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The northwestern Himalayas (NWH) in India have low rice productivity (~2 t ha−1) and
quality due to poor crop and nutrient management in predominantly Zn-deficient soils.
Hence, a field experimentation in the NWH compared the conventionally transplanted rice
(CTR) and the system of rice intensification (SRI) under three nutrient management
practices (NMPs), viz., 1) farmers’ fertilization practice, FYM @ 5 t ha−1 + N:P2O5:K2O
@ 50:40:20 kg ha−1 (FFP); 2) recommended dose of fertilization, FYM @ 10 t ha−1 + N:
P2O5:K2O @ 90:40:40 kg ha−1 (RDF); and 3) RDF + Zn fertilization using ZnSO4 @
25 kg ha−1 (RDF + Zn). The results revealed that SRI practice harnessed a significantly
higher rice yield under different NMPs (6.59–8.69 t ha−1) with ~1.3–1.4- and ~3.3–4.3-fold
enhancements over the CTR and average rice productivity in NWH, respectively. SRI had
the greatest improvement in panicle number hill−1 by ~2.4 folds over the CTR. RDF + Zn
had a significantly higher grain (10.7; 7.9%) and straw yield (28.9; 19.7%) over FFP and
RDF, respectively, with significant augmentation of Zn biofortification in grains (11.8%) and
Zn uptake (23.9%) over the RDF. SRI also enhanced the Zn concentrations in rice grains
and straws by ~4.0 and 2.7% over CTR with respective increases of 36.9 and 25.9% in Zn
uptake. The nutrient harvest index and partial factor productivity of applied nutrients (NPK)
had a higher magnitude under SRI and RDF + Zn over their respective counterparts,
i.e., CTR and RDF. In addition, SRI had higher AE-Zn, CRE-Zn, and PE-Zn to the tune
of 119.6, 63.4, and 34%, respectively, over the CTR. Overall, SRI coupled with RDF + Zn
in hybrid rice assumes greater significance in enhancing the rice productivity with better
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Zn-biofortified grains besides higher nutrient use efficiencies to combat widespread
malnutrition and acute Zn deficiencies in humans and livestock in the northwestern
Himalayas.

Keywords: conventionally transplanted rice, Zn-use efficiency, Zn biofortification, system of rice intensification,
nutrient management, rice productivity, grain quality

INTRODUCTION

Rice (Oryza sativa L.) is an important food crop of Asia where it
provides ~35–80% of the total calorie intake (Pooniya et al.,
2019). Again, in India, rice is the staple food to tackle the
widespread malnutrition and hunger in the nation
(Narayanan, 2017), where it provides ~43% of the calorie
requirement for more than 70% of the Indian population
(Choudhary and Suri, 2018a; 2018b). Demographic projections
reveal that India would require ~130million ton (mt) rice by 2025
(Rao, 2012), with ~14 mt additional rice to the current levels with
an annual hike of ~3 mt year−1 to ensure national food and
nutritional security vis-à-vis achieving the United Nations’
Sustainable Development Goals (SDGs). The Indo–Gangetic
plain region (IGPR), the food bowl of India, has been the
major contributor in the nation’s rice production (Biswakarma
et al., 2021). However, the conventional rice–wheat cropping
system followed for over 6 decades in IGPR is already facing acute
decline in factor productivity and yield stagnation owing to acute
nutrient deficiencies, nutrient mining, poor soil health, and
degradation of natural resources. (Singh P. et al., 2021, Singh
et al., 2021 U.; Biswakarma et al., 2021; Harish et al., 2022;
Pooniya et al., 2022). The IGPR also faces severe water shortage
due to poor and uneven rainfall patterns and depleting
groundwater table (Heba et al., 2021; Rajpoot et al., 2021;
Kumar et al., 2021, 2022), thus posing a threat to rice
sustainability owing to its high water requirement
~1,566–2,262 mm under conventionally transplanted rice
(CTR) (Dass et al., 2017). These resource and production
vulnerabilities in the IGPR have made India to focus on non-
conventional rice areas such as the northwestern Himalayas
(NWH) and northeastern India. However, the non-use of
high-yielding cultivars/hybrids, poor crop and nutrient
management, and inappropriate water management practices
have again led to stagnant rice yield in the Indian sub-
continent in general and in the NWH (~2 t ha−1) in particular
(Choudhary and Suri, 2018a, 2018b; Kakraliya et al., 2018; Singh
P. et al., 2021). In order to boost the rice production in the NWH
region (Himachal Pradesh, Uttarakhand, and Jammu and
Kashmir provinces), we have to rely on high-yielding rice
hybrids coupled with efficient crop and nutrient management
practices (Adhikari et al., 2018; Choudhary and Suri 2018a,
2018b).

During the last 2 decades, Asian rice systems have undergone
many technological breakthroughs to boost rice production
(Barison and Uphoff 2011). One such technological innovation
has been a shift from CTR to SRI for more rice with less water
(Adhikari et al., 2018). The SRI technique utilizing ~50% less seed
and ~25–50% less irrigation water than CTR (Choudhary et al.,

2010) has greatly enhanced the rice productivity in various agro-
ecologies across the globe (Stoop et al., 2002; Latif et al., 2005;
Uphoff 2010; Barison and Uphoff 2011; Sharif 2011; Styger et al.,
2011; Dass et al., 2016a; Thakur and Uphoff 2017; Uphoff 2017;
Choudhary and Suri 2018a; and Adhikari et al., 2018). Under SRI,
transplanting single young seedlings (8–15 days old, two to three
leaf stage) in 25 × 25 cm wider square spacing immediately after
uprooting minimizes the transplant shock and also reduces the
initial inter-plant competition for light, space, nutrients, and
water, later resulting in a prolific root–shoot system (Dass
et al., 2016a) and improved soil microbiome and nutrient bio-
availability (Thakur et al., 2010; Dass et al., 2017), leading to
profuse tillering with greater yields (Kassam et al., 2011; Adhikari
et al., 2018). Another game-changing technology has been the
hybrid rice cultivation (Yamauchi 1994; Choudhary and Suri
2018a, 2018b). Rice hybrids possess vigorous root and shoot
systems with higher yields compared to conventional varieties
(Yamauchi 1994). Hybrid rice cultivation under SRI may further
result in a more robust root and shoot system with better yield
traits due to their genetic make-up and favorable soil microbiome
and nutrient bio-availability under SRI as reported by various
researchers (Thakur et al., 2010; Veeramani and Singh 2011; Wu
and Uphoff 2015; Dass et al., 2016a, 2017; and Choudhary and
Suri 2018a, 2018b). Rice grain yield is a quantitative trait
characterized by low heritability and a high genotype ×
environment (G × E) interaction (Farooq et al., 2009). Hence,
it is pertinent to use high-yielding genotypes and rice hybrids
with efficient crop and nutrient management to harness the
benefits of SRI innovation (Stoop et al., 2009; Choudhary and
Rahi, 2018). As rice hybrids are nutrient-exhaustive, it inevitable
to revisit their fertilizer management schedules both for CTR and
SRI methods of rice farming (Styger et al., 2011; Dass et al., 2016a;
Choudhary and Suri 2018a). Thus, the SRI technology coupled
with rice hybrids under appropriate nutrient management
practices primarily essential for rice hybrids may hold the key
to harness their full benefits (Choudhary and Suri 2018b).
Already, the conventional rice–wheat cropping system of
north-west India including the NWH followed for over
6 decades is facing an acute decline in factor productivity, food
quality, yield stagnation owing to acute nutrient deficiencies,
nutrient mining, poor soil health, and degradation of natural
resources. (Choudhary and Suri 2014; Paul et al., 2014, 2016;
Sharma et al., 2020; Singh et al., 2020, Singh et al., 2021 U.; Harish
et al., 2022; Pooniya et al., 2022).

