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With a unigue multi-sphere environmental system, the Tibetan Plateau (TP) plays an
essential role in the ecological sheltering function for China and other parts of Asia.
However, black carbon, persistent organic pollutants, and heavy metals (HMs) have been
increased dramatically since the 1950s, reflecting rising emissions in Asia. In this context,
the sources and distribution of HMs were summarized in the environment media of the TP.
The results showed that 1) HMs in the TP may be generated from geogenic/pedogenic
associations (Cu, Cr, Ni, As, and Co) and anthropogenic activities of local or long-distance
atmospheric transmission (Cd, Pb, Zn, and Hg). 2) The atmospheric transport emission
sources of HMs are mainly from the surrounding heavily-polluted regions by the Indian and
East Asian monsoons and the southern branch of westerly winds. 3) Soil, water, snow,
glacier, sediment, and vegetation act as vital sinks of atmospheric deposits of HMs; 4)
Significant bioaccumulation of arsenic (As), lead (Pb), and methylmercury (MeHg) have
been found in terrestrial and aquatic biota chains in the TP; 5) The enhancement of
anthropogenic activities, climate change, glacial retreat and permafrost degradation had
potential impacts on the behaviors and fates of HMs in the TP. Therefore, the ecological
risk of HMs is of particular concern, and feasible and effective environmental safety
strategies are required to reduce the adverse effects of inorganic pollutants in the TP.
Our review will provide a reference for researchers to further study regional HMs pollution
around the TP.

Keywords: heavy metals, Tibetan plateau, inorganic pollution, cryosphere, climate change

1 INTRODUCTION

The Tibetan Plateau (TP) is commonly known as the “Third Pole,” the “World Roof,” and the “Asia
Water Tower” (Yao et al., 2012; Kang et al.,, 2019a; Chen et al., 2020). The whole plateau region has
few industrial activities, and residents mainly live on grazing sheep and yaks, so the TP is considered
one of the most remote and primitive places in the world (Sheng et al., 2012; Kang et al., 2016a; Kang
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et al., 2016b). However, many studies had shown that the rapid
industrializations of South Asia, Southeastern Asia, and East Asia
had released heavy metals (HMs) into the atmosphere of the TP
in the past few decades (Cong et al., 2007, 2010a, 2014; Kang et al.,
2016a; Zhang et al, 2016a). The Himalayas are the highest
mountains in the world, which may serve as a natural wall to
atmospheric contamination in the southern border area of the
TP. However, the high valleys of the Himalayas could act as a
channel to transport atmospheric pollutants to the TP (Bonasoni
etal, 2010; Wang et al., 2016). Additionally, the contaminants are
transported by the Indian and East Asian monsoons in summer
and westerlies in winter, affecting remote plateau areas (Yang R.
et al., 2014; Sun et al,, 2021).

HMs are used to define metals and metalloids associated with
potential toxicity and possible pollution (Duffus, 2002; Hodson,
2004). The HMs may release into different environmental media
by various ways (Dhaliwal et al.,, 2020). In addition, HMs are
significant anthropogenic contaminants that can be transported
for long distances (Ji et al., 2020). Numerous studies have shown
that HMs seriously pollute the local environment and transport
pollutants to polar and high-altitude regions far away from cities
through long-distance transportation (Tripathee et al., 2014;
Dong et al, 2015; Jiao et al, 2021). At present, HMs have
been found in the Antarctic and Arctic (Planchon et al., 2002;
McConnell and Edwards, 2008; Hong et al., 2012; Singh et al,,
2013; Abakumov et al., 2017; Casey et al., 2017; Ji et al., 2019; Ji
et al, 2021; Alekseev and Abakumov, 2020; Alekseev and
Abakumov, 2021). Large HMs have been transported to the
Arctic and Antarctic through long-distance atmospheric
circulation and deposition (Wilkie and La Farge, 2011).

