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A few studies assessed how natural products can protect fish from the neurotoxic effects
of Microplastics (MPs). Therefore, the goal of this study was to look into the neurotoxicity of
PE-MPs on the brain tissue of African catfish (C. gariepinus), and whether dietary feeding
on Chlorella, citric acid, and lycopene could help alleviate their toxicity. Five groups of fish
were used: The first group received a standard diet (control). The second group was fed
500mg/kg PE-MP. The third group was fed PE-MP + lycopene (500mg/kg diet). The
fourth group was fed PE-MP + citric acid (30 g/kg diet). And the fifth group was fed PE-MP
+ Chlorella (50 g/kg diet) for 15 days. The activities of Acetylcholinesterase (Ach),
Monoamine Oxidase (MAO), Aldehyde Oxidase (AO), and Nitric Oxide (NO), and the
histological effect on brain tissues were then assessed. The activity of the four neurological
biomarker enzymes investigated was altered significantly in fish subjected to PE-MP alone
compared with the control group. For fish exposed to PE-MP with lycopene, citric acid, or
Chlorella, the activities of these neurological enzymes significantly improved particularly
with Chlorella compared with fish fed PE-MP individually. Histological investigations
illustrated that being subjected to PE-MPs effected cellular alterations in the
telencephalon, including diffuse distorted and degraded neurons, encephalomalacia,
aggregated neuroglial cells (gliosis), as well as deformed and necrotic neurons,
neuropil vacuolation (spongiosis), aggregated neuroglial cells (gliosis), pyknotic
neurons, and shrunken Purkinje cells which were found in the cerebellum. Most
histological alterations induced by exposure to PE-MP feeding were restored by
dietary feeding on Chlorella, citric acid, and lycopene. Accordingly, this study
recommends using citric acid, lycopene, and Chlorella as a natural remedy against MP
neurotoxicity particularly with Chlorella.
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INTRODUCTION

In recent years, plastic debris pollution in freshwater and marine
habitats garnered the attention of the scientific community and
the general public (Andrady, 2011). Synthetic polymers are only a
matter of time until they become a global ecological and
environmental issue due to their high production combined
with their physicochemical properties, such as buoyancy and
slow (bio)degradation rate, and ineffective and irresponsible
waste collection and recycling (Free et al., 2014). Plastic debris
is physically fragmented into Microplastics (MPs) via
photochemical degradation and mechanical abrasion
(Thompson et al., 2004; Andrady, 2011). Therefore, “MPs”
stands for all plastic items smaller than 5.0 mm in size
(Thompson et al., 2004), classifiable into primary
MPs—intentionally produced at a microscopic scale (Costa
et al., 2009; Browne, 2015) and secondary MPs—resulting
from the degradation of larger plastics into smaller pieces
because of hydrolysis and biodegradation under environmental
conditions weathering and photo-oxidation (Mathalon and Hill,
2014; Gewert et al., 2015). Fragmentation occurs over time due to
the culmination of biological physical, and chemical processes
that diminish plastic debris’ structural integrity (Browne et al.,
2007).

Manufacturing of synthetic polymers has increased rapidly in
recent decades, led by Polyethylene (PE), with aquatic habitats
functioning as a global sink. PE is non-biodegradable; however, it
does break down into MPs that are easily absorbed by biota in
coastal areas (Beiras et al., 2019). PE, polypropylene plastic
polymers, are more frequently generated and disposed of,
resulting in the presence of significant quantities of them in
marine habitats (Andrady, 2011; Abidli et al., 2018; Abidli et al.,
2019; James et al., 2020). Yet knowledge on the occurrence and
effects of MPs on the marine environment surpasses those on
freshwater. Continental aquatic ecosystems can contain and
collect many microparticles and plastic fibers (Li et al., 2018
and, 2020; Wagner and Lambert, 2018). This is exacerbated by
urban areas near rivers and lakes (Imhof et al., 2013; Faure et al.,
2015; Anderson et al., 2017).

MPs can be part of the aquatic food web through direct
ingestion of MPs—which could happen by accident due to
being mistaken for food—or ingestion of a prey species that
already contains MPs (Wright et al., 2013). There are filter
feeders, such as the mussel Mytilus edulis (Browne et al., 2008)
and the copepod Centropages typicus (Cole et al., 2013), deposit-
feeders in the lab, such as the sea cucumber Holothuria floridana
and Holothuria grisea (Graham and Thompson, 2009), and
scavenging invertebrates in the field, such as the decapod
Nephro (Murray and Cowie, 2011). MPs have also been found
in the digestive tracts of commercial fish species, according to
research (Lusher et al., 2013; Neves et al., 2015; Romeo et al., 2015;
Miranda and de Carvalho-Souza, 2016; Hamed et al., 2019; Sayed
et al., 2021a). MPs pose risks because chemicals and pollutants
become encrusted on the surface (Rochman et al., 2013).