Furthermore, most parts of the rice-dominated north-west
India and NWH are facing a widespread zinc (Zn) deficiency
causing numerous health risks to both humans and animals
(Heba et al., 2021; Sharma et al., 2021). Ozkutlu et al. (2006)
reported that Zn deficiency may cause yield losses by ~40% in
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various field crops in Turkey. Likewise, Zn nutrition holds prime
importance in rice farming as it induces drought tolerance and
improves plant–water relations and photosynthesis due to better
stomatal regulation and cell membrane stability (Hassan et al.,
2020; Heba et al., 2021; Kumar et al., 2021). Zn nutrition also
enhances the protein content due to its vital role in tryptophan
amino acid and protein biosynthesis (Hanafy-Ahmed et al., 2012;
Kumar et al., 2021). Hence, Zn fertilization may play a vital role in
enhancing the crop productivity, quality, and Zn biofortification
in the field crops (Hussain et al., 2010, 2012; Kumar et al., 2021,
2022; Bana RC. et al., 2022, Bana et al., 2022 RS.). As earlier stated,
the NWH soils are Zn deficient (Sharma et al., 2021). Likewise
from the viewpoint of curtailing the malnutrition and hunger in
the NWH (Rasul et al., 2018; FAO 2019), it is again essential to
devise Zn-imbedded nutrient management practices to harvest
more rice with enhanced quality and better Zn-biofortified grains.
In alluvial soils of north Indian plains, soil application of ZnSO4

@ 25 kg ha−1 have been proved to be highly beneficial in
enhancing the rice productivity and Zn-biofortification in rice
grains (Pooniya et al., 2012, 2019). Hence, the soil application of
Zn may also prove equally effective in hybrid rice in the NWH.
Likewise, the performance of the SRI technique is also reported to
be favorably influenced by the organic manure additions (Stoop
et al., 2009; Choudhary and Suri 2018a). As rice hybrids are
nutrient-exhaustive (Dass et al., 2017), it inevitable to revisit their
fertilizer management schedules both for CTR and SRI to ensure
higher productivity and soil-health sustenance (Styger et al., 2011;
Dass et al., 2016a; and Choudhary and Suri 2018a). However,
pertinent information on the comparative performance of rice
hybrids under CTR and SRI under such efficient nutrient
management schedules is entirely lacking for the NWH
region. Therefore, the current study assessed the influence of
three nutrient management practices under CTR and SRI with

respect to rice productivity, grain quality, Zn-biofortification, and
nutrient-use efficiency to tackle widespread malnutrition and Zn-
deficiency in the Himalayan region; besides abridging the yield
gaps when we are outbidding to ensure the country’s food and
nutritional security targets by 2025.

MATERIALS AND METHODS

Study Area, Site Description, and Climate
The present investigation was conducted during Kharif 2010–2013
in Himachal Pradesh, a northwestern Himalayan state of India. The
Mandi district [31°13′20″–32°04′30″N latitude; 76°37′20″-
77°23′15″ E longitude; 700–4,000m altitude] of Himachal
Pradesh geographically located centrally in the state and
representing the wet-temperate agro-climatic conditions of the
whole NWH region of India was selected as the study area
(Figure 1). This district also constitutes the major rice producing
district of Himachal Pradesh in terms of acreage and production
(Figure 2A), besides falling under the rice suitability zone of the state
(Figure 2B); hence, qualified for selecting as the study area for the
current experimentation in the NWH. For carrying out the study
during Kharif 2010–2013 in the study area, 05 rice-dominated
Community Developmental Blocks (CDB) of Mandi district
(Sundernagar, Balh, Sadar, Gopalpur, and Karsog) in Himachal
Pradesh were selected randomly. Thereafter, 10 representative
villages/locations/farmers’ fields having irrigation facility were
selected randomly in these 6 CDBs to continuously conduct the
field experimentation during 2010–2013. For this purpose, farm soils
having medium nutrient status with respect to available nitrogen
(N), phosphorus (P2O5), and potassium (K2O) were selected after
analytical scrutiny (Table 1). These soils were silty-clay loam in
texture, acid Alfisol in nature with high soil organic carbon (SOC),

FIGURE 1 | Maps of India and the Himachal Pradesh province showing the location of Mandi district, Himachal Pradesh, and India (study area).
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while DTPA extractable-Zn ranged between 0.59–0.68mg kg−1 soil
(Table 1). The response of rice to Zn was expected in these soils as
the critical level of DTPA-extractable Zn in north India varies from
0.38 to 0.90 mg kg−1 soil (Takkar and Walker 1993; Heba et al.,
2021). Rainfall and temperature data was recorded at “Agro-
Meteorological Observatory” of CSKHPKV, Farm Science Centre,
Sundernagar, India (Supplementary Figure S1). The study area
receives an average annual rainfall of 1,700 mm, ~75% of which is
received during July to September, and the rest is received during
December to February. The hottest months are May to July with the
mean daily maximum temperature ranging between 32 and 35°C,
whereas December to February are the coldest months, with a mean
daily minimum temperature ranging between 2.6 and 3°C.

Experimentation Details and Crop
Management
In the current study, two crop establishment methods (CEMs) of rice
cultivation, viz., conventionally transplanted rice (CTR) and system
of rice intensification (SRI), were considered as factor A, and three
nutrient management practices (NMPs), viz., 1) farmers’ fertilization

practice (FFP), i.e., FYM@5 t ha−1 +N:P2O5:K2O@50:40:20 kg ha−1

(FYM5+N50P40K20); 2) recommended dose of fertilization (RDF),
i.e., FYM @ 10 t ha−1 + N:P2O5:K2O @ 90:40:40 kg ha−1 (FYM10 +
N90P40K40); and 3) recommended dose of fertilization + Zn-
fertilization (RDF + Zn), i.e., FYM @ 10 t ha−1 + N:P2O5:K2O @
90:40:40 kg ha−1+ ZnSO4 @ 25 kg ha−1 (FYM10 + N90P40K40 + Zn25),
constituted as factor B, making six treatment combinations with a
gross plot size of 400m2 under each treatment at 10 locations in the
NWH. Field experimentation was conducted under factorial
randomized block design (FRBD); where six treatments were
randomized logically for an analysis of variance (ANOVA) while
considering 10 locations as 10 replications (Choudhary and Suri
2018a; Choudhary et al., 2021). Since the temperature in NW
Himalayas after rice flowering goes down, long duration rice
hybrids do not perform well. The short and medium duration
rice hybrids can thrive well in wet-temperate NWH; hence, a
promising medium-duration hybrid (Arize-6129) was selected as
the test cultivar/hybrid for current experimentation. This rice hybrid
(Arize-6129) was sown in the third week of May in the case of CTR
and in the first week of June in the case of SRI during 2010–2013 in
nursery plots at respective locations following CTR (CSKHPKV

FIGURE 2 |Map of the Himachal Pradesh province of India showing (A)major/moderate rice producing areas and (B) rice suitability areas (Graphics Source: GIS
Centre, CSKHPKV, Palampur, India).