Similar to the polar regions, the environmental pollution in the
TP has been aroused great concern (Qiu, 2014; Wang et al., 2016,
Wang X. et al,, 2019; Wu et al., 2016; Kang et al., 2019a). HMs
have been detected in the air, soil, water, snow, and biota (Wu
etal,2016; Lietal., 2018; Wu et al., 2018; Wu et al., 2019; Li et al.,
2020a; Li et al., 2020b; Li M. et al., 2020). Moreover, with climate
change, the contaminants released from the degradation of the
cryosphere (glaciers, permafrost, ice, and snow) are essential
sources of HMs around the TP, which will greatly increase the
pollutant accumulation and may have a significant impact on the
TP environment.

However, previous studies about HMs in the TP are various
and scattered, making it difficult to get a comprehensive
understanding of the HMs in the TP. Thus, it is of great
significance to study the sources and distribution of HMs
around the TP, as well as the regional amplification of HMs
and their potential impact in the future. In view of this matter, the
objectives of this review are to: 1) summarize current studies
concerning the pollution status of HMs in the TP, 2) assess the
concentrations, sources, and spatial distribution of HMs in the
environmental media of the TP, 3) discuss the effect
anthropogenic activities and climate change on the fate of
HMs in the TP, and 4) identify research gaps and propose
future study needs. This review will be of benefit to
quantitatively evaluate the environmental quality of the TP
and provide a reference for investigating environmental
pollution of the Third Pole.

Heavy Metals in the Tibetan Plateau

2 MATERIALS AND METHODS
2.1 Review Strategy

We systematically utilized the electronic databases. For instance,
Web of Science, Science Direct, Google Scholar, using the
following search terms: Tibetan Plateau & heavy metals &
pollution. Moreover, search terms, such as Tibet, Himalayas,
the third pole, contamination, pollutants, metals, trace metals,
trace elements, risk elements, irons, lead, mercury, were applied
to find more publications. Scientific journals, official reports,
conference proceedings, and news reports were searched in
Chinese and English on the Internet. The abovementioned
publications included sources, distribution of HMs in various
environmental media, the impact of climate change and
anthropogenic activities on HMs in the TP according to 140
articles.

2.2 Data Analysis

Principal component analysis (PCA) and cluster analysis
were carried out to reveal sources of HMs. All collected
data sets passed KMO and Barrett test (KMO: 0.819,
Barrett significance: 0.000). The factors were rotated by the
maximum variance method, indicating no correlation
between the extracted dimensions. The cluster analysis was
carried out according to the square Euclidean distance using
the intergroup connection method.

3 RESULTS
3.1 Sources of Heavy Metals

PCA and cluster analysis were carried out to indicate
similarities and familiar sources among HMs. Due to the
lack of data for Hg in soil and Co in air, statistics only for
Cu, Cr, Ni, As, Cd, Pb, and Zn were carried in various
environmental media (air, soil, water, precipitation, ice,
sediment, biota) (Figure 1). The loading plot of PCA for
sources of HMs was divided into two components. The
PCAL1 was characterized by Cu, Cr, Ni, and As association,
which contributed to the total dispersion (61.90%). Cd, Pb, and
Zn association were typical for PCA2, which describes 17.6%.
In addition, the cluster analysis was consistent with PCA,
implying that Cu, Cr, Ni, and As may be generated from
similar sources, and Cd, Pb, and Zn were enriched by
another category. The specific possible sources will be
further  analyzed in the  distribution of each
environmental media.

