of object detection on

different classes of images collected during evaluation.
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FIGURE 10 | Example of Pedestrian detection along with masks using Yolov3 algorithm (left) and MaRTiny performing pedestrian detection in shade and sun (right).

algorithm with the ground truth and plotted a confusion
matrix to obtain an accuracy of around 80%. Test data
consisted of different shading effects and relative positions
of pedestrian. Since this kind of testing has not been carried
out before, our result can act as a baseline for future tests. The
accuracy can be improved on edge cases where pedestrian is
partially exposed to Sun at different orientations. Figure 10
and Figure 11 provides examples of MaRTiny Vision where
YOLOvV3 detects different objects and works along with
BDRAR to determine if a pedestrian is in shade or sun.

6 DISCUSSION AND LIMITATIONS

This systems engineering study introduced a novel low-cost
device that combines meteorological sensing with computer
vision to estimate MRT and space use. While previous work
has mainly focused on assessing the accuracy and precision of
various sensors and on advancing MRT simulation tools, our
contribution focuses on developing a low-cost hardware and
software setup that can be used by non-experts such as city
staff and citizen scientists. We also explored the use of state-of-

FIGURE 11 | Sample images of Shade Detection and Pedestrian Counting. The top two rows are example of shade map estimation carried at different time and
environments (Trees, Buildings, Empty Spaces) and last row has sample images captured by MaRTiny for Object Detection (Pedestrian and Bike).
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the-art machine learning techniques to improve MRT estimation
from low-cost sensors.

This article introduces the setup of the novel MaRTiny system
to monitor biometeorological conditions and people’s use of
public spaces with changing weather conditions. An empirical
study must follow to collect robust data over a long period of time
to systematically analyze the relationship between thermal
conditions and space usage. In addition, the MaRTiny
biometeorological setup must be fully calibrated against NIST
certified sensors before deployment, as it is built using off-the-
shelf sensors with low accuracy (see Table 2).

While an RMSE of 10 °C between 6-directional MRT
observations and globe temperature derived MRT may seem
large, it is on the order of magnitude of errors reported by
other authors and quite common for outdoor MRT
measurements in heterogeneous built environments. Acero
et al. (2021) found an RMSE of 7.4 °C for the standard
ISO7726 coefficient between the 6-directional setup and a
standard black globe. Vanos et al. (2021) found an average
difference of -1.6 = 7.2 °C between an acrylic gray globe and
integral radiation measurements on a solar roof that was not
subject to shading from the surrounding built environment. Most
recently, Lee et al. (2022) reported a large mean difference of
13.2-21.6°C on sunny days between globe thermometer MRT and
traditional MRT measurements.

Globe thermometers have various shortcomings, mostly
related to the indirect measurement of incident radiative
fluxes, which is highly sensitive to globe size, shape, material
properties/assumptions, color, and wind speed (Vanos et al,
2021). Guo et al. (2018) and Chen et al. (2014) found
significant impacts of wind speed on MRT obtained from
globe thermometers, and Teitelbaum et al. (2020) point to
errors from free convection. Globe thermometers also have a
long response time (Nikolopoulou et al., 1999) that grows with
globe diameter. MaRTinies are operated in stationary settings,
which reduces the error, but they will not be able to respond
quickly to changing cloud conditions. Lastly, globe thermometers
are known to overestimate MRT during high incoming solar
radiation periods and an underestimate at low solar elevation
(Thorsson et al., 2006; Acero and Herranz-Pascual, 2015; Vanos
et al,, 2021).

The presented machine learning model is a proof-of-concept
and is not a reliable MRT predictor in its current state. Our work
demonstrates the potential of SVM models for MRT estimation
but requires future data collection with identical
micrometeorological conditions for all sensors, ideally for a
full year, to build a robust model. The RMSE we calculated for
our two testing days is high due to a palm tree that shaded the
globe thermometer during the morning hours. RMSE is <4°C
when the morning hours are discarded. We included those hours
in our proof-of-concept to illustrate that a SVM model can
overcome errors that are introduced by sensor setup. However,
for a robust SVM model that can be used in a scientific study, all
sensors should be subject to the same micrometeorological
(shading) conditions.