TABLE 1 | Physico-chemical properties of experimental soils at the initiation of field experimentation in the wet-temperate northwestern Himalayas.

S. no. Parameter Status/value Methods employed

1 Textural class Silty-clay loam International pipette method (Piper, 1950)
2 Soil reaction (pH) 5.9–6.5 1:2.5 soil: water suspension (Jackson, 1967)
3 Soil organic carbon (g kg−1) 8.1–9.6 Rapid titration method (Walkley and Black, 1934)
4 Available-N (kg ha−1) 312.5–381.8 Alkaline permanganate method (Subbiah and Asija, 1956)
5 Available-P (kg ha−1) 18.9–22.1 0.5 M NaHCO3, pH = 8.5 (Olsen et al., 1954)
6 Available-K (kg ha−1) 241.3–268.2 Ammonium acetate method (Hanway and Heidel, 1952)
7 DTPA-extractable Zn (mg kg−1 soil) 0.59a Lindsay and Norvell (1978)

aCritical level of DTPA-extractable Zn for crops grown on alluvial soils in north India varies from 0.38 to 0.90 mg kg−1 soil (Takkar and Walker 1993).
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2011) and SRI principles (Choudhary and Suri 2018a) (Table 2). The
30- and 15-day 4) old seedlings were then transplanted on the same
dates in the third week of June during 2010–2013 both in CTR and
SRI in their respective plot locations−1 at 20 × 15 cm and 25 × 25 cm
spacing using two to three seedlings hill−1 and single seedling hill−1 in
CTR and SRI, respectively (Table 2; Supplementary Figure S2).

Nutrient management was done strictly as per the treatment plan.
Well-rotten FYMwas added in respective treatments on fresh weight
basis (35% moisture on an av.) during land preparation, which
contained N, P, K, and Zn to the tune of 0.81, 0.45, 0.65% and
42.1 mg kg−1 (on oven dry-weight basis), respectively. The 1/3rd N
and entire P, K, and Zn doses were applied basally at puddling time in
the rice through urea (46% N), single super phosphate (16% P2O5),
muriate of potash (60%K2O), and Zn-sulfate heptahydrate (21%Zn),
respectively; while the remaining 2/3rd N was applied through
broadcasting in two equal splits at maximum tillering and
flowering stages following the treatment plan. Weeds were
controlled by using Pretilachlor @ 0.75 kg a.i. ha−1 both in CTR
and SRI. Two hand-weeding (HW) was done in CTR at 15–20 DAT
and 30–35 DAT. In the SRI method, two mechanical weeding
operations (at 10–12 and 20–22 DAT) using a manually-operated
country-made cono-weeder in both directions followed by one HW
(30–35 DAT) (Table 2), were performed to control the weeds, to add

weed biomass into soil, and to promote the rhizosphere aeration
(Choudhary and Suri 2018a). In case of CTR, continuous water
standing was kept during the vegetative phase through flood
irrigation. Under SRI, keeping in view the monsoon rains, the off
and on irrigation scheduling was done at 3-day after the
disappearance of ponded water (DADPW) to maintain saturation
up to the panicle initiation stage so as to promote the aerobic soil
conditions by alternate wetting and drying (AWD) (Supplementary
Figure S2). However, right from panicle emergence to 10-days before
crop maturity, a shallow submergence (2 cm) was continuously
maintained in all the plots. The plots were also drained before N
top-dressing and 1 week before harvest if it rained. BothCTR and SRI
plots received uniform plant protection practices throughout the
cropping season.

Growth and Yield Parameters
For recording the number of tillers hill−1 and the number of
panicles m−2; three observational units of 1 m row length each
were selected randomly for counting from the net-plots and the
mean value was converted into the number of panicles hill−1, and
the number of panicles m−2. Plant height and the panicle-length
measurements were done from 10 randomly selected tagged
plants in the net-plot area at the time of harvest. Samples

TABLE 2 | Crop management followed under conventionally transplanted rice (CTR) and SRI in the northwestern Himalayas, India.

Technology
component

Brief details of
CTR technology components

Brief details of
SRI technology components

Nursery raising • Seed: 30 kg for translating in 1 ha • Seed: select 12.5 kg healthy and bold seeds for 1 ha
• Bed size: well-leveled 4–5 cm raised bed and 1–1.5 m width of

convenient length with 30 cm furrows between the beds. Make 10
such beds using 30 kg healthy seed for 1 ha area

• Bed size: well-leveled 10 cm raised bed and 1–1.2 m width of
convenient length with 50 cm furrows between the beds

• Fertilizers: add 650 g urea and 1.5 kg SSP per 100 m2 bed using 3 kg
healthy seed/bed

• Fertilizers: mix 25–30 kg well rotten FYM, 65 g urea and 150 g SSP
per 10 m2 bed area. Prepare 15–18 such beds using 12.5 kg healthy
seed ha−1 transplanting. Sow pre-sprouted seeds in 10 cm rows
apart at 1.5–2.0 cm depth during the 1st week of June

• Herbicides: use Butachlor @ 1.5 kg a.i./ha or any suitable pre-
emergence herbicide after nursery sowing

• Herbicides: use Butachlor @ 1.5 kg a.i.ha−1 or any other suitable pre-
emergence herbicide after nursery sowing and cover the seed beds
with residue mulch

• Irrigation: flood irrigation in nursery beds as and when required • Irrigation: impound water in furrows of nursery beds as and when
required

Field preparation and
wet-tillage

• One deep ploughing • Same as CTR

• Accumulate sufficient water in the fields 2–3 days prior to
transplanting

• Puddle (wet-tillage) and level the fields 1 day before transplanting

Nutrient management • As per treatments • As per treatments
Transplanting • Transplant 2–3 seedlings (30 days old) per hill at 20 × 15 cm spacing

during the 2nd fortnight of June
• Transplant single seedling (15-days old; 2–3 leaf stage) per hill at 25

× 25 cm spacing in a square pattern during the 2nd fortnight of June
• Do not turn the root ends upwards while transplanting
• Transplant seedlings within 1 h of uprooting
• Gap filling after 4–6 days after transplanting (DAT)

Water management • Flood irrigation for continuous water standing during the vegetative
phase

• Intermittent irrigation following alternate wetting and drying (AWD).
Avoid field cracks due to water scarcity

Weed management • Pretilachlor @ 0.75 kg a.i. ha−1orButachlor @ 1.5 kg a.i.ha−1or any
other suitable herbicide after transplanting followed by two hand
weeding (HW) at 15–20 and 30–35 DAT.

• Pretilachlor @ 0.75 kg a.i. ha−1 or Butachlor @ 1.5 kg a.i.ha−1 or any
other suitable herbicide after transplanting followed by one HW at
30–35 DAT and weed incorporation in field

• Two intercultural operations at 10–12 and 20–22 DAT using cono-
weeder
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were drawn from the rice grains produced from the net-plot after
weighing, and the 1,000-grain weight was determined at 14%
moisture content. Rice crop was harvested from each farm plot,
dried in the sun, threshed, and then weighed. The rice grain,
straw, and biological yield were determined using standard
procedures (Rana et al., 2014), and expressed as t ha−1. Grain
yield was expressed at 14% moisture content.