3.2 Heavy Metals in Air

3.2.1 Outdoor Air

The gaseous contaminants around the TP are shown in
Supplementary Table S1. Previous researchers studied HMs
in atmospheric aerosols, total suspended particulate (TSP), PM;, and
PM,s. Zhang et al. (2012) assessed the chemical composition of
aerosols in the southeastern TP and pointed out that As with a higher
enrichment factor may be generated from geogenic/pedogenic
associations, and Pb, Cu, and Zn were mainly derived from
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FIGURE 1 | Principal component analysis (A) and cluster analysis (B) for sources of HMs. Loadings larger than 0.50 are displayed in the principal component

traffic-related emissions. Huang et al. (2016) collected 80 daily
samples of TSP in Lhasa city of Tibet, and the particulate-bound
Hg average concentration in the atmosphere was 224 pg m™>, which
was far higher than in the Waliguan Mountain (19.4 + 18.1 pgm™)
and Gongga Mountain (30.7 + 32.1 pgm ™) (Fu et al, 2008; 2011),
indicating that Hg had been accumulated in the atmospheric
environment of Lhasa city. The results of PCA of HMs in PM,,
showed that dust, traffic emissions and waste incineration were the
main sources of HMs in Lhasa city (Cong et al,, 2011). Yang et al.
(2009) noted that the concentrations of HMs in PM,, and PM, 5 were
lower in summer and autumn, which is because HMs were
transported to the TP by long-distance atmospheric aerosols
caused by sandstorms in Central Asia and contaminants in South
Asia during the pre-monsoon (high HMs concentrations in spring)
and monsoon seasons (low HMs concentrations in summer) (Cong
et al,, 2010b; Kang et al., 2016a).

3.2.2 Indoor Air

In the TP, residents burned yak dung, which had a significant
impact on the atmosphere, especially in tents (Chen et al., 2015).
Li et al. (2012) compared the concentrations of HMs inside and
outside tents and revealed the indoor air of the tent was seriously
polluted caused by the burning yak dung in residential areas near
Nam Co. At the same time, the enrichment factors of the most
hazardous elements in indoor and outdoor air were similar,
indicating the pollutants released from local tents might affect
the outdoor air quality. Kang et al. (2009) reported the indoor air
quality of nomadic tents in Nam Co, and pointed out that the
average concentrations per day in TSP of Cd (3.16 ngm™), As
(35.00 ng m™), and Pb (81.39 ng m ) increased during cooking
or heating, which was much higher than MAC from the indoor
air quality guidelines (WHO, 2000), indicating that burning
yak dung in tents has an impact on the health of Tibetan
herdsmen.

Therefore, the aerosol pollutants of the TP are derived from
outside and inside (Chen et al., 2015), which were mainly affected
by atmospheric transport. Moreover, the burning of local yak
dung, fireworks, garbage incineration, traffic, and religious
ceremonies cause the increase of HMs concentrations in the
air around the TP.

3.3 Heavy Metals in Soil
3.3.1 Soll

Soil plays a critical role in the environment and serves as a sink of
various pollutants. The soil samples in Figure 2 and
Supplementary Table S2 are polluted with varying degrees in
the TP. The concentrations of Ni, Pb, Zn, and Co in the topsoil
(0-20cm) of the TP were slightly higher than the upper
continental crust (UCC) (Taylor and Mclennan, 1985), and
the background values of As and Cr in Tibetan soil were 13.13
and 2.19 times higher than those in the UCC, respectively
(MEPC, 1990). In addition, the concentrations of HMs (Pb,
Cd, Zn, Cu, Cr, As, Ni, Cd, and Hg) were higher than the
background value in the topsoil of Tibet. The concentration of
HMs were slightly higher in the northeast, central (Qinghai-Tibet
Railway), and southern TP. Besides, the concentrations of HMs in
the eastern TP was higher than that of the western TP.

Comparing pH, soil types, altitude, and organic carbon, low
temperature may also affect the accumulation of HMs in soils.
Zhang H. et al. (2015) pointed out the pH of the soil near the
Qinghai-Tibet Roadway was higher than 7.52, which reduced the
leaching of toxic metals. In addition, Wang et al. (2015) found Cu,
Pb, and Zn were concentrated in the alpine frost desert soil,
aeolian sandy soil, and peat soil. Bing et al. (2014) and Luo et al.
(2015) noted Pb concentrations in different soil horizons was O
(Organic surface layer) > A (Surface soil) > C (Substratum). In
addition, soil samplings were conducted in 12 plots in the Shule
River Basin of northeast TP, and THg concentration showed a
downward trend with altitude (Sun et al., 2017). However, the
concentrations of HMs at high altitudes showed increasing trends
caused by the ubiquity of extremely low temperatures (Salim
et al,, 2020). Therefore, high altitudes are more prone to high
deposition rates of HMs, which seems to be firmly retained in
the soil.