With respect to the vision system, the BDRAR network
exhibits minor inaccuracies in the shadow map estimation and

MaRTiny

Yolov3. Although it performs well when detecting pedestrians in
crowds, it struggles when an individual person occludes another
person in the video feed. The shade detection works well but can
misclassify a person as shaded or sun-exposed when intersecting
the position of a person with the shadow mask, because the
algorithm does not take into account the 3-dimensional nature of
the shade and person in the scene.

7 CONCLUSION

Advancements in sensor technology have led to smaller, more
portable, and more affordable sensors that facilitate low-cost
sensing for many applications. In the domain of urban
climate, low-cost sensing has gained popularity for
crowdsourcing and citizen science studies, but is also
increasingly used to build IoT sensor networks, for example,
to monitor air pollution (Xiaojun et al, 2015) or thermal
conditions in occupational settings (Sulzer et al., 2022).

MaRTiny leverages edge devices that are low-cost, low-
powered, and yet computationally capable of running state-of-
the-art machine learning algorithms. Integrating a vision system
and people detection into the biometeorological sensing system
enables in-depth analyses of how weather and microclimate
conditions impact people’s walking behavior in public spaces,
including the use of shaded and sun-exposed areas. Once
calibrated, the system will be deployed in City of Tempe parks
and at playgrounds to inform municipal decision-making on
targeted investments for cooling infrastructure in public spaces.
The MaRTiny system is an example of how the emerging field of
Urban Climate Informatics can support heat mitigation efforts
through non-traditional observational methodologies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KK designed and built the system, designed the algorithms and
software, analyzed data from experiments, and helped write and edit
the manuscript. FS assisted with hardware prototyping and data
collection for both the MaRTiny and MaRTy setups as well as
writing/revising the paper. TG helped with initial project
discussions/conception. SJ helped supervise the project especially
with machine learning and computer vision algorithms and helped
write and edit the paper. AM conceived of the project idea,
supervised the project, and helped write and edit the paper.

FUNDING

This research was funded by the National Science Foundation
(NSF), grant number CMMI-1942805 (CAREER: Human

Frontiers in Environmental Science | www.frontiersin.org

May 2022 | Volume 10 | Article 866240


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Kulkarni et al.

Thermal Exposure in Cities - Novel Sensing and Modeling to
Build Heat-Resilience), NSF CNS-1951928 (Understanding
Heat Resiliency via Physiological, Mental, and Behavioral
Health Factors for Indoor and Outdoor Urban
Environments), and DEB-1832016 (Central Arizona-Phoenix

REFERENCES

Acero, J. A, Dissegna, A., Tan, Y. S., Tan, A., and Norford, L. K. (2021).
Outdoor Performance of the Black Globe Temperature Sensor on a Hot and
Humid Tropical Region. Environ. Technol., 1-13. doi:10.1080/09593330.
2021.1989057

Acero, J. A., and Herranz-Pascual, K. (2015). A Comparison of Thermal Comfort
Conditions in Four Urban Spaces by Means of Measurements and Modelling
Techniques. Build. Environ. 93, 245-257. doi:10.1016/j.buildenv.2015.06.028

[Dataset] AlexyAB (2016). YOLO_mark. Available at: https:/github.com/
AlexeyAB/Yolo_mark.

Alfano, F. R. D,, Dell'isola, M., Ficco, G., Palella, B. I, and Riccio, G. (2021). On the
Measurement of the Mean Radiant Temperature by Means of Globes: An
Experimental Investigation under Black Enclosure Conditions. Build. Environ.
193, 107655. doi:10.1016/j.buildenv.2021.107655

Ali-Toudert, F., and Mayer, H. (2007). Thermal Comfort in an East-West Oriented
Street Canyon in Freiburg (Germany) Under Hot Summer Conditions. Theor.
Appl. Climatol. 87, 223-237. doi:10.1007/s00704-005-0194-4

Aminipouri, M., Rayner, D, Lindberg, F., Thorsson, S., Knudby, A. J., Zickfeld, K.,
et al. (2019). Urban Tree Planting to Maintain Outdoor Thermal Comfort
Under Climate Change: The Case of Vancouver’s Local Climate Zones. Build.
Environ. 158, 226-236. doi:10.1016/j.buildenv.2019.05.022

Arens, E., and Bosselmann, P. (1989). Wind, Sun and Temperature-Predicting the
Thermal Comforf of People in Outdoor Spaces. Build. Environ. 24, 315-320.
doi:10.1016/0360-1323(89)90025-5

Brostow, G. J., and Cipolla, R. (2006). Unsupervised Bayesian Detection of
Independent Motion in Crowds. USA: IEEE Computer Society.