Plant Chemical Analysis and Protein
Estimation
Plant samples of rice grains and straw collected from all the net-
plots just after the crop harvest from different locations were air-
dried and then dried in an hot air oven at 60 ± 2°C for 6–8 h.
These dried plant samples were ground in a Macro Willey-Mill
fitted with stainless steel parts and passed through a 40mesh sieve
and then subjected to chemical analysis for NPK and Zn. Plant
samples and FYM both were analyzed for total N using the
Kjeldahl digestion unit, while total P and K were determined
using di-acid digestion [4:1 ratio of HNO3 and HClO4 (v/v)] as
per standard procedure (Rana et al., 2014). The protein content
(%) in grains was determined by multiplying respective grain–N
content (%) by a factor 6.25. The respective N, P, and K uptakes
(kg ha−1) were determined by multiplying grain and straw yield
(kg ha−1) with their respective grain and straw nutrient
concentrations (%) as follows:

Nutrient uptake(kg ha−1) � Grain or straw yield(kg ha−1)
× nutrient concentration(%).

Zn Biofortification Assessment
Zn content in both rice grains and straw [g kg−1 dry matter (DM)]
were determined after di-acid digestion [4:1 ratio of HNO3 and
HClO4 (v/v)] of the above Macro Willey-Mill ground samples
and then estimated using an atomic absorption
spectrophotometer (Rana et al., 2014). The Zn uptake (g ha−1)
was determined by multiplying grain and straw yield (kg ha−1)
with their respective grain and straw nutrient concentrations (g
kg−1 DM) as follows:

Zn uptake(g ha−1) � Grain or straw yield(kg ha−1)
× nutrient concentration(g kg−1 DM).

Estimation of Nutrient-Use Efficiencies of
Applied Nutrients (N, P, K and Zn)
Nutrient harvest index of applied nutrients (N, P, K, and Zn) were
computed by the following equation as suggested by Fageria and
Baligar (2003):

NHI/PHI/KHI/ZnHI(%) � (GUN/P/K/Zn/UN/P/K/Zn) × 100

where NHI, PHI, KHI, and ZnHI refer to nitrogen harvest index,
phosphorus harvest index, potassium harvest index, and zinc
harvest index, respectively. GUN/P/K/Zn refers to respective N/P/

K/Zn uptake (kg or g ha−1) in grains, while UN/P/K/Zn refers to the
respective total N/P/K/Zn uptake (kg or g ha−1) both in rice
grains and straw in respective N/P/K/Zn applied plots, both
through chemical fertilizers and FYM.

Partial factor productivity (PFP) of applied nutrients (N, P and
K) as PFPn/PFPP/PFPk (kg ha−1 kg−1 of applied N/P/K) were
calculated by computing the total applied nutrients (N/P/K) both
through chemical fertilizers and FYM as suggested by Fageria and
Baligar (2003) hereunder:

PFPn/PFPp/PFPk � Yt
Na/Pa/Ka

Where PFPn, PFPP, and PFPk refer to the partial factor productivity
(PFP) of the applied N, P, and K, respectively. Yt refers to grain
yield (kg ha−1) of rice while Na, Pa, Ka refer to respective N, P, or K
applied (kg ha−1) both through chemical fertilizers and FYM.

Agronomic efficiency (AE–Zn), crop recovery efficiency
(CRE–Zn,) and physiological efficiency (PE–Zn) of applied-Zn
were computed by the following equations as suggested by
Fageria and Baligar (2003):

AE − Zn � (YZn − Y0)/FZn
CRE − Zn � (UZn − U0)/FZn

PE − Zn � (YZn − Y0)/(UZn − U0)
where YZn and Y0 refer to grain yield (kg ha−1) in Zn-applied and
non-Zn-applied plots/treatments, respectively. FZn refers to
fertilizer-Zn applied (kg ha−1) which worked out to be
5.25 kg ha−1 in ZnSO4 supplied plots both under CTR and SRI.
UZn andU0 refer to the total Zn uptake (kg ha

−1) both in rice grains
and straw in Zn-applied and non-Zn-applied plots/treatments,
respectively. Here, the AE-Zn, CRE-Zn, and PE-Zn were worked
out for Zn-applied treatment, i.e., recommended dose of
fertilization + Zn fertilization (RDF + Zn: FYM10 + N90P40K40

+ Zn25), and non-Zn-applied treatment, i.e., recommended dose of
fertilization (RDF: FYM10 + N90P40K40), in the current study.

Statistical Analysis
The experimental design was factorial randomized block design
(FRBD) replicated 10 times (considering ten locations as the
replications) and the statistical analysis was done by the standard
procedure suggested by Gomez and Gomez (1984). Significance of
differences among different treatments was tested using the standard
F-test. Least significance difference (LSD) values at p = 0.05 were used
to determine the significant differences between treatment means.

RESULTS

Weather and Production Environment
In general, the growing conditions at all the experimental locations
were favorable for rice crop during all the 4 years (2010–2013) with
an average annual rainfall of 1,503 mm across the four cropping
seasons, except during the June months of 2010 and 2012, and the
Septembermonth of 2013which received a relatively scanty rainfall
of 60, 90, and 72mm, respectively (Supplementary Figure S1).
About 80% of annual rainfall was received through the south-west
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monsoons during the fourth week of June to mid-September.
During the cropping seasons of 2010–2013, the hottest month
was June followed by July with the mean daily maximum
temperature ranging between 28–37°C, whereas the mean daily
minimum temperature ranged between 11–23°C. This set of
production environments is highly congenial for yield
expression of tested rice hybrid Arize-6129 in the NW Himalayas.

Plant Growth and Yield Attributes
Plant height as well as the yield contributing characters of rice at
harvest viz., number of panicles hill−1, panicles m−2, panicle length,
and 1,000-grain weight remained significantly (p < 0.05) higher
under SRI compared to the CTR crop establishment method
(CEM) in the 4-year study with greatest improvement of ~2.4
folds in the number of panicles hill−1 while other yield attributes
were augmented by 11.5–23.9% under SRI (Table 3). Among
different nutrient management practices (NMPs), the
recommended dose of fertilization (RDF) + Zn-fertilization
(RDF + Zn), i.e., FYM @ 10 t ha−1 + N:P2O5:K2O @ 90:40:
40 kg ha−1 + ZnSO4 @ 25 kg ha−1 (FYM10 + N90P40K40 + Zn25)
significantly (p < 0.05) enhanced the growth and yield attributes
over the second best treatment supplied with the recommended
dose of fertilization (RDF), i.e., FYM @ 10 t ha−1 + N:P2O5:K2O @
90:40:40 kg ha−1 (FYM10 + N90P40K40), and the least performer,
i.e., farmers fertilization practice (FFP) was supplied with 5 t FYM
ha−1 + N:P2O5:K2O @ 50:40:20 kg ha−1 (FYM5+N50P40K20) in our
current study. In general, RDF + Zn exhibited an increase of
~4.4–18.3% enhancement in the yield attributes viz., panicles hill−1,
panicles m−2, panicle length, and 1,000-grain weight compared to
RDF; while RDF had an enhancement of 4.2–12.8% in these
attributes over FFP (Table 3).