Ingestion of MPs could have both physical and physiological
consequences for marine organisms. Internal abrasions and gut
obstructions could cause malnutrition as a result of the physical

repercussions (Gall and Thompson, 2015). The toxicity of plastic
monomers and additives causes carcinogenesis and endocrine
disruption, resulting in physiological repercussions (Wright et al.,
2013; Hamed et al., 2019; Hamed et al., 2020; Hamed et al., 2021).
Several studies on the neurotoxicity of various MPs in fish have
been reported (Barboza et al., 2018b; Ding et al., 2018; Miranda
and de Carvalho-Souza, 2016; Oliveira et al., 2013). Additionally,
MPs can increase cellular oxidative stress by altering antioxidant
defense responses, resulting in Lipid Peroxidation (LPO) of
cellular membranes (Alomar et al., 2017; Barboza et al.,
2018a). These findings are concerning because enzymes, such
as cholinesterase, some of which are necessary for cholinergic
neurotransmission in neuromuscular junctions and cholinergic
brain synapses (Massoulié et al., 1993), and LPO have been
deemed as important molecular mechanisms related to
oxidative damage to cell structures and the toxicity process
that causes death (Massoulié et al., 1993; Repetto et al., 2012).
Moreover, MPs in the stomachs of commercially important fish
species are concerning due to the potential for these small plastic
particles and/or related to pollutants to be transported to edible
fish tissue, endangering human health (Fossi et al., 2018). As a
result, it is imperative to begin investigating how to manage the
ecotoxicity of MPs in fish and whether dietary feeding on natural
products could help reduce their toxicity.

Carotenoids, particularly lycopene, act as antioxidants since
they can interact with reactive oxygen species. As a result,
consuming lycopene as an antioxidant in fish traps active
oxygen species, reducing oxidative stress and the risk of
oxidation of cellular components such as lipids, proteins, and
DNA (Waliszewski and Blasco, 2010). As a result, many
functional foods are now developed to give a high level of
antioxidants while lowering the risk of diseases linked to
oxidative stress (Roberfroid, 2002). Similarly, Chlorella vulgaris
is a unicellular green alga found in freshwater and saltwater and is
commonly utilized as a food supplement (Kay and Barton, 1991).
It is a nutrient-dense superfood with 60% protein, 18 amino acids,
and different vitamins and minerals. Calcium, iron, potassium,
phosphorous, magnesium, pro-vitamin A, vitamins C, B1, B2, B5,
B6, B12, E, and K, biotin, inositol, and folic acid are among the
vitamins and minerals in Chlorella (Nick, 2003). Furthermore,
citric acid is useful not only in terrestrial animal studies (Liu et al.,
2014), but also in aquatic animals, such as fish, for improving
calcium, phosphorus, and zinc intake (Sugiura et al., 1998). Citric
acid has been shown to improve the availability of phosphorus in
rainbow trout (Pandey and Satoh, 2008), red sea bream (Pagrus
major) (Hossain et al., 2007), beluga (Huso huso) (Khajepour and
Hosseini, 2012), rohu (Labeo rohita) (Baruah et al., 2007), and
yellowtail (Seriola quinqueradiata) (Sarker et al., 2012). Recently,
Sayed et al., 2021a and Sayed et al., 2022 stated that lycopene,
citric acid, and chlorella can be recommended as a feed
supplement to improve hemato-biochemical alterations and
oxidative damage as well as reproductive impairment induced
by MPs toxicity in the African catfish (C. gariepinus). To the best
of the authors’ knowledge, no study has been conducted to
investigate the moderating effects of Chlorella, citric acid, and
lycopene on MP neurotoxicity in fish brain tissue (Sayed et al.,
2021b). Therefore, this study used a controlled laboratory
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experimental design to analyze the neurotoxicity of PE-MPs on
the brain tissue of African catfish (C. gariepinus), and whether
dietary feeding on Chlorella, citric acid, and lycopene could help
alleviate their toxicity. In catfish exposed to PE-MP alone or with
Chlorella, citric acid, and lycopene, the activities of
Acetylcholinesterase (Ach), Monoamine Oxidase (MAO),
Aldehyde Oxidase (AO), and Nitric Oxide (NO), and the
histological effect were assessed.

MATERIALS AND METHODS

Chemicals and Microalgae
PE-MPs make up of unevenly shaped raw powder particles. More
than 90% of PE-MPs were larger than 100 nm. Toxemerge Pty
Ltd. provided PE-MPs for this study (Melbourne, Australia). Per
the manufacturer’s instructions, a stock solution was made from
the powder using purified water (Milli-Q) and stored at 4°C in the
dark. Before each use, the stock solution (2.5 g MP/L) was
sonicated. More dilutions were made from this stock right
away. Sigma-Aldrich provided lycopene and citric acid (Cairo,
Egypt). The National Research Center provided the C. vulgaris
extract (Cairo, Egypt).

Specimen Collection
A total of 150 adult African catfish (C. gariepinus), males and
females (weighting 250–300 g, 20–25 cm long), were obtained
and delivered to the Fish Biology and Pollution Laboratory,
Faculty of Science, Assuit University, from an aquaculture
farm in Assuit Governorate, Egypt. For acclimation, the fish
were housed in 100 L tanks with dechlorinated tap water and
air pumps under laboratory conditions for 4 weeks.
Conductivity was 260.8 mM cm-1, pH 7.4, dissolved oxygen
6.9 mg L−1, temperature 20.5°C, and photoperiod 12:12 h light/
dark as the physicochemical parameters of the test water. Fish
commercial feed was administered at a rate of approximately
3% body weight per day, divided into two portions, during the
acclimation phase. The feed contained 30% protein and
consisted of soybean meal, wheat bran, maize, crude
protein, fats, crude fiber, fish meal, calcium, sodium
chloride, vitamins, and mineral salt. The water was changed
daily (40%), and redosing was done frequently to purify water
from fish waste.