Brown, R. D. (2019). Correcting the Error in Measuring Radiation Received by a
Person: Introducing Cylindrical Radiometers. Sensors 19, 5085. doi:10.3390/
§19235085

Bruse, M., and Fleer, H. (1998). Simulating Surface-Plant-Air Interactions inside
Urban Environments with a Three Dimensional Numerical Model. Environ.
Model. Softw. 13, 373-384. doi:10.1016/S1364-8152(98)00042-5

Chan, A. B,, Zhang-Sheng John Liang, J., and Vasconcelos, N. (2008). “Privacy
Preserving Crowd Monitoring: Counting People without People Models or
Tracking,” in Computer Vision and Pattern Recognition. doi:10.1109/CVPR.
2008.4587569

Chen, K., Gong, S., Xiang, T., and Change Loy, C. (2013). “Cumulative Attribute
Space for Age and Crowd Density Estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.
1109/cvpr.2013.319

Chen, K,, Loy, C. C., Gong, S., and Xiang, T. (2012). “Feature Mining for Localised
Crowd Counting,” in Proceedings of the British Machine Vision Conference
(BMVA Press), 21. doi:10.5244/C.26.21

Chen, Y.-C,, Lin, T.-P., and Matzarakis, A. (2014). Comparison of Mean Radiant
Temperature from Field Experiment and Modelling: a Case Study in Freiburg,
germany. Theor. Appl. Climatol. 118, 535-551. doi:10.1007/s00704-013-1081-z

Colter, K. R,, Middel, A. C., and Martin, C. A. (2019). Effects of Natural and
Artificial Shade on Human Thermal Comfort in Residential Neighborhood
Parks of Phoenix, arizona, usa. Urban For. Urban Green. 44, 126429. doi:10.
1016/j.ufug.2019.126429

Coutts, A. M., White, E. C., Tapper, N. J., Beringer, J., and Livesley, S. J. (2016).
Temperature and Human Thermal Comfort Effects of Street Trees across Three
Contrasting Street Canyon Environments. Theor. Appl. Climatol. 124, 55-68.
doi:10.1007/s00704-015-1409-y

Crank, P.J., Middel, A., Wagner, M., Hoots, D., Smith, M., and Brazel, A. (2020).
Validation of Seasonal Mean Radiant Temperature Simulations in Hot Arid
Urban Climates. Sci. Total Environ. 749, 141392. doi:10.1016/j.scitotenv.2020.
141392

MaRTiny

Long-Term Ecological Research Program CAP LTER). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsoring
organizations.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Math. Control Signal Syst. 2, 303-314. doi:10.1007/BF02551274

Dalal, N., and Triggs, B. (2005). “Histograms of Oriented Gradients for Human
Detection,” in 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), 886-893. doi:10.1109/CVPR.2005.177

Depatla, S., Muralidharan, A., and Mostofi, Y. (2015). Occupancy Estimation Using
Only Wifi Power Measurements. IEEE J. Sel. Areas Commun. 33, 1381-1393.
doi:10.1109/JSAC.2015.2430272

Eliasson, I., Knez, I, Westerberg, U., Thorsson, S., and Lindberg, F. (2007). Climate
and Behaviour in a Nordic City. Landsc. Urban Plan. 82, 72-84. doi:10.1016/j.
landurbplan.2007.01.020

Emmanuel, R., Rosenlund, H., and Johansson, E. (2007). Urban Shading-A Design
Option for the Tropics? A Study in Colombo, Sri Lanka. Int. J. Climatol. 27,
1995-2004. doi:10.1002/joc.1609