Four Years’ Yield Trends and Pooled Rice
Grain, Straw, and Biological Yield
The CTR and SRI crop establishment methods (CEMs) of rice had a
significant (p < 0.05) effect on the rice grain and straw yield. Across
the years, rice grain yield ranged between 5.62–5.95 and
7.34–7.90 t ha−1 while straw yield ranged between 8.23–8.52 and
9.89–10.55 t ha−1 under CTR and SRI, respectively (Figures 3A,C).
Likewise among NMPs, the Zn-imbedded treatment RDF + Zn
consistently and significantly (p < 0.05) outperformed over RDF and

FFP, with grain and straw yields ranging between 7.27–7.65 and
9.90–10.34 t ha−1, respectively (Figures 3B,D). Furthermore, the
significant (p < 0.05) CTR vs. NMPs and SRI vs. NMPs
interaction effects throughout the 4-year experimentation revealed
that the CTR coupled with RDF + Zn could hardly produce higher
grain and straw yield to the tune of 6.22–6.52 and 8.85–9.17 t ha−1,
respectively (Figures 4A,C). However, compared to CTR, the SRI
considerably enhanced the rice productivity under all NMPs with a
significantly (p < 0.05) greater grain and straw yield under RDF + Zn
to the tune of 8.32–8.88 and 10.94–11.58 t ha−1, respectively (Figures
4B,D). It was also noticed that the ill-distributed early monsoon rains
and comparatively higher temperature during Kharif 2012
(Supplementary Figure S1), accounted for comparatively least
rice grain and straw yields in the year 2012 over the normal
rainfall rice seasons of Kharif 2010, 2011, and 2013 under all the
CEMs and NMPs (Fig. 3, 4). The 4-year pooled data showed that the
SRI had significantly (p < 0.05) higher grain (7.65 t ha−1), straw
(10.29 t ha−1), and biological yield (17.95 t ha−1), and the harvest
index (42.6%) over the CTR, with respective increases of 31.4, 22.5
and 26.2% in grain, straw, and biological yield over CTR (Table 4).
The RDF + Zn consistently had the significant (p < 0.05) and greatest
grain (7.54 t ha−1), straw (10.15 t ha−1) and biological yield
(17.69 t ha−1), and harvest index (42.5%); which was followed by
RDF and FFP, respectively. On an average, the RDF + Zn had 10.7,
7.87, and 9.1%; and 28.9, 19.7, and 23.4% higher grain, straw, and
biological yield compared to FFP and RDF, respectively (Table 4).

NPK Nutrient Concentrations and Uptake
In general, the SRI proved superior to CTRwith respect to (w.r.t.) NPK
acquisition (pooled values) in rice grains and straw in the 4-year study
(Figure 5). Between the two methods, SRI management for the same
NMP level gave significantly (p < 0.05) larger concentrations of all
nutrients (NPK) relative to the effects ofCTRexcept for strawPcontent.
Both in CTR and SRI, the NPK concentrations in rice grains and straw
exhibited a consistent improvement under different NMPs following
the trend of RDF + Zn > RDF > FFP, where RDF + Zn proved
significantly (p< 0.05) superior to FFP but statistically at par toRDF, for
NPK concentrations both in grains and straw. AmongNMPs, the N, P,
and K content in rice grains both under CTR and SRI varied between
1.261–1.345 and 1.319–1.373%; 0.319–0.331 and 0.322–0.342%; and
0.294–0.342 and 0.326–0.363%, respectively with highest grain NPK
content under RDF + Zn under both CEMs (Figure 5).

TABLE 3 | Effect of different crop establishment methods (CEMs) and nutrient management practices (NMPs) on the growth and yield attributes of rice (4 years av.).

Treatments Plant height
(cm)

Panicles
(no. hill−1)

Panicles
(no. m−2)

Panicle length
(cm)

1000-grain weight
(g)

CEMs

CTR 87.4b ± 6.71 8.5b ± 0.26 284.4b ± 7.58 18.7b ± 0.47 23.4b ± 0.44
SRI 91.0a ± 5.20 20.7a ± 0.52 352.3a ± 7.54 23.0a ± 0.51 26.1a ± 0.34

NMPs

FFP 85.4b ± 4.96 12.7c ± 0.31 286.3c ± 11.08 18.7c ± 0.57 23.8b ± 0.50
RDF 88.4b ± 5.63 14.2b ± 0.37 315.1b ± 9.24 21.1b ± 0.66 24.8b ± 0.53
RDF + Zn 93.9a ± 6.32 16.8a ± 0.61 353.6a ± 7.50 22.8a ± 0.74 25.9a ± 0.36

Themean data (±SD) followed by a similar designator letter within a column are not significantly different at p ≤ 0.05 level of significance. However, themean data (±SD) followed by different
designator letters within a column are significantly different at p ≤ 0.05 level of significance level of significance.
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FIGURE 3 | Four years’ rice grain (A,B) and straw (C,D) yield trend of the rice under different CEMs and NMPs. The vertical bars indicate the LSD at p = 0.05.

FIGURE 4 | Four years’ rice grain (A,B) and straw (C,D) yield trend under the CTR vs. NMPs, and SRI vs. NMPs. The vertical bars indicate the LSD at p = 0.05.
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Between the twoCEMs, theN, P, andKuptakes both in rice grains
and straw and the total NPK uptake (grains + straw) showed a
significant (p < 0.05) variation with higher pooled values under SRI
(Figures 6A–C). This was reflected in the higher concentrations of
these elements in their respective plant parts, i.e., grains and straw. In
general, SRI management had a higher grain-N and total-N uptake
(103.2; 171.3 kg ha−1), P (25.45; 31.0 kg ha−1), and K uptake (26.4;
124.3 kg ha−1) with respective enhancements of 36.3 and 32.6%, 34.4
and 33.3%, and 42.7 and 28.7%, respectively, over CTR. Furthermore,
the NMPs exhibited a consistent and significant (p < 0.05) increase in
NPK uptake in rice grains and straw and a total uptake with the trend
of RDF + Zn > RDF > FFP. Among NMPs, the RDF + Zn had an
higher totalN, P, andKuptake by 34.6, 35.1, and 12.5%; and 13.8, 13.7,
and 6.43% over the FFP and RDF, respectively, in the 4-year study
(Fig. 6a, 6b, 6c).

Protein Content and Protein Yield
It was noticed that the SRI plots had a significantly (p < 0.05)
higher protein content (8.41%) in rice grains and the protein yield
(644.9 kg ha−1) compared to that of CTR (Table 5). Among
NMPs, the RDF + Zn eventually resulted in protein-rich

grains with a significantly (p < 0.05) higher protein content
(8.49%) and protein yield (641.9 kg ha−1) over RDF and FFP.
Averaged over 4 years, the SRI significantly raised the protein
yield by 40.5% over CTR, while RDF + Zn raised it by 35.6 and
14.2% compared to FFP and RDF, respectively. Hence, the SRI
coupled with RDF + Zn may prove as a boon to combat the
protein malnutrition through this intervention in NWH.

Zn Biofortification of Rice Grains and Straw
Between the twomethods, SRI gave significantly (p < 0.05) larger Zn
concentrations (pooled values) both in rice grains (31.1 mg kg−1

DM) and straw (52.6 mg kg−1 DM) with respective enhancements of
4.0 and 2.7% over the CTR (Table 5). AmongNMPs, the application
of RDF + Zn proved highly beneficial for Zn biofortification of rice
grains and straw both over RDF and FFP, respectively (Table 5).
Both under CTR and SRI, the RDF + Zn nutrition expressed
significantly (p < 0.05) higher Zn biofortification in rice grains
(33.2 mg kg−1 DM) and straw (54.7 mg kg−1 DM), on an average,
higher by 15.3 and 11.8% in grains; and 9.6 and 6.6% in straw over
FFP and RDF, respectively (Table 5). RDF also had significantly (p <
0.05) higher Zn accumulation in grains and straw by 3.1 and 2.8%,

TABLE 4 | Effect of different CEMs and NMPs on the grain, straw, and biological yield and harvest index of rice (4 years av.).