Experimental Design
The experimental design of current study was based on our
previous studies (Sayed et al., 2021a; Sayed et al., 2022). Fish
were classified into five groups (30 fish per each). Each
treatment group was separated and placed into glass aquaria
(100 cm × 70 cm × 50 cm) on a triplicate base (10 fish each) for
the 15 days of the experiment. The first group was the control
(fed on normal commercial feed which contained 30% protein.
The second group was given PE-MP (500 mg/kg diet for 15 days
in compliance with (Espinosa et al., 2019). The third group got
PE-MP (500 mg/kg diet) + lycopene (500 mg/kg diet). The
fourth group got PE-MP (500 mg/kg diet) + citric acid
(30 g/kg diet). And the fifth group got PE-MP (500 mg/kg

diet) + Chlorella (50 g/kg diet). Concentrations of lycopene,
citric acid, and chlorella were employed as previously described
(Abd El-Gawad et al., 2019; Mahmoud et al., 2019; Carneiro
et al., 2020, respectively). Six fish from each group were
randomly picked from each replica at the end of the
experiment and sedated with ice to lessen stress for
subsequent studies and sample collection (Wilson et al., 2009).

Measurement of Neurotoxicological and
Antioxidant Parameters
Blood samples were acquired from the caudal veins of every fish
in each treatment group and placed in non-heparinized clean and
dry tubes, which were then left to clot at room temperature before
being centrifuged at 5,000 rpm for 20 min at 4°C. The
neurotoxicological and antioxidant characteristics were
measured through the separation of the sera. Burtis-method
Ashwood’s for analyzing ACh was used (Burtis 1992). Reagent
I (2 ml) was combined with the sample (0.1 ml) and incubated at
37°C for 5 minutes. Then, at 37°C, reagent II (0.5 ml) was added
and vigorously mixed for 2 minutes. A spectrophotometer was
used to measure the absorbance for 3 minutes at 340 nm. As per
(Naseem and Parvez 2014), MAO was gauged via Holt et al.’s
(1997) method, based on the oxidation of BAHC to benzaldehyde
(Ashafaq et al., 2014). AO was measured according to (Johnson
et al., 1984), and NO was measured according to (Tatsch et al.,
2011).

Histological Preparation
Randomly, four fish from each group were dissected. The brains
were rinsed in saline water to remove the blood and then washed
in phosphate-buffered saline thrice, fixed in a Davidson fixative
for 24 h, dehydrated through a tiered series of ethanol. Then, they
were embedded in a paraffin wax block. Blocks were sectioned
using a microtome at a thickness of 7 µm. To analyze standard
histopathology, the sections were stained with Harris
Hematoxylin and Eosin (H&E) stain (Bancroft and Stevens,
1982) and cresyl violet (Pilati et al., 2008). Finally, slide
examination was done under a ×40 objective with a ×10
eyepiece using an OMAX microscope with a 14 MP USB
digital camera (CS-M837ZFLR-C140U).

Statistical Analysis
GraphPad Prism version 8.00 for Windows was used to analyze
the data (www.graphpad.com). When required, and to better
quantify the normality and homogeneity of the variance, the
data were changed to log10. To compare differences in Ach,
MO, AO, and NO activity between treatment groups,
researchers employed a one-way analysis of variance
followed by Tukey’s multiple comparison test. p < 0.05 was
the value used to determine whether differences were
significant.

Ethical Statement
The Research Ethical Committee of Assuit University’s Faculty of
Science approved the experimental setup and fish handling
(Assuit, Egypt).
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RESULTS

Visual Inspection of Fish Mortality and
Behavior
During the 15-days exposure period, mortality was observed
daily. Only three fish perished in the PE-MP group, while only
one fish died in the PE-MP + citric acid group. All of the fish in
the PE-MP + Chlorella, PE-MP + Lycopene, and control
groups survived. The fish in the control group was
swimming normally. Those under PE-MP exposure either
individually or in combination with food supplements
showed abnormal behaviors in the swimming pattern,
which is illustrated as follows: PE-MP + Chlorella < PE-MP
+ lycopene < PE-MP + citric acid < PE-MP. Losses of
movement coordination, as well as lateral and vertical
swimming, were among the behavioral alterations noted.
There was also an increase in respiration.

Neurotoxicological Biomarkers and
Antioxidant Parameters
In fish chronically exposed to PE-MP for 15 days, the activities of
Ach, NO, MAO, and AO significantly changed compared with
the control group (Table 1). Ach and NO’s activities were
significantly suppressed (p < 0.05), while MO and AO’s
activities were significantly surged compared with the control
group. In fish subjected to PE-MP with lycopene or Chlorella, the
activities of these neurological enzymes were significantly
improved or/and restored (p < 0.05) compared with fish fed
PE-MP individually (Table 1). Dietary feeding citric acid
significantly (p < 0.05) restored the activities of only Ach and
AO in fish compared with those exposed to PE-MP alone
(Table 1).