Eom, S., and Nishihori, Y. (2021). How Weather and Special Events Affect
Pedestrian Activities: Volume, Space, and Time. Int. ]. Sustain. Transp. 0,
1-31. doi:10.1080/15568318.2021.1897907

Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller, N,, et al.
(2003). Outdoor Comfort Research Issues. Energy Build. 35, 77-86. doi:10.
1016/S0378-7788(02)00082-8

Guo, H., Teitelbaum, E., Houchois, N., Bozlar, M., and Meggers, F. (2018).
Revisiting the Use of Globe Thermometers to Estimate Radiant
Temperature in Studies of Heating and Ventilation. Energy Build. 180,
83-94. doi:10.1016/j.enbuild.2018.08.029

Hib, K., Ruddell, B. L., and Middel, A. (2015). Sensor Lag Correction for Mobile
Urban Microclimate Measurements. Urban Clim. 14, 622-635. doi:10.1016/j.
uclim.2015.10.003

Hammer, B., and Gersmann, K. (2003). A Note on the Universal Approximation
Capability of Support Vector Machines. Neural Process. Lett. 17, 43-53. doi:10.
1023/A:1022936519097

Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., and Larsen, L. (2006).
Neighborhood Microclimates and Vulnerability to Heat Stress. Soc. Sci. Med.
63, 2847-2863. doi:10.1016/j.socscimed.2006.07.030

Hashimoto, Y., Gu, Y., Hsu, L.-T., Iryo-Asano, M., and Kamijo, S. (2016). A
Probabilistic Model of Pedestrian Crossing Behavior at Signalized Intersections
for Connected Vehicles. Transp. Res. Part C Emerg. Technol. 71, 164-181.
doi:10.1016/j.trc.2016.07.011

Hoogendoorn, S. P., and Bovy, P. H. L. (2004). Pedestrian Route-Choice and
Activity Scheduling Theory and Models. Transp. Res. Part B Methodol. 38,
169-190. doi:10.1016/S0191-2615(03)00007-9

Hoppe, P. (1992). A New Procedure to Determine the Mean Radiant Temperature
Outdoors. Wetter und Leben 44, 147-151.

Hoppe, P. (1999). The Physiological Equivalent Temperature - a Universal Index
for the Biometeorological Assessment of the Thermal Environment. Int.
J. Biometeorology 43, 71-75. doi:10.1007/s004840050118

Hsu, Y. W., Chen, Y. W,, and Perng, J. W. (2020). Estimation of the Number of
Passengers in a Bus Using Deep Learning. Sensors (Basel) 20, 2178. doi:10.3390/
520082178

Jendritzky, G., de Dear, R., and Havenith, G. (2012). UTCI-why Another Thermal
Index? Int. . Biometeorol. 56, 421-428. doi:10.1007/s00484-011-0513-7

Johansson, E., Thorsson, S., Emmanuel, R., and Kriiger, E. (2014). Instruments and
Methods in Outdoor Thermal Comfort Studies - the Need for Standardization.
Urban Clim. 10, 346-366. doi:10.1016/j.uclim.2013.12.002

Kantor, N., and Unger, J. (2011). The Most Problematic Variable in the Course of
Human-Biometeorological Comfort Assessment - the Mean Radiant Temperature.
Central Eur. ]. Geosciences 3, 90-100. doi:10.2478/s13533-011-0010-x

Kjaergaard, M. B., Wirz, M., Roggen, D., and Troster, G. (2012). “Mobile Sensing of
Pedestrian Flocks in Indoor Environments Using WiFi Signals,” in 2012 IEEE
International Conference on Pervasive Computing and Communications,
PerCom. doi:10.1109/PerCom.2012.6199854