In addition, the effect of transportation on HMs in the soil is a
research hotspot in the TP (Zhang et al., 2012; Zhang et al., 2013a;
Zhang et al., 2013b; Zhang Y. et al., 2015; Wang et al., 2017). The
investigation of HMs in the TP was initially based on the analysis
of HMs concentration along the Qinghai-Tibet Railway and
Roadway. For example, Zn, Cd, and Pb concentrations in the
soil at four depths (5, 10, 20, and 30 cm) of the embankment of
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FIGURE 2 | HMs concentrations in the topsoil samples (0-20 cm) over the TP (Li et al., 2009; Wang et al., 2009; Sheng et al., 2012; Zhang et al., 2013b; Xie et al.,
2014; Zhang H. et al., 2015; Zhang et al., 2019; Li et al., 2020a; Salim et al., 2020). Notes: The dotted line is HMs background value of soil in Tibet (VEPC, 1990).

the Qinghai-Tibet Railway from Delhi to Ulan were more than
seven times higher than those in the continental crust (Zhang
et al., 2012). The enrichment factor of Cd was higher than that of
other elements (Zhang et al., 2012; Zhang Y. et al., 2015). Among
them, HMs concentrations in roadside soil and grass increased
with the increase of traffic flow (Wang et al., 2013), while the
concentration of HMs in roadside soil decreased with the increase
of distance from the roadside (Zhang H. et al., 2015). Besides,
other factors (including terrain, road surface material, and land
cover) had significant effects on HMs concentrations (Wang
et al., 2017).

In addition, Wang et al. (2020) surveyed the concentrations of
HMs in urban soil of four cities and pointed out that the local
urban domestic waste, industry, transportation and other
anthropogenic activities contributed 51.83% to the HMs
pollution. Besides, the researchers investigated soils in
agricultural and pastoral areas, industrial areas, mining areas,
salt-lake areas and urban areas in the northeastern TP and found
that industrial and mining areas are with the most serious
environmental and health risks (Li et al., 2018, 2020a, 2020b;
Wu et al.,, 2018). Therefore, traffic, urban garbage, industry and
mining are the anthropogenic sources of local HMs pollution in
the soil of the QTP.

3.3.2 Permafrost

The permafrost range of TP is about 1.06 x 10° km?, which is the
largest permafrost region in middle and low latitudes (Jin et al,
20005 Zou et al., 2017; Huang et al., 2020a). The degradation of
permafrost (active layer and frozen ground) increases the risk of
HMs release (Hg, As, and Cd) to the TP (Yu et al,, 2019; Ci et al,,
2020; Mu et al, 2020; Zhang S. et al, 2021) (Table 1). For
instance, Zhang S. et al. (2021) detected low levels of most HMs
except Cd relative to UCC and pointed out that the high

concentration of Cd in the Eboling permafrost was caused by
anthropogenic activities. Mu et al. (2020) proposed 21.7 Gg of Hg
was stored in the permafrost surface layer (0-3 m), indicating that
the total Hg mass in the active layer (top 30 cm) of the TP
decreased by 17.6%-30.9% on the thermokarst surface.

Thawed Hg was mobile and may be released into the
atmosphere as gas or exported to the downstream
ecosystems as dissolved liquid in permafrost regions (Ci
et al., 2016; Sun et al., 2017; Ci et al., 2018; Gu et al., 2020).
So, the continuous degradation of permafrost can lead to the
migration and release of Hg stored in permafrost regions,
which is an essential source of Hg emission in the
environment (Ci et al.,, 2016; Sun et al., 2017; Ci et al,
2018; Ci et al.,, 2020). However, relatively few studies have
been conducted on the concentration and mass of HMs in the
permafrost, except for Hg. Therefore, further attention should
be paid to the mass of various HMs in permafrost, especially
the secondary emissions of HMs.