Histopathological Alterations of the
Telencephalon
Histological investigations showed normal architecture of
telencephalon and no clear histological alterations in the

control sections stained by H&E. Neurons with their
dendrites contain basophilic homogenous cytoplasm-
localized perinuclear and vesicular, round, and centrally
located nuclei. Deeply stained neuroglia cells were
dispersed in the homogenous ground substances of
neuropil (Figure 1A). In the PE-MP group, there was
severe degeneration in both neuropil and neurons.
Neuropil contains patches of degenerated unstained ground
substances (encephalomalacia). Most neurons lost their
processes and became shrunken, containing eccentric
vesicular nuclei and deeply basophilic cytoplasm localized
perinuclei. Sever shrunken neurons contained aggregated,
deeply stained basophilic cytoplasm surrounded by
unstained space. Few pyknotic and degenerated neurons
with karyolitic nuclei were observed. Hemorrhage and
dilated blood vessels with leukocytic inflammatory cells
were observed (Figures 1B,C). The PE-MP + lycopene
group showed amelioration in neuronal morphology with
vesicular nuclei and neuronal processes containing
basophilic cytoplasm localized perinuclei. The beginning
appearance of small patches of aggregated glial cells
(gliosis) and an increase of randomly distributed glial cells
were observed. The start of newly formed blood capillaries
angiogenesis was noticed. There were congested blood vessels
with leukocytic inflammatory cells and neuropil degeneration
(Figures 1D,E). In the PE-MP + citric acid group, there was
amelioration in both neuropil and neuron morphology,
especially the appearance of their dendrites. There was a
disappearance of shrunken neurons, even though there
were still round neurons with eccentric nuclei and
degenerated ones. The presence of neuroglial cells beside
degenerated neurons and an increase of randomly
distributed ones were observed (Figures 1F,G). In contrast,
the PE-MP + Chlorella group showed the restoration of
neuropil and neuron morphology, especially their sizes.
There was a disappearance of shrunken neurons, where
most appeared round or ovoid with centrally located nuclei
and a few of them were with eccentric ones. Few degenerated
cells were noticed. Random distribution of glial cells was

TABLE 1 | Effect of microplastic on neurotoxiclogical biomarkers as mean ± SE and changes with control in African catfish (Clarias gariepinus) exposed to MPs (500 mg/kg
diet), MPs (500 mg/kg diet)+ lycopene (500 mg/kg diet), MPs (500 mg/kg diet)+ citric acid (30 g/kg diet) and MPs (500 mg/kg diet)+ chlorella (50 g/kg diet) for 15 days.

Treatment Control MPs
(500 mg/kg

diet)

Changes
with

control

MPs
(500 mg/kg

diet)+
lycopene

(500 mg/kg diet)

Changes
with

control

MPs
(500 mg/kg

diet)+
citric
acid

(30 g/kg diet)

Changes
with

control

MPs
(500 mg/kg

diet)+
chlorella

(50 g/kg diet)

Changes
with

control

Ach (mmol/min)
(mg/protein)

0.45 ± 0.02c 0.32 ± 0.02a 0.13 0.40 ± 0.01b 0.06 0.38 ± 0.00b 0.08 0.44 ± 0.01b 0.02

MO (units/g
tissue)

70.5 ± 1.2b 88.7 ± 1.7d -18.3 82.7 ± 1.7c -12.3 85.2 ± 2.5c -14.7 66.2 ± 1.5a 4.3

AO (units/g
tissue)

2.7 ± 2.6a 3.01 ± 6.6d -29 2.8 ± 1.6b -8.3 2.9 ± 5.5c -20.5 2.7 ± 2.6a -1

NO (nmol/g) 8.2 ± 0.2c 6.5 ± 0.2a 1.7 7.3 ± 0.2b 0.9 6.3 ± 0.1a 1.9 7.9 ± 0.1c 0.2

Values with the same letters within a parameter are not significantly different at p < .05 (horizontal comparison). Ach, acetylcholinesterase; MO,monoamine oxidase; AO, aldehyde oxidase;
NO, nitric oxide; MPs, microplastic.
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noticed, but there were some aggregated ones besides
degenerated neurons (gliosis Figures 1H,J).

Histopathological Alterations of the
Cerebellum
Histological investigations showed normal architecture of the
cerebellum and no clear histological alterations in the control
sections stained by H&E. There was a normal architecture of
neuropil, and Purkinje cells appeared normal as a flask shape and
located at the boundary between the granular and molecular
layers. These cells contained basophilic cytoplasm and small
vesicular nuclei. Neuroglial cells were observed with deeply

stained small nuclei (Figure 2A). In the PE-MP group, there
was a deconstruction of cerebellum structures, and neuropil
showed severe spongiosis with different size vacuoles that
appeared as parenchymal morphology. There were shrunken
Purkinje cells displaced toward the molecular layer and
appeared deformed in shapes containing eccentric nuclei and
aggregated basophilic cytoplasm mainly localized at the lateral
side. Many cells have unstained areas, and pyknotic nuclei were
also observed. Congested blood capillaries with inflammatory
cells and an increase of randomly distributed glial cells were
noticed (Figures 2B,C). In the PE-MP + lycopene, PE-MP + citric
acid, and PE-MP + Chlorella groups, there was marked
amelioration in cerebellum structures compared with the PE-

FIGURE 1 | Transverse sections of telencephalon of African catfish (C. gariepinus) exposed to PE-MPs and PE-MPs with lycopene, citric acid and chlorella as
antioxidants for 15 days. (A) Control fish showing normal histology of brain tissue (Telencephalon), Nr; neurons, Np; neuropil and Ng; neuroglial cells, (B,C) (PE-MPs
500 mg/kg diet), (D,E) PE-MPs + lycopene (500 mg/kg diet), (F,G) PE-MPs + citric acid (30 g/kg diet) and (H,J) PE-MPs + chlorella (50 g/kg diet). (star); diffuse
deformed and degenerated neurons, EM; encephalomalacia, GS; aggregated neuroglial cells (gliosis) and edema, H; hemorrhage and inflammatory cells, AG;
angiogenesis, CBV; congested blood vessels and Pk; pyknotic neurons. H&E. Scale bar 25 µm.
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MP group, with slight spongiosis in these three groups (Figures
2D–F). Shrinking and degeneration in Purkinje cells left a large
unstained space, which was more observed in the PE-MP + citric
acid group (Figure 2E) compared with the PE-MP + lycopene
(Figure 2D) and PE-MP + Chlorella (Figure 2F) groups. There
was an increase in basophilic and perinuclear cytoplasm in the
PE-MP + lycopene and PE-MP + Chlorella groups, supporting
the synthesis of basophilic materials (RNA). There was an
increase in glial cells in the PE-MP + lycopene and PE-MP +
Chlorella groups compared with the PE-MP + citric acid group
but a total decrease compared with the PE-MP group.
Displacement of Purkinje cells toward the molecular layer was
found in the PE-MP + Chlorella group, followed by the PE-MP +
lycopene group and finally the PE-MP + citric acid group.