Frontiers in Environmental Science | www.frontiersin.org

13

May 2022 | Volume 10 | Article 866240


https://doi.org/10.1080/09593330.2021.1989057
https://doi.org/10.1080/09593330.2021.1989057
https://doi.org/10.1016/j.buildenv.2015.06.028
https://github.com/AlexeyAB/Yolo_mark
https://github.com/AlexeyAB/Yolo_mark
https://doi.org/10.1016/j.buildenv.2021.107655
https://doi.org/10.1007/s00704-005-0194-4
https://doi.org/10.1016/j.buildenv.2019.05.022
https://doi.org/10.1016/0360-1323(89)90025-5
https://doi.org/10.3390/s19235085
https://doi.org/10.3390/s19235085
https://doi.org/10.1016/S1364-8152(98)00042-5
https://doi.org/10.1109/CVPR.2008.4587569
https://doi.org/10.1109/CVPR.2008.4587569
https://doi.org/10.1109/cvpr.2013.319
https://doi.org/10.1109/cvpr.2013.319
https://doi.org/10.5244/C.26.21
https://doi.org/10.1007/s00704-013-1081-z
https://doi.org/10.1016/j.ufug.2019.126429
https://doi.org/10.1016/j.ufug.2019.126429
https://doi.org/10.1007/s00704-015-1409-y
https://doi.org/10.1016/j.scitotenv.2020.141392
https://doi.org/10.1016/j.scitotenv.2020.141392
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/JSAC.2015.2430272
https://doi.org/10.1016/j.landurbplan.2007.01.020
https://doi.org/10.1016/j.landurbplan.2007.01.020
https://doi.org/10.1002/joc.1609
https://doi.org/10.1080/15568318.2021.1897907
https://doi.org/10.1016/S0378-7788(02)00082-8
https://doi.org/10.1016/S0378-7788(02)00082-8
https://doi.org/10.1016/j.enbuild.2018.08.029
https://doi.org/10.1016/j.uclim.2015.10.003
https://doi.org/10.1016/j.uclim.2015.10.003
https://doi.org/10.1023/A:1022936519097
https://doi.org/10.1023/A:1022936519097
https://doi.org/10.1016/j.socscimed.2006.07.030
https://doi.org/10.1016/j.trc.2016.07.011
https://doi.org/10.1016/S0191-2615(03)00007-9
https://doi.org/10.1007/s004840050118
https://doi.org/10.3390/s20082178
https://doi.org/10.3390/s20082178
https://doi.org/10.1007/s00484-011-0513-7
https://doi.org/10.1016/j.uclim.2013.12.002
https://doi.org/10.2478/s13533-011-0010-x
https://doi.org/10.1109/PerCom.2012.6199854
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Kulkarni et al.

Kriiger, E. L., Minella, F. O., and Matzarakis, A. (2014). Comparison of Different
Methods of Estimating the Mean Radiant Temperature in Outdoor Thermal
Comfort Studies. Int. J. Biometeorol. 58, 1727-1737. doi:10.1007/s00484-013-
0777-1

Kuras, E. R,, Richardson, M. B., Calkins, M. M., Ebi, K. L., Hess, J. J., Kintziger, K.
W., et al. (2017). Opportunities and Challenges for Personal Heat Exposure
Research. Environ. Health Perspect. 125, 085001. doi:10.1289/EHP556

Lau, B. P. L., Wijerathne, N., Ng, B. K. K., and Yuen, C. (2018). Sensor Fusion for
Public Space Utilization Monitoring in a Smart City. IEEE Internet Things J. 5,
473-481. doi:10.1109/JI0T.2017.2748987

Lee, H,, Jo, S., and Park, S. (2022). A Simple Technique for the Traditional Method
to Estimate Mean Radiant Temperature. Int. J. Biometeorol. 66, 521-533. doi:10.
1007/s00484-021-02213-x

Lee, I, Voogt, J., and Gillespie, T. (2018). Analysis and Comparison of Shading
Strategies to Increase Human Thermal Comfort in Urban Areas. Atmosphere 9,
91. doi:10.3390/atmos9030091

Lee, J. M. (2020). Exploring Walking Behavior in the Streets of new york City
Using Hourly Pedestrian Count Data. Sustainability 12, 7863. doi:10.3390/
sul2197863

Lempitsky, V., and Zisserman, A. (2010). “Learning to Count Objects in Images,”.
Advances in Neural Information Processing Systems. Editors J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta (Curran Associates, Inc.), 23.