3.4 Heavy Metals in Water

3.4.1 Surface Water

As the Water Tower of Asia, the TP supplies drinking water for
about one-sixth of the global population (Immerzeel et al., 2010;
Keyimu et al., 2021b). Most of the rivers around the TP were not
polluted (Figure 3; Supplementary Figure S1). However, it
should be noted that As concentrations in the Indus and the
Yarlung Tsangpo rivers were 13.70 and 10.50 ug L™'. Hg were
1.46-4.99 and 1.70 ug L ™" in the Yarlung Tsangpo and Yangtze
rivers (Qu et al., 2019), which are higher than the Chinese
National Standard for drinking water (MAC of As and Hg are
10 and 1 pgL™") (MOH and SAC, 2006) and the World Health
Organization (MAC of As and Hg are 10 and 6 ugL™") (WHO,
2011).
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TABLE 1 | Summary of previous studies on permafrost samples in the TP.

Heavy Metals in the Tibetan Plateau

Date Location Altitude (m a.s.l) Measured elements Concentrations References
2012 Eboling Mountain 3,615 Fe, Mn, Zn, Ni, Cr, Cu, As, Co, Mo, Cd, Hg 0.01 (Cd)-11,569 + 58(Fe) Zhang S. et al. (2021)
2009-2013 TP Hg 3.35-21.65 Gg (0-3 cm) Mu et al. (2020)
2013 TP Hg 63 +47ngg”’ Huang et al. (2020a)
2014 Source of the Yellow River 4,100-5,441 As 4.3-771ug L™ Yu et al. (2019)
2014-2015  Beiluhe region 4,700 Hg 3-12ngg™’ Ci et al. (2018)
2010 Shule River Basin 2,619-4,216 Hg 95+26-176 £56ngg™" Sun et al. (2017)
2014 Beiluhe region 4,700-4,800 Hg 13.11+0.51-12.83+0.81 ugkg™"  Ci et al. (2016)
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FIGURE 3 | Spatial distribution of main rivers and HMs concentrations (ug L™") in the TP (Qu et al., 2019). Notes: The dotted line is the maximum allowable
concentration of HMs in the drinking water, element dates are from Chinese national standards for drinking water quality (VMOH and SAC, 2006). If HMs concentrations
don’t exceed the maximum allowable concentration, no dotted lines are added.

Furthermore, both natural and anthropogenic sources impact the
chemical elements in the water ecosystem of the TP. For instance,
geological movements, climate change, and land use-coverage change
(LUCC) appear to have significant effects on the chemical
composition of rivers (Huang et al., 2009); Zhang Y. et al, 2015
collected 43 surface water samples from the Indus River, Ganges
Basins, and Yarlung Tsangpo (Brahmaputra) in 2012, the enrichment
factor of As was 30 in the Himalayas, indicating that the river water
was seriously affected by anthropogenic activities. Further, Lin et al.
(2021) analyzed the chemical composition of water in Lake Bangong
Co, and the results of PCA showed that As, Cu, and Cr were mainly
from natural resources, while Cd may be caused by
anthropogenic activities. Moreover, the dissolved As (Nickson
et al, 1998; Zhang J. W et al, 2021) and Hg (Sun et al, 2016)

decreased significantly in the downstream of the river due to the
adsorption and dilution process of metal elements, indicating that the
upstream was affected by anthropogenic activities. Therefore, the
surface water of the TP was not polluted except As and Hg.