Treatments Grain yield (t ha−1) Straw yield (t ha−1) Biological
yield (t ha−1)

Harvest index (%)

CEMs

CTR 5.82b ± 0.14 8.40b ± 0.12 14.22b ± 0.25 40.9b ± 0.40
SRI 7.65a ± 0.24 10.29a ± 0.32 17.95a ± 0.56 42.6a ± 0.22

NMPs

FFP 5.85c ± 0.20 8.48c ± 0.26 14.34b ± 0.46 40.8b ± 0.12
RDF 6.81b ± 0.22 9.42b ± 0.24 16.22a ± 0.41 41.9a ± 0.57
RDF + Zn 7.54a ± 0.18 10.15a ± 0.19 17.69a ± 0.36 42.5a ± 0.23

Themean data (±SD) followed by a similar designator letter within a column are not significantly different at p ≤ 0.05 level of significance. However, themean data (±SD) followed by different
designator letters within a column are significantly different at p ≤ 0.05 level of significance.

FIGURE 5 |NPK concentrations (%) in rice grains and straw as influenced by different (A)CEMs and (B)NMPs (4 years av.). The vertical bars indicate the LSD at p =
0.05. The “ns” represent the non-significant differences at p = 0.05.
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respectively, over FFP irrespective of the CEMs. Furthermore, the Zn
uptake in rice grains, straw, and the total Zn uptake was significantly
influenced by the CEMs and NMPs (Figure 6D). SRI was
perceptibly the best performer for augmenting the Zn
biofortification with a significantly (p < 0.05) greater Zn uptake
in grains (239.9 g ha−1), straw (543.4 g ha−1), and the total uptake
(783.3 g ha−1) with respective increases of 36.9, 25.9, and 29.1% over
the CTR. The RDF + Zn significantly recorded (p< 0.05) the greatest
Zn uptake in grains (251.3 g ha−1), straw (555.9 g ha−1), and total

uptake (807.2 g ha−1), on an average, higher by 23.9, 15.0, and 17.6%,
respectively, over the RDF; while FFP had the least Zn uptake.

Nutrient Harvest Index and Partial Factor
Productivity of Applied Nutrients
The nitrogen harvest index (NHI), phosphorus harvest index
(PHI), potassium harvest index (KHI), and Zn harvest index
(ZnHI) had significantly (p < 0.05) higher magnitude (pooled

FIGURE 6 | Influence of different CEMs and NMPs on (A)N uptake, (B) P uptake, (C) K uptake, and (D) Zn uptake in rice grains and straw and total nutrient uptake,
and respective nutrient harvest indices (4 years av.). The vertical bars indicate the LSD at p = 0.05.

TABLE 5 | Effect of different CEMs and NMPs on the protein content in grains, protein yield, and Zn concentration in rice grains and straw (4 years av.).

Treatments Protein content in grains
(%)

Protein yield in
grains (kg ha−1)

Zn concentration (mg kg−1 DM)

Grains Straw

CEMs
CTR 8.11b ± 0.24 473.4b ± 42.5 29.9b ± 0.12 51.2b ± 1.12
SRI 8.41a ± 0.28 644.9a ± 53.7 31.1a ± 0.32 52.6a ± 1.36

NMPs
FFP 8.06b ± 0.17 473.4c ± 42.4 28.8b ± 0.89 49.9b ± 1.39
RDF 8.23b ± 0.22 562.1b ± 51.9 29.7b ± 1.24 51.3b ± 2.41
RDF + Zn 8.49a ± 0.24 641.9a ± 52.4 33.2a ± 2.19 54.7a ± 2.86

Themean data (±SD) followed by a similar designator letter within a column are not significantly different at p ≤ 0.05 level of significance. However, themean data (±SD) followed by different
designator letters within a column are significantly different at p ≤ 0.05 level of significance level of significance.
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data) under SRI compared to CTR (Figures 6A–D). Among
NMPs, there was a consistent but non-significant increase in NHI
(59.3–59.6%) while KHI (19–21.3%) had significant (p < 0.05)
increase right from FFP to RDF and then to RDF + Zn application
(Figures 6A,C). It was interesting, but not surprising that the PHI
reported significantly (p < 0.05) higher values at RDF; thereafter,
it showed a non-significant decline using RDF + Zn (Figure 6C),
most probably a P×Zn antagonistic effect. Nonetheless, the ZnHI
showed a consistent and significant (p < 0.05) improvement
(28.4–31%) right from FFP to RDF + Zn (Figure 6D). Partial
factor productivity (PFP) of applied N (PFPn), P (PFPp), and K
(PFPk) showed a significant (p < 0.05) variation both under CEMs
and NMPs (Figure 7). In general, the PFPn, PFPp, and PFPk were
significantly higher under SRI cumulatively by 30.9–31.3%
compared to CTR. Meanwhile, the FFP had significantly
higher PFPn, PFPp, and PFPk, all of which then declined
significantly under RDF, and again showed a slight
improvement under RDF + Zn (Figure 7).

Agronomic Efficiency, Crop Recovery
Efficiency, and Physiological Efficiency of
Applied Zn
Both under CTR and SRI, we assessed the agronomic efficiency
(AE–Zn), crop recovery efficiency (CRE–Zn), and
physiological efficiency (PE–Zn) of the applied Zn under
RDF + Zn compared to RDF. It was again interesting to
notice that the SRI had significantly higher AE-Zn (192.4 kg
grain kg−1 Zn applied), CRE-Zn (28.6 kg Zn accumulated kg−1

Zn applied), and PE-Zn (6.7 kg grain kg−1 Zn uptake) to the
tune of 119.6, 63.4, and 34%, respectively, over CTR
(Figure 8). This was already reflected in the higher
concentrations of Zn in rice grains and straw consequently
to Zn-fertilization and its better bio-availability under RDF +
Zn compared to RDF in the current study (Table 5).

DISCUSSION

Rice is a major food crop in the Indian Himalayas; however, non-
adoption of high yielding cultivars, poor crop nutrition, and
traditional rice farming practices (Choudhary and Suri 2018a;
2018b), coupled with low soil fertility, specifically Zn deficiency
(Sharma et al., 2021), besides receding water resources and ill-
distributed wet season rains are the major causes of concern
which result in low rice productivity (~2 t ha−1) and quality in this
agro-ecology (Ceesav and Uphorr, 2003; Choudhary and Suri
2018a, 2018b). Hence, the widespread malnutrition and hunger
among rural communities dependent on rice as a staple food in
these remote hilly terrains (Sharma et al., 2021) has been a great
cause of concern for the policy planners and the agricultural
researchers in India. The current study validated the performance
of conventionally transplanted rice (CTR) and the system of rice
intensification (SRI) under three nutrient management practices
(FFP, RDF, and RDF + Zn) to produce more rice with better Zn-
biofortified and quality grains with enhanced nutrient-use
efficiency to tackle the aforementioned issues in the NWH.
The most important finding of this study was that the hybrid
rice coupled with SRI produced higher yield attributes and the
rice yield (6.59–8.69 t ha−1) under three nutrient management
practices (NMPs); with perceptibly ~3.3–4.3 fold higher yield
compared to the average rice productivity (~2 t ha−1) in the NWH
(Figure 9). Under the conventionally transplanted rice (CTR),
proper plant nutrition in hybrid rice also produced more rice
(5.12–6.4 t ha−1) by ~2.6–3.2 folds compared to the average rice
productivity in the NWH. However, the SRI significantly out
yielded over the CTR by ~1.3–1.4 folds across the 4-year study in
the wet-temperate environment spanning in India’s northwestern
Himalayas.