Liu, W, Salzmann, M., and Fua, P. (2019). “Context-aware Crowd Counting,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). doi:10.1109/cvpr.2019.00524

Manavvi, S., and Rajasekar, E. (2020). Estimating Outdoor Mean Radiant
Temperature in a Humid Subtropical Climate. Build. Environ. 171, 106658.
doi:10.1016/j.buildenv.2020.106658

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., et al.
(2021). Ipcc, 2021: Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge University Press. Available at : https://www.ipcc.
ch/report/sixth-assessment-report-working-group-i/

Matzarakis, A., Rutz, F., and Mayer, H. (2010). Modelling Radiation Fluxes in
Simple and Complex Environments: Basics of the RayMan Model. Int.
J. Biometeorol. 54, 131-139. doi:10.1007/s00484-009-0261-0

Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., and Coseo, P. (2021). 50 Grades of
Shade. Bull. Am. Meteorological Soc. 1, 1-35. doi:10.1175/bams-d-20-0193.1

Middel, A., Hib, K., Brazel, A. J., Martin, C. A., and Guhathakurta, S. (2014).
Impact of Urban Form and Design on Mid-afternoon Microclimate in Phoenix
Local Climate Zones. Landsc. Urban Plan. 122, 16-28. doi:10.1016/j.
landurbplan.2013.11.004

Middel, A., and Krayenhoff, E. S. (2019). Micrometeorological Determinants of
Pedestrian Thermal Exposure during Record-Breaking Heat in Tempe, arizona:
Introducing the Marty Observational Platform. Sci. Total Environ. 687,
137-151. doi:10.1016/j.scitotenv.2019.06.085

Middel, A., Lukasczyk, J., and Maciejewski, R. (2017). Sky View Factors from
Synthetic Fisheye Photos for Thermal Comfort Routing-A Case Study in
Phoenix, Arizona. Urban Planning 2, 19-30. doi:10.17645/up.v2i1.855

Middel, A., Selover, N., Hagen, B., and Chhetri, N. (2016). Impact of Shade on
Outdoor Thermal Comfort-A Seasonal Field Study in Tempe, Arizona. Int.
J. Biometeorol. 60, 1849-1861. doi:10.1007/s00484-016-1172-5

Middel, A., Turner, V. K., Schneider, F. A., Zhang, Y., and Stiller, M. (2020). Solar
Reflective Pavements-A Policy Panacea to Heat Mitigation? Environ. Res. Lett.
15, 064016. doi:10.1088/1748-9326/ab87d4

Nikolopoulou, M., Baker, N., and Steemers, K. (1999). Improvements to the Globe
Thermometer for Outdoor Use. Archit. Sci. Rev. 42, 27-34. doi:10.1080/
00038628.1999.9696845

Olesen, B., Rosendahl, J., Kalisperis, L., Summers, L. H., and Steinman, M. (1989).
Methods for Measuring and Evaluating the Thermal Radiation in a Room.
Ashrae Trans. 95, 1028-1044.

Oliveira, A. V. M., Raimundo, A. M., Gaspar, A. R,, and Quintela, D. A. (2019).
Globe Temperature and its Measurement: Requirements and Limitations. Ann.
Work Expo. Health 63, 743-758. doi:10.1093/annweh/wxz042

Raykov, Y., Ozer, E., Dasika, G., Boukouvalas, A., and Little, M. (2016). “Predicting
Room Occupancy with a Single Passive Infrared (Pir) Sensor through Behavior
Extraction,” in UbiComp 2016 - Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (United States:

MaRTiny

ACM), 1016-1027. 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp 2016 ; Conference date: 12-09-2016
Through 16-09-2016.

Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A. (2016). “You Only Look
once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 779. doi:10.1109/cvpr.
2016.91

Redmon, J., and Farhadi, A. (2018). YOLOv3: An Incremental Improvement.
arXiv, ArXiv abs/1804.02767. doi:10.48550/ARXIV.1804.02767

Shashua-Bar, L., Pearlmutter, D., and Erell, E. (2009). The Cooling Efficiency of
Urban Landscape Strategies in a Hot Dry Climate. Landsc. urban Plan. 92,
179-186. doi:10.1016/j.landurbplan.2009.04.005

Stewart, R., Andriluka, M., and Ng, A. Y. (2016). “End-to-End People
Detection in Crowded Scenes,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.
2016.255