Cresyl Violet for Nissl Granules (RNA)
Transverse telencephalon sections stained by cresyl violet showed
a normal distribution of RNA substances that localized perinuclei
in neurons and neuritis in control fish (Figure 3A). In the PE-MP
group, there was an increase in RNA content distributed in
shrunken neurons and appeared deeply stained (black arrow).
Other neurons showed perinuclei RNA located at the eccentric
side in a few cells, and a few glial cells were noticed (Figure 3B).
In the PE-MP + lycopene, PE-MP + citric acid, and PE-MP +
Chlorella groups, neuropil and neurons restored their normal
appearance in these groups with antioxidants. There was an
increase and homogenous distribution of RNA-localized
perinuclei in the neurons and their neuritis (Figures 3C–E),
with a remarkable increase in these contents in the PE-MP + citric

FIGURE 2 | Transverse sections of cerebellum of African catfish (C. gariepinus) exposed to PE-MPs and PE-MPs with lycopene, citric acid and chlorella as
antioxidants for 15 days. (A) control fish showing normal histology of brain tissue (cerebellum),PJ; purkinje cells,Np; neuropil,Ng; neuroglial cells,GL; granular layer and
ML; molecular layer. (B,C) (PE-MPs 500 mg/kg diet) dose, (D) PE-MPs + lycopene (500 mg/kg diet) dose, (E) PE-MPs + citric acid (30 g/kg diet) dose and (F) PE-MPs +
chlorella (50 g/kg diet). (Star); deformed and necrotic neurons, SP; vacuolization of the neuropil (spongiosis), GS; aggregated neuroglial cells (gliosis), Pk; pyknotic
neurons and s; shrunken purkinje cells. H&E. Scale bar 25 µm.
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acid group (Figure 3D). However, compared with the PE-MP
group (Figure 3B), there was a decrease in RNA content in the
PE-MP + lycopene and PE-MP + Chlorella groups (Figures
3C,E), whereas the PE-MP + citric acid group had the most
increase (Figure 3D), and a positive reaction was seen in
glial cells.

In the cerebellum of the control group, Purkinje cells showed a
homogenous distribution of Nissle substance localized perinuclei
in neurons and glial cells (Figure 4A). Fish treated with PE-MPs
showed shrunken Purkinje cells with deeply stained Nissle
granules; in other cells, RNA content was surrounded by
unstained space. Glial cells showed deeply stained Nissle
granules (Figure 4B). In the PE-MP + lycopene, PE-MP +

citric acid, and PE-MP + Chlorella groups, there was a slight
decrease in RNA content compared with the PE-MP group, with
amelioration in the homogenous distribution of Nissle bodies
localized perinuclei (Figures 4C–E), and a remarkable decrease
was observed in the PE-MP + citric acid group (Figure 4D). In
glial cells, there was a faint reaction in Nissle substances.

DISCUSSION

Several factors influence the neurotoxicity of MPs and
nanoplastics, including material type, particle size,
concentration, and exposure time (Liu et al., 2020). According

FIGURE 3 | Transverse sections of telencephalon of African catfish (C. gariepinus) exposed to PE-MPs and PE-MPs with lycopene, citric acid and chlorella as
antioxidants for 15 days. (A) Control group showed normal appearance of neurons and its contents of RNA (black arrow). (B) (PE-MPs 500 mg/kg diet) exposed group
showed increase in RNA contents which distributed in shrunken neurons and appeared deeply stained. (C) PE-MPs + lycopene (500 mg/kg diet), (D) PE-MPs + citric
acid (30 g/kg diet) and. (E) PE-MPs + chlorella (50 g/kg diet) exposed groups, showed increase in RNA contents located perinuclei in the neurons and their neuritis
with remarkable increase in PE-MPs + citric acid (30 g/kg diet) exposed group (D), Cresyl violet, Scale bar 25 µm.
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to Bhagat et al. (2020), MPs can suppress the release of dopamine,
melatonin, aminobutyric acid, vasopressin, oxytocin, serotonin,
and kisspeptin, among other neurotransmitters. ACh is a
prominent indication of neurotoxicity among multiple
neurotransmitters since it offers information on possible
neuromuscular cholinergic damage (Barboza et al., 2018a).
Ach is required for optimal neuromuscular functioning and
contributes to Acetylcholine (ACh) inactivation, which is
required for cholinergic neurotransmission at neuromuscular
junctions and cholinergic brain synapses. Exposure to PE-MPs
caused neurotoxicity in fish by causing LPO and disrupting
nerve-related enzymes (Kim et al., 2021). Here, the significant
inhibition of brain Ach resulting from exposure to PE-MP alone

indicates its severe neurotoxicity on catfish. This may be
explained by higher amounts of MPs were observed in the
gills, stomach, and feces of group 2 (MPs), group 3 (MPs +
lycopene), groups 4 (MPs + CA), and groups 5 (MPs + chorella)
compared to the control group, with the obvious presence of MPs
in the gills, stomach and feces (Sayed et al., 2021b). Ach inhibition
increases the levels of acetylcholine in the brain, inhibiting the
nervous system’s functioning. Acetylcholine accumulation in the
synaptic cleft effects excessive stimulation of receptors, impedes
neurotransmission and paralysis, then eventually death (Chen
et al., 2017). These findings are consistent with (Oliveira et al.,
2013) who reported that ACh inhibition of Pomatoschistus
microps after MP (PE) exposure, which was high enough to