3.4.2 Groundwater

The TP has active geological activities caused by the interaction of
the Eurasian Plate and Indian Ocean plate (Hodges, 2000), which
caused high geothermal flows and hydrothermal systems (Guo
et al, 2019). Many hot springs on the TP contain high As
concentrations, which are harmful to human health (Guo
et al.,, 2019). Furthermore, Zhang J.-W. et al. (2021) observed
extremely  high  concentrations  of  dissolved  As
(1,130-9,760 ug L") in the hot springs in the upstream of the
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Yarlung Zangbo River. Therefore, As dissolves into groundwater
from rocks and sediments through the coupling of
biogeochemical and hydrological processes (Nickson et al,
1998; Fendorf et al,, 2010; Wang Y. et al., 2019).

3.5 Heavy Metals in Precipitation

3.5.1 Rain

The accumulation of HMs in alpine and high-altitude regions is
related to the precipitation process (Liu et al., 2016; Huang et al.,
2012¢; Huang et al,, 2015). HMs concentration in rainfall around
the TP showed that Nancuo Lake and Mount Everest had lower
HMs concentrations, and South Asia and urban areas (Lhasa,
Kathmandu, and Jomsom) had higher HMs concentration than
rural areas (Dhunche) (Supplementary Figure S2) (Cong et al,
2010b; Huang et al., 2013; Tripathee et al., 2014; Tripathee et al.,
2020; Dong et al., 2015; Guo et al., 2015). Specifically, Cong et al.
(2010b) collected 79 precipitation samples at the Nam Co and
found the concentrations of Cr, Zn, Co, Ni, Cd, Cu, and Pb in the
wetland soil were higher than those of the Tibetan soil, indicating
that the Nam Co may be affected by anthropogenic activities. In
addition, Cong et al. (2015) analyzed the HMs concentrations of
42 rain samples from Mount Everest (Himalayas), and Cd was the
most affected metal by anthropogenic activities. Further,
Tripathee et al. (2014), Tripathee et al. (2019), Tripathee et al.
(2020) measured the HMs concentrations in Kathmandu and
Jomsom of the Nepal Himalayan region and revealed the
concentrations of Hg were 0.019 and 0.022pgL™" in
Kathmandu and Jomsom, which were similar to Lhasa
(0.025ug L") (Huang et al, 2013). Moreover, Cong et al.
(2015) inferred that the high concentrations of HMs might be
the deposition of HMs (aerosols) exposed to the atmosphere for a
long time after the precipitation. Therefore, HMs concentrations
in rainfall of the TP have apparent seasonal variation, which is
high in the pre-monsoon period (spring) and low in the monsoon
period (summer), reflecting the outbreak of brown clouds in
South Asia and the influence of rainfall removal factors in the
rainy season.

3.5.2 Snow

Snow events remove pollutants from the air to accumulate and
agglomerate into the snow (Wang et al, 2016). Numerous
studies (Kang et al., 2007; Lee et al, 2008; Huang et al.,
2012a; Huang et al.,, 2012b; Huang et al., 2013; Dong et al.,
2015; Li Y. et al, 2020; Jiao et al., 2021) analyzed HMs
concentrations in glacier snow samples from multiple
locations in the TP (Figure 4; Supplementary Figure S3).
Glacial snow samples were low concentrations of HMs (Jiao
etal., 2021). HMs concentrations ranged from 0.006 pug L' (Hg)
to 25.680 ug L' (Cr) (Figure 6). In addition, concentrations of
HMs in snow in the central and southern TP were significantly
higher than that in the northern TP, and that in the central TP
was higher than that in the eastern TP. Dong et al. (2015)
proposed HMs concentrations decreased gradually from the
Himalayan region to the Tanggula Basin and Laohugou Basin,
indicating that the migration of HMs from South Asia has a
significant impact on the central TP. Li et al. (2020) considered
dust is the primary source of major HMs in glacial snow. In

Heavy Metals in the Tibetan Plateau

addition, Jiao et al. (2021) investigated atmospheric deposition
and HMs contamination in the glacial snow of the eastern TP
and pointed out that two transportation channels of air
pollutants: one was from east to west so that HMs
concentrations in remote glaciers such as Hailuogou and
Dagu far away from the urban areas were much lower, and
another was from south to north in the eastern TP. Similarly, the
spatial distribution condition of HMs concentrations in the
snow was associated with the atmospheric circulation patterns.