Sulzer, M., Christen, A., and Matzarakis, A. (2022). A Low-Cost Sensor Network
for Real-Time Thermal Stress Monitoring and Communication
Occupational Contexts. Sensors 22, 1828. doi:10.3390/5s22051828

Teitelbaum, E., Chen, K. W., Meggers, F., Guo, H., Houchois, N., Pantelic, J., et al.
(2020). Globe Thermometer Free Convection Error Potentials. Sci. Rep. 10,
2652-2713. doi:10.1038/s41598-020-59441-1

Thorsson, S., Honjo, T, Lindberg, F., Eliasson, L, and Lim, E.-M. (2007). Thermal
Comfort and Outdoor Activity in Japanese Urban Public Places. Environ.
Behav. 39, 660-684. doi:10.1177/0013916506294937

Thorsson, S., Rocklév, J., Konarska, J., Lindberg, F., Holmer, B., Dousset, B.,
et al. (2014). Mean Radiant Temperature - A Predictor of Heat Related
Mortality. Urban Clim. 10, 332-345. d0i:10.1016/j.uclim.2014.01.004

[Dataset] Tosmonav (2020). Cvat. Available at: https:/github.com/
openvinotoolkit/cvat.

Vanos, J. K., Rykaczewski, K., Middel, A., Vecellio, D. J., Brown, R. D., and
Gillespie, T. J. (2021). Improved Methods for Estimating Mean Radiant
Temperature in Hot and Sunny Outdoor Settings. Int. J. Biometeorol. 65,
967-983. doi:10.1007/s00484-021-02131-y

Viola, P., Jones, M. J., and Snow, D. (2003). “Detecting Pedestrians Using
Patterns of Motion and Appearance,” in Proceedings Ninth IEEE
International Conference on Computer Vision, 734. doi:10.1109/ICCV.
2003.1238422

Viola, P., and Jones, M. (2001). “Rapid Object Detection Using a Boosted Cascade
of Simple Features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR. doi:10.
1109/CVPR.2001.990517

Wahl, F.,, Milenkovic, M., and Amft, O. (2012). “A Distributed Pir-Based Approach
for Estimating People Count in Office Environments,” in 2012 IEEE 15th
International Conference on Computational Science and Engineering, 640-647.
doi:10.1109/ICCSE.2012.92

Wang, M., and Wang, X. (2011). Automatic Adaptation of a Generic Pedestrian
Detector to a Specific Traffic Scene. CVPR, 3401-3408. doi:10.1109/CVPR.
2011.5995698

Weppner, J., and Lukowicz, P. (2013). “Bluetooth Based Collaborative Crowd
Density Estimation with Mobile Phones,” in 2013 IEEE International
Conference on Pervasive Computing and Communications, PerCom,
193-200. doi:10.1109/PerCom.2013.6526732

Wu, B., and Nevatia, R. (2005). Detection of Multiple, Partially Occluded
Humans in a Single Image by Bayesian Combination of Edgelet Part
Detectors. Tenth IEEE Int. Conf. Comput. Vis. 1, 90-97. doi:10.1109/
iccv.2005.74

Xiaojun, C., Xianpeng, L., and Peng, X. (2015). “Tot-based Air Pollution
Monitoring and Forecasting System,” in 2015 International Conference on
Computer and Computational Sciences (ICCCS), 257-260. doi:10.1109/iccacs.
2015.7361361

Yao, Y., Zhang, X,, Liang, Y., Zhang, X,, Shen, F., and Zhao, J. (2020). “A Real-Time
Pedestrian Counting System Based on Rgb-D,” in 2020 12th International
Conference on Advanced Computational Intelligence (ICACI), 110. doi:10.
1109/ICACI49185.2020.9177816