FIGURE 4 | Transverse sections of cerebellum of African catfish (C. gariepinus) exposed to PE-MPs and PE-MPs with lycopene, citric acid, and chlorella as
antioxidants for 15 days. (A)Control group showed Purkinje cells with normal distribution of Nissle substabnces perinuclei. (B) (PE-MPs 500 mg/kg diet) exposed group
showed shrunken Purkinje cells containing deeply stained Nissle granules. (C) PE-MPs + lycopene (500 mg/kg diet), (D) PE-MPs + citric acid (30 g/kg diet) and (E) PE-
MPs + chlorella (50 g/kg diet) exposed groups, showed a slight decrease in RNA contents. Remarkable decrease was observed in PE-MPs + citric acid (30 g/kg
diet) exposed group, Cresyl violet, Scale bar 25 µm.
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cause side effects in neurological function. Also, a significant
inhibition of ACh activity at higher MPs concentration
(0.69 mg.L−1) (Barboza et al., 2018b). Ding et al. (2018)
reported that PS-MPs significantly reduced ACh activity in
tilapia (Oreochromis niloticus). Wen et al. (2018) found that
exposure to fluorescent PE-microspheres inhibits ACh activity
in zebrafish, adversely affecting cholinergic neurotransmission,
and leading to potential neurological and neuromuscular
dysfunction. Acetylcholinesterase was significantly inhibited in
Cu and Cu þ+ MPs groups in early life stages of zebrafish,
indicating neurotoxicity (Santos et al., 2020). Barboza et al.
(2018a) reported that MPs cause neurotoxicity in
Dicentrarchus labrax through ACh inhibition and LPO
induction. Umamaheswari et al. (2021) observed the ACh
activity in the brain and liver of zebrafish (Danio rerio) was
notably inhibited in PS-MPs exposed groups compared to the
control group. Usman et al. (2021) found a significant decrease in
the activity of ACh between the MP-MED andMP-HIGH groups
and between the same groups and the control in Javanese Medaka
fish. The levels of acetylcholine in the groups exposed tomicro-PS
in mice were significantly decreased (Wang et al., 2022). In the
other hand, Hoyo-Alvarez et al. (2022) showed no significant
effects on ACh activity of seabream brains at low MPs
concentration.

Monoamine oxidase (MAO) activity greatly affects
neurotransmitters’ metabolism, such as norepinephrine,
dopamine, serotonin, and epinephrine (Devi et al., 2005). It is
crucial in regulating several monoamines, and its decrease may
result in an imbalance of the monoaminergic system (Tabassum
et al., 2015). In this study, the MAO level increased significantly
in PE-MP-exposed fish compared with the control. Also, Borges
and Drujan (1971) found an increase in the brain monoamine
oxidase (MAO) activity in both fish and mice occurred on the
third day after a single dose of 2 krads of γ-irradiation. In
contrast, Basu et al. (2007) stated that a negative correlation
was calculated between the concentrations of brain Hg (i.e., total
Hg andMeHg) and the activities of MAO in the cerebral cortex of
North American river otters. Also, Li et al. (2015) found that TBT
decreased NO production in the brains of exposed juvenile
common carp (Cyprinus carpio). Mukherjee et al. (2019)
observed a statistically significant difference in the mean MAO
level between all the different treatments of pH and type of carp.
Li and Li (2021) found MAO activities were significantly
decreased compared to control in brain tissues of zebrafish
exposed to TBT concentrations at 100 and 300 ng/L. On the
other hand, PS-microbead mixtures did not change the activity of
MO in freshwater zebra mussel Dreissena polymorpha (Magni
et al., 2018). These discrepancies might be attributed to several
parameters, including material type, particle size, concentration,
and the duration of exposure (Liu et al., 2020).

Nitric oxide (NO) plays a critical role in practically every
biological system (Asl et al., 2008). Its biological importance in
neurotransmission, anti-inflammation, and vascular dilatation
justifies its measurement in clinical and experimental fields
(Ricart-Jané et al., 2002). In this study, the significant decrease
of brain NO resulting from exposure to PE-MP alone indicates its
severe neurotoxicity on catfish. Inhibition of NO synthase can lead

to decreased locomotor activity (Motahari et al., 2016). The NO
system of fish responds to many environmental stressors, such as:
tributyltin (Zhang et al., 2008; Li, et al., 2015), hyperammonia
(Choudhury and Saha 2012b; Kumari et al., 2019), temperature
elevation (Jørgensen et al., 2014), desiccation stress (Choudhury
and Saha, 2012a; Garofalo et al., 2015), waterborne cadmium
(Zheng et al., 2016), hyperosmotic stress (Gerber et al., 2018),
and hypoxia/anoxia (Jensen et al., 2015; Hansen et al., 2016).