In NWH, comparisons were also made between CTR and SRI
for growth and yield attributes where SRI produced taller plants
with the greatest improvement by ~2.4 folds in number of

FIGURE 7 | Influence of different (A) CEMs and (B) NMPs on the partial factor productivity (PFP) of applied nutrients viz. PFPn, PFPp, and PFPk in rice (4 year av.).
The vertical bars indicate the LSD at p = 0.05.
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panicles hill−1 and 23.9% higher panicle number m−2 under wider
spacing (25 × 25 cm) with ~23% longer panicles and ~12%
heavier grain test-weight compared to CTR, which finally led
to a 31.4% higher grain and 22.5% higher straw yield over the
CTR. This was most evidently reflected in their respective grain
and straw yield trends in the 4-year study despite insufficient
early-season rainfall during 2012 compared to normal rainfall
years (2010, 2011, and 2013). Under SRI management, planting
of the healthy younger seedlings at two to three leaf stage (15 days
old, or before the fourth phyllochron) in wider square spacing (25

× 25 cm) with minimal root damage and transplanting shock into
a moist but not flooded seedbed (Stoop et al., 2002; Latif et al.,
2005; McDonald et al., 2008; Styger et al., 2011; Dass et al., 2016a,
2017; and Choudhary and Suri 2018a, 2018b), are the key factors
which played a pivotal role in producing healthier plants with
better root and shoot growth, better photosynthetic rate, higher
panicle count, and other yield attributes, which ultimately
harnessed higher rice yield in hybrid rice under SRI compared
to CTR in current study (Dass et al., 2016a, 2017; Choudhary and
Suri, 2018a, 2018b).

FIGURE 8 | Influence of Zn fertilization in rice on agronomic efficiency of applied Zn (AE-Zn) (kg grain kg−1 Zn applied), crop recovery efficiency of applied Zn (CRE-
Zn) (kg Zn accumulated kg−1 Zn applied), and physiological efficiency of applied Zn (PE-Zn) (kg grain kg−1 Zn-uptake) under CTR and SRI (4 years av.). The vertical bars
indicate the standard deviation.

FIGURE 9 | Influence of different NMPs on grain yield enhancement both under CTR and SRI (4 years av.) over the average yield in the northwestern Himalayas. The
vertical bars indicate the LSD at p = 0.05.
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The single young seedling plantings at wider spacing and less
weed completion due to an efficient weed management through a
cono-weeder, led to greater PAR interception and photosynthetic
efficiency, resulting in higher growth and yield (Thakur et al.,
2010; Dass et al., 2016a, 2016b). Moreover, the greater yield in a
plant genotype is related to its ability to produce more biomass
with better development of plant parts, the pre-requisites for
effective utilization of environmental, soil, and water resources to
develop and produce its economic sink (Choudhary and Suri,
2014; Dass et al., 2016a; Choudhary and Rahi, 2018;
Bhupenchandra et al., 2022). Furthermore, the rice hybrids
have a higher yield advantage over the conventional varieties
(Choudhary and Suri, 2018a; 2018b); hence, tested hybrid “Arize-
6129” in all the three NMPs had more rice yield both under CTR
and SRI (Dass et al., 2016a). The optimum temperature for
vegetative growth, anthesis, and ripening in rice ranges
between 25 and 31, 30 and 33, and 20 and 25°C, respectively
(Chandrasekaran et al., 2008). Hence, the planting of younger
seedlings of short- and medium-duration rice hybrids under SRI
in the wet-temperate climate of the NWHmay skip the mild cool
temperatures at anthesis, mainly responsible for impaired grain
filling and low rice yield in the region (Dass et al., 2016a, 2017;
Choudhary and Suri, 2018a, 2018b; Choudhary et al., 2020).

Furthermore, the rice hybrids have more vigorous growth,
profuse tillering capacity, and higher yields over the
conventional varieties, hence, require more plant nutrition
to express their higher genetic potential (Yamauchi, 1994; Dass
et al., 2017). It further becomes more essential to supply the
balanced plant nutrition when we grow them under SRI
management, that too under marginal fertility soils like acid
Alfisol predominant in the NWH (Choudhary et al., 2010). In
our study, we found that better plant nutrition under RDF and
RDF + Zn proved highly rewarding over the FFP to produce
better growth and yield attributes to harness a higher yield over
the FFP following the trend of RDF + Zn > RDF > FFP both
under CTR and SRI, although, SRI outperformed the CTR at all
the fertilization levels with superior plant attributes and the
grain and biomass yield under RDF + Zn, owing to balanced
nutrient supply both through organic manures and chemical
fertilizers especially the Zn-fertilization. Since, the DTPA
extractable-Zn ranged between 0.59 and 0.68 mg kg−1 in the
experimental soils; thus, we found a significant response under
Zn-imbedded RDF + Zn treatment across the years (Takkar
and Walker, 1993; Heba et al., 2021), making genotype ×
environment (G×E) interaction a reality for a better yield
expression in our study (Farooq et al., 2009). Proper
aeration and soil tilth and alternate wetting-drying (AWD)
mechanism and efficient water-use under SRI, also resulted in
better yields due to reduced leaching and deep percolation
loses of N (Peng et al., 2010; Choudhary and Suri 2014, 2018a),
enhanced nutrient bio-availability in the aerated rhizosphere
(Santiago et al., 2011; Prasanna et al., 2012; Dass et al., 2016a,
2017; Singh U. et al., 2021, 2022), and better nutrient and water
acquisition by the robust rooting system (Sharif, 2011; Styger
et al., 2011; Adhikari et al., 2018); besides higher
photosynthetic efficiency due to favorable stomatal
regulation (Thakur et al., 2010; Dass et al., 2016a, 2017).