Zappi, P., Farella, E., and Benini, L. (2010). Tracking Motion Direction and
Distance with Pyroelectric Ir Sensors. IEEE Sensors J. 10, 1486-1494. doi:10.
1109/JSEN.2009.2039792

in

Frontiers in Environmental Science | www.frontiersin.org

14

May 2022 | Volume 10 | Article 866240


https://doi.org/10.1007/s00484-013-0777-1
https://doi.org/10.1007/s00484-013-0777-1
https://doi.org/10.1289/EHP556
https://doi.org/10.1109/JIOT.2017.2748987
https://doi.org/10.1007/s00484-021-02213-x
https://doi.org/10.1007/s00484-021-02213-x
https://doi.org/10.3390/atmos9030091
https://doi.org/10.3390/su12197863
https://doi.org/10.3390/su12197863
https://doi.org/10.1109/cvpr.2019.00524
https://doi.org/10.1016/j.buildenv.2020.106658
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://doi.org/10.1007/s00484-009-0261-0
https://doi.org/10.1175/bams-d-20-0193.1
https://doi.org/10.1016/j.landurbplan.2013.11.004
https://doi.org/10.1016/j.landurbplan.2013.11.004
https://doi.org/10.1016/j.scitotenv.2019.06.085
https://doi.org/10.17645/up.v2i1.855
https://doi.org/10.1007/s00484-016-1172-5
https://doi.org/10.1088/1748-9326/ab87d4
https://doi.org/10.1080/00038628.1999.9696845
https://doi.org/10.1080/00038628.1999.9696845
https://doi.org/10.1093/annweh/wxz042
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.1016/j.landurbplan.2009.04.005
https://doi.org/10.1109/cvpr.2016.255
https://doi.org/10.1109/cvpr.2016.255
https://doi.org/10.3390/s22051828
https://doi.org/10.1038/s41598-020-59441-1
https://doi.org/10.1177/0013916506294937
https://doi.org/10.1016/j.uclim.2014.01.004
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
https://doi.org/10.1007/s00484-021-02131-y
https://doi.org/10.1109/ICCV.2003.1238422
https://doi.org/10.1109/ICCV.2003.1238422
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/ICCSE.2012.92
https://doi.org/10.1109/CVPR.2011.5995698
https://doi.org/10.1109/CVPR.2011.5995698
https://doi.org/10.1109/PerCom.2013.6526732
https://doi.org/10.1109/iccv.2005.74
https://doi.org/10.1109/iccv.2005.74
https://doi.org/10.1109/iccacs.2015.7361361
https://doi.org/10.1109/iccacs.2015.7361361
https://doi.org/10.1109/ICACI49185.2020.9177816
https://doi.org/10.1109/ICACI49185.2020.9177816
https://doi.org/10.1109/JSEN.2009.2039792
https://doi.org/10.1109/JSEN.2009.2039792
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Kulkarni et al.

Zhang, C,, Li, H., Wang, X, and Yang, X. (2015). “Cross-scene Crowd Counting via
Deep Convolutional Neural Networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.
7298684

Zhu, L., Deng, Z., Hu, X,, Fu, C.-W,, Xu, X,, Qin, ], et al. (2018). “Bidirectional
Feature Pyramid Network with Recurrent Attention Residual Modules for
Shadow Detection,” in ECCV 2018. Lecture Notes in Computer Science. doi:10.
1007/978-3-030-01231-1_8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

MaRTiny

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Kulkarni, Schneider, Gowda, Jayasuriya and Middel. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org

15

May 2022 | Volume 10 | Article 866240


https://doi.org/10.1109/cvpr.2015.7298684
https://doi.org/10.1109/cvpr.2015.7298684
https://doi.org/10.1007/978-3-030-01231-1_8
https://doi.org/10.1007/978-3-030-01231-1_8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	MaRTiny—A Low-Cost Biometeorological Sensing Device With Embedded Computer Vision for Urban Climate Research
	1 Introduction
	2 Background and Related Work
	2.1 Mean Radiant Temperature Sensing
	2.2 MRT Modeling
	2.3 Pedestrian Counting
	2.4 Research Gaps

	3 System Overview
	3.1 MaRTiny Weather Station
	3.2 MaRTiny Vision
	3.3 Data Logging and Communication

	4 Machine Learning Algorithm Development
	4.1 Machine Learning for Accurate MRT Estimation
	4.2 People and Shade Detection
	4.2.1 Shadow Detection
	4.2.2 Object Detection
	4.2.3 Pedestrian in Shade Detection


	5 System Evaluation
	5.1 Data Collection
	5.2 MRT Estimation
	5.3 Shade and Object Detection

	6 Discussion and Limitations
	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