The roles of Aldehyde oxidase (AO) in fish have been
examined in the metabolism of pollutants, and the use of AO
as a biomarker in response to pollution has been examined in the
metabolism of pollutants in fish (Tatsumi et al., 1992; Ueda et al.,
2002). In addition, AO plays a very important role in the
biotransformation of drugs and xenobiotics (Beedham, 1985).
Lakshmanan et al. (1964) reported that AO is responsible for the
metabolism of AO substrates, such as endogenous vitamins, in
fish. In this study, the increase in brain AO activity in PE-MP-
exposed fish was consistent with Ichipi-Ifukor et al. (2013) who
observed increase in the activity of brain aldehyde oxidase in the
African cat fish (Clarias gariepienus) after cadmium and arsenic
exposure.

Histopathological investigations can introduce a clear picture
of cytoarchitectural alterations resulting from intoxication with
chemicals, although the idea of the animal pathological condition
can be indicated by biochemical studies (Lakshmaiah, 2017). PE-
MP exposure modifications were identified in the telencephalon
and cerebellum of brain tissue in this study, with varying degrees
of impact and alterations. Santos et al. (2020) observed that
microplastics alone or co-exposed with copper in zebrafish
embryos caused some signs of pathological changes, namely,
epithelial detachment, edema, changes in midbrain-hindbrain
boundary (MHB) and cell death. Also, inflammatory responses
such as cytoplasmic vacuolation, inflammatory cell infiltration,
the occurrence of degenerated, and necrotic neurons in the brain
of zebrafish exposed to PS-MPs group (10 and 100 mg L_1) was
noted at the end of 7th and 35th day (Umamaheswari et al., 2021).
Hamed et al. (2021) observed degeneration and protruding of the
outer meninges of the spinal cord in tilapia (Oreochromis
niloticus) after exposure to MPs. The MP-LOW and MP-MED
brain tissue slices showed no obvious abnormality while, 26 ± 6%
of the 50 slices of MP-HIGH sections showed features of cerebral
edema (Usman et al., 2021). Wang et al. (2021) found numerous
vacuoles were visible in the brains of fish in the 3,000 μg/L PS-
NPs exposure group. Wang et al. (2022) mentioned the cells of
the hippocampal region of the mice exposed to micro-PS
appeared irregular. The cells of the hippocampus of the
0.1 mg/d micro-PS group were not compact, while the cells of
the 1 mg/d micro-PS group were even more loosely arranged.
Moreover, Jeong et al. (2022) showed that the thickness of the
neuronal layer in the CA3 region was clearly lower in the mice
exposed to PSNP, whereas no change was observed in the CA1 or
the dentate gyrus of the hippocampus. Besides the neuronal soma,
the thickness of the corpus callosumwas also clearly lower in both
the medial and lateral hemispheric regions of PSNP-
exposed mice.

Our previous studies have been reported the ability of different
pollutants to cause brain neuropathological conditions in fish,
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such as; ultraviolet radiation-A (UVA) caused vacuoles, blood
congestion, degeneration of neuropils, and pyknotic nuclei in
neurons of brain in adult Japanese medaka (Sayed et al., 2019).
Moreover, the brain showed severe gliosis, dark neurons, and
vacuolation in fish exposed to tramadol (Soliman and Sayed,
2020). The brains of Nile tilapia treated with CuSO4 or CuO
nanoparticles showed neuropil degeneration and pyknotic nuclei
(Soliman et al., 2021). Recently, Eid et al. (2021) reported brain
neuropathological abnormalities in juvenile C. gariepinus after
exposure to 4-nonylphenol, including gliosis, encephalomalacia,
and neuron degeneration. In this study, the brain of PE-MP-
exposed fish showed increased aggregated neuroglial cells around
deteriorated neurons. Polystyrene MP particles were detected in
fish brain tissue for the first time, and plastic nanoparticles were
found to be carried across the blood-brain barrier (Mattsson et al.,
2017). Additionally, alterations observed in the brain might have
been caused by specific interactions between the plastics and the
brain tissue (Mattsson et al., 2017). As a result, more studies could
help determine how MPs interact with brain tissue and whether
this varies depending on the MP size, shape, and type. MP and
nanoplastic particles can reach the brain when consumed (Prüst
et al., 2020), although the quantity and potential neurotoxicity of
the particles reaching the brain is still not determined.
Furthermore, following 14 days of exposure, Ding et al. (2018)
found PE-MP accumulation in the brain of O. niloticus, implying
that MPs as small as 0.1 mm might reach the fish brain via blood
circulation. For the first time (Mattsson et al., 2017),
demonstrated that 0.1 g/L PE-MP of 0.18 mm size could pass
the blood-brain barrier.

In our study, fish treated with PE-MPs showed an increase in
RNA content distributed in shrunken neurons and appeared
deeply stained. Other neurons showed perinuclei RNA located
at the eccentric side in a few cells, and a few glial cells were
noticed. In addition, shrunken Purkinje cells with deeply stained
Nissle granules; in other cells, RNA content was surrounded by
unstained space. Glial cells showed deeply stained Nissle granules.
Also, Wang et al. (2022) mentioned the damage to the pyramidal
cells is related to the exposure to micro-PS, and the number of
Nissl bodies in the cells of the exposed mice was reduced. In the
1 mg/d micro-PS group, the Nissl bodies were significantly
reduced, the pyramidal neurons were scattered, and the main
dendrites were reduced or had even disappeared.