3.6 Heavy Metals in Ice Cores and

Sediments

3.6.1 Ice Cores

Ice cores drilled from glaciers provided an excellent record of
long-term changes in chemical composition, which could be
used to estimate the historical accumulation rate of HMs in the
TP (Kang et al., 2016b; Kang et al., 2019a; Kang et al., 2019b).
Thus, the aforementioned studies reported the historical
trends of HMs concentrations in ice cores (Figure 5;
Supplementary Table S3). Huo et al. (1999) measured the
Pb concentration in the ice core of the Dasuopu Glacier of the
TP from 1946 to 1996 and indicated that Pb concentration
showed an increasing trend. Hong et al. (2009) collected the
upper ice core in the East Rongbuk Glacier of the Qomolangma
Mountain, which clearly showed the migration and deposition
of As, Sb, Mo, and Sn in the atmosphere prevailing in the high-
altitude range of the central Himalayas. Kang et al. (2016b)
collected an ice core sample for the sequence of atmospheric
Hg deposition in the Himalayas; The deposition rate of Hg was
relatively low (1500s~the early 1800s), increasing during the
Industrial Revolution (1860s-1840s), then increasing sharply
after the World War II. Therefore, the effects of natural and
anthropogenic activities on HMs were found in the ice core of
the TP, suggesting that HMs were transmitted to the interior of
the TP through the atmosphere.

3.6.2 Sediments

The previous studies have shown HMs concentrations in
sediments of different rivers and lakes in the TP
(Supplementary Table S4): HMs concentrations were lower
than low effect range (Long et al., 1995; Ramesh et al., 2000;
Dalai et al., 2004; Bing et al., 2016). Thus, chemical concentration
had no adverse effects on biota. For instance, Ramesh et al. (2000)
pointed out that the physical weathering process seemed to be a
chief controlling factor for distributing rare earth elements and
HMs in the sediments of the Himalayan rivers. Additionally, they
found Ni, Cd, Cu, Cr, and As concentrations of the sediments
exceed the low effect range, indicating that HMs may pose a
potential biological threat. In the sediments of the Yarlung
Tsangpo River and the Mekong River Delta, As had high
concentrations owing to weathering of the bedrock (Li et al,
2011). In addition, recent work in the Koshi River Basin of the
Himalayas showed that Ni, Cu, Cd, and Pb had low pollution,
which derived from both natural and anthropogenic sources
caused by atmospheric migration and traffic emissions (Li
et al., 2020).
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around the TP (Kang et al., 2007; Lee et al., 2008; Liu et al., 2011; Huang et al.,

In addition, sediments have been studied to explore the
historical process and spatial distribution in the TP (Figure 5).
Huang et al. (2020b) analyzed Hg concentration of the
sediment at Gaoqiao Lake of the Himalayas and found that
the increased Hg accumulation was due to the aggravation of
cross-border pollution in South Asia (Kang et al., 2016b). Bing
et al. (2016) studied the changes of Pb, Cd, and Zn
concentrations in sediments from Gao Haizi Lake, an alpine
lake in the eastern TP, and indicated that Zn and Cd fluxes
were relatively constant until the 1980s, raised sharply from
the 1980s to the 1990s and then maintained stable. However,
the Pb flux increased significantly in the 1950s and increased
sharply in the 1980s, and peaked in the 1990s and then
decreased gradually. Huang et al. (2020b) proposed that the
downward trend of Pb accumulation in sediments was due to
the Pb decrease in gasoline and the decrease of anthropogenic
Pb emissions caused by the phasing out of Pb gasoline (Singh
and Singh, 2006). Therefore, the various trends of HMs in the
sediment  cores  reflected the different sources,
transport pathways, and geochemical circulation of HMs
around the TP.

3.7 Heavy Metals in Biota

3.7.1 Terrestrial Biota
More attention to