The concentrations and uptakes of NPK and Zn were higher
under SRI compared to CTR, which consistently and
significantly improved with the increase in fertilization with
greatest values under RDF + Zn. Hence, it indicates that efficient
nutrient management is primarily essential for better root and
shoot growth, higher nutrient acquisition by the plants and
better yields, both resulting in higher nutrient uptake (Styger
et al., 2011; Harish et al., 2021; Shrivas et al., 2021; 2022). In our
study, Zn concentration enhancement in rice grains and straw
under SRI was merely 4.0 and 2.7% over the CTR; however,
these small increases in Zn concentration had pronounced an
effect on the total Zn uptake, and hence, may prove beneficial
biologically to eliminate the widespread Zn deficiency across
South Asia in general and the NWH in particular with least farm
investments (Paul et al., 2016; Heba et al., 2016, 2021; and
Kumar et al., 2021, 2022). Furthermore, a distinct superiority of
the RDF + Zn w.r.t. NPK and Zn concentrations and uptakes
could be ascribed chiefly to higher NPK and Zn fertilization
through soil application as compared to RDF and FFP (Pooniya
et al., 2012, 2019). RDF + Zn increased the supply and
bioavailability of the major (NPK) and Zn micronutrient in
addition to improved soil organic matter (SOM) by the FYM
addition making nutrients more bioavailable (Pooniya et al.,
2019; Biswakarma et al., 2021). It further highlighted the vital
role of adequate moisture and aeration, both for their nutrient
bioavailability and their uptake (Santiago et al., 2011; Dass et al.,
2017). Proper aeration and moisture regimes under AWD and
mechanical cono-weeding under SRI, led to enhanced growth
and activity of the soil microbes (Choudhary and Suri 2018a;
2018b), which in turn, mediated the nutrient transformations
and dynamics, availability, and their uptake (Santiago et al.,
2011; Prasanna et al., 2012; Singh U. et al., 2021, 2022). Zn
availability is generally impaired by the frequent irrigations or
continuous submergence (Sarwar and Khanif 2005; Xu et al.,
2015). In contrast, the rhizospheric aeration under AWD is
expected to make the plant nutrients more bio-available (Dass
et al., 2017; Zulfiqar et al., 2020), specifically Zn in the Zn-
efficient NWH (Sharma et al., 2021), besides least N-losses
compared to continuous submergence (Peng et al., 2010;
Choudhary and Suri 2018a); all of which led to the higher
acquisition of NPK and Zn under SRI compared to CTR. The
latter resulted in a higher concentration of these nutrients both
in rice grains and straw, resulting in a higher nutrient uptake. As
Bana RC. et al. (2022) had reported, the foliar application of
4.0% Zn coated urea (ZnCU) + 0.2% ZnSO4 (ZnSO4.7H2O) may
prove effective in enhancing the rice yield and Zn
concentrations in rice grains and straw. Thus, both under
aerobic and submerged rice, the foliar application of Zn may
prove equally effective. In our study, a higher FYM application
under RDF and RDF + Zn enhanced the SOM, which is highly
beneficial for higher nutrient holding and the Zn chelation (Lin
et al., 2009; Pooniya et al., 2019; Biswakarma et al., 2021:; Faiz
et al., 2022). It also releases organic acids which solubilize the
fixed-P, bound in Al- and Fe-rich acid Alfisol of the NWH
(Kumar et al., 2017; Bhupenchandra et al., 2022); thus, helped in
more nutrient bio-availability, higher nutrient concentrations
and the uptakes in rice grains and straw in the current study.
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Higher N concentrations in rice grains under SRI compared to
CTR, as well as under RDF + Zn compared to RDF and FFP,
proved to be rewarding in enhancing the grain protein content
and the protein yield. Zn fertilization was directly helpful in Zn
biofortification of rice grains and straw and Zn uptake in Zn-
fertilized plots (Heba et al., 2016, 2021; Kumar et al., 2021,
2022), being beneficial both for humans and livestock facing
acute Zn deficiency in the Himalayan region.

The nutrient harvest index w.r.t. NHI, PHI, KHI, and ZnHI, as
well as partial factor productivity (PFP) of applied nutrients
(NPK) showed a significant improvement cumulatively by
30.9–31.3% under SRI compared to CTR, owing to better
nutrient acquisition and accumulation in rice grains and straw
in SRI plots where favorable soil and physico-chemical and
microbiological properties enhanced the nutrient
bioavailability in SRI management (Thakur et al., 2010; Dass
et al., 2017). Furthermore, there was a consistent and significant
increase in the NHI, KHI, and ZnHI under different NMPs with
greatest values under RDF + Zn, due to a better supply of plant
nutrients and their accumulation in rice grains and straw vis-a-vis
a higher rice yield (Choudhary and Suri 2018b; Kumar et al.,
2022). In contrast, PHI reported significantly higher values at
RDF; thereafter, it showed a slight decline using RDF + Zn owing
to a P×Zn antagonistic effect. In a nutshell, the higher nutrient
harvest indices and PFPs are the obvious outcomes of higher rice
productivity owing to better nutrient acquisition (Kumar et al.,
2017), and the genetic ability of the rice cultivar for better yield
expression under SRI management and the RDF + Zn nutrition
(Dass et al., 2016a; Kumar et al., 2017). The PFPn, PFPp, and PFPk
were higher under FFP, all of which then declined under RDF,
and again showed a significant improvement under RDF + Zn.
This trend can be attributed to the fact that the lesser doses of
NPK under FFP brought higher incremental gains over the RDF;
while under RDF + Zn, the Zn being the limiting factor amply
enhanced the grain yield resulting in better PFPn, PFPp, and PFPk.
The Zn-use efficiency in terms of agronomic efficiency (AE-Zn),
crop recovery efficiency (CRE-Zn), and physiological efficiency of
applied Zn (PE-Zn) were considerably higher under SRI to the
tune of 119.6, 63.4, and 34%, respectively, over the CTR owing to
better Zn bioavailability, Zn uptake, and rice grain yield of the
applied and native Zn under SRI as earlier stated (Pooniya et al.,
2019; Heba et al., 2016, 2021). Overall, Zn fertilization under RDF
+ Zn had greater significance in improving the rice productivity,
quality, and Zn biofortification in rice grains and straw which has
great potential in curtailing Zn malnutrition both in humans and
animals in the NWH, also a prime objective of the United
Nations’ Sustainable Development Goals (SDGs). Likewise, the
foliar application of Zn through Zn-coated urea (ZnCU) and
ZnSO4 could be another viable option to enhance the rice yield
and Zn concentrations in rice grains and straw in the NWH, as
per a recent study (Bana RC. et al., 2022).

CONCLUSION

It is concluded that the system of rice intensification (SRI)
proved highly beneficial over the CTR to harness higher rice

yield (6.59–8.69tha−1) under different nutrient management
practices (NMPs); with a yield enhancement of ~1.3–1.4 folds
over the CTR and ~3.3–4.3 folds compared to the average rice
productivity in the NWH. Among NMPs, the rice grain yield
ranged between 5.85 and 7.54 t ha−1 where RDF + Zn (FYM @
10 t ha−1 + NPK @ 90:40:40 kg ha−1 + ZnSO4 @ 25 kg ha−1)
outperformed RDF and FFP. SRI also improved the respective
Zn-uptake in rice grains and straw by 36.9 and 25.9%
compared to CTR. The RDF + Zn enhanced the Zn-
biofortification of rice grains and grain Zn-uptake by 11.8
and 23.9% over the RDF, respectively. Nutrient harvest index
and partial factor productivity of applied nutrients (NPK)
had a higher magnitude under SRI and the RDF + Zn over
their respective counterparts, i.e., CTR and RDF. The SRI also
had higher AE-Zn (192.4 kg grain kg−1 Zn applied), CRE-Zn
(28.6 kg Zn accumulated kg−1 Zn applied), and PE-Zn (6.7 kg
grain kg−1 Zn uptake) to the tune of 119.6, 63.4, and 34%,
respectively, over the CTR. Overall, SRI management coupled
with RDF + Zn nutrition in promising rice hybrids provides
ample opportunities to enhance rice productivity with better
Zn-biofortified quality grains with higher nutrient-use
efficiencies in the NWH to combat widespread
malnutrition and hunger besides curtailing acute Zn
deficiencies in humans and livestock in the northwestern
Himalayas and collateral agro-ecologies across the globe.
As the hybrid rice has shown higher response to soil
applied-Zn in the NWH, the foliar application of Zn
through ZnCU and ZnSO4 may also exhibit ample future
prospects to correct the mid-season Zn nutrition deficiencies
to further boost the rice yield with better Zn-biofortified rice
grains and straw in NWH.
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