Dietary feeding lycopene, citric acid, and Chlorella improved the
activities of neurological enzymes studied and restored most
histological alterations induced by exposure to PE-MP feeding
particularly Chlorella. Also, both lycopene and Chlorella
supplements acted as potent antioxidants in detoxifying the
reproductive damage induced by MPs, whereas citric acid was
found to be an ineffective antioxidant in ameliorating the MPs-
induced reproductive toxicity in male catfish (Sayed et al., 2022).
Furthermore, Wang et al. (2022) found that the pathological
changes were significantly reduced after treatment with Vit E.
Vit E treatment attenuated the damage done by micro-PS
exposure, the cell arrangement was more regular, the number of
Nissl bodies was increased, and there was less damage to the
pyramidal cells. In other pollutants and toxins, Prakash and
Kumar (2014) found lycopene significantly progresses the

cerebral functions and obstruct apoptosis, through preventing
mitochondrial oxidative impairment, then reduction in
inflammatory signs and protective properties against amyloid
influenced neurotoxicity in rat cortical neurons. Abd Al Hassen,
2019 observed lycopene in co-treated groups enhanced the harmful
effect of MSG on brain tissue probably because lycopene is a potent
antioxidant. Farouk et al. (2021) observed that co-administration of
lycopenemarkedly counteracted the histological alterations induced
by acrylamide in brain tissues of rat. Lycopene’s neuroprotective
benefits are mediated bymechanisms such as inhibition of oxidative
stress and neuroinflammation and neuronal death and restoration
of mitochondrial functions. The antioxidant activity of lycopene has
been linked to the multiple conjugated doubled bonds and energy
transfer between electrophilic singlet oxygen and their polyene
backbone (Olasehinde et al., 2017). Other processes may be
entailed in lycopene’s neuroprotective benefits, such as
suppression of nuclear factor-B and c-Jun N-terminal kinase,
activation of nuclear factor erythroid 2-related factor and brain-
derived neurotrophic factor signaling, and the restoration of
intracellular Ca2+ equilibrium (Chen et al., 2017).

Citric acid may have clinical benefits in neurodegenerative
illnesses because both elevated brain oxidative stress and chronic
inflammation have been associated with the development of such
diseases. Citric acid might find utility in treating toxic and
inflammatory conditions of the brain and liver tissues. This can
take the form of supplementation as nutraceutical citric acid (Abdel-
Salam et al., 2014). However, citric acid was found to be an
ineffective antioxidant in ameliorating the MPs-induced
neurotoxicity in catfish. Also, the citric acid was not effective in
mitigation the MP-induced reproductive stress (Sayed et al., 2022).

Chlorella vulgaris has been found to have high vitamin K
content (phytomenadione), although vitamins B12 (cobalamin)
and B3 (niacin) were detected only in trace amounts as well as
carotenoids and chlorophylls (Alagawany et al., 2021). Safafar
et al. (2015) reported that coumaric, gallic and caffeic acids
contributed to the antioxidant activities of Chlorella sp.
Additionally, C. vulgaris in fish was found to enhance dietary
lipid utilization, productivity, and muscle pigmentation, all
identified as product quality improvement in fish (Gouveia
et al., 1998). It is also used for medical treatment (Justo et al.,
2001; Morris et al., 2009) due to its immunomodulating and
anticancer properties and protection against hematopoiesis and
age-related diseases (Safi et al., 2014). Yun et al. (2011) showed
that the administration of Chlorella vulgaris is capable of reducing
free radical damage by directly acting as a free radical scavenger
and by indirectly stimulating antioxidant enzyme activities when
animals were given a subchronic low-level exposure to lead. The
protective effects of Chlorella vulgaris against lead-induced
toxicity may be due to various bioactive ingredients in
Chlorella vulgaris, which react with various ROS as well as
inhibits oxidation processes in lipids and in the cellular
compartment. Nicula et al. (2018) observed the efficiency of
chlorella to alleviate the lead impact on homeostasis of trace
elements from brain in Carassius gibelio Bloch. Yanuhar et al.
(2020) noticed the administration of Chlorella vulgaris extract has
the potential to be used as a natural bioactive of antivirus in
VNN-infected brain of Grouper fish.
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The variations of alleviation between these materials may be
due to their different composition. The protective role of chlorella
could be attributed to its natural antioxidant contents, such as
chlorophyll, polyphenol, vitamins, and sulfur-containing
compounds that have the capacity to scavenge free radicals
(Abdelhamid et al., 2020). Lycopene is an antioxidant
carotenoid compound and composed entirely of hydrogen and
carbon (Stahl and Sies, 2003; Hussein et al., 2019). Citric Acid is a
tricarboxylic acid found in citrus fruits. Citric acid is used as an
excipient in pharmaceutical preparations due to its antioxidant
properties (Nangare et al., 2021).

CONCLUSION

The present study demonstrated that MPs ingestion induced
alterations in both enzymes and histology in the brain of
catfish (Clarias gariepinus). In addition, dietary feeding
lycopene, citric acid, and Chlorella improved the activities of
neurological enzymes and restored most histological alterations.
Chlorella (50 g/kg diet) was the most optimal then lycopene
(500 mg/kg diet) whereas citric acid (30 g/kg diet) was found
to be an ineffective antioxidant in ameliorating the MPs-induced
neurotoxicity in catfish. Further studies must consider a wider
range of citric acid concentrations on diet, as well as on exposure
time could also be considered.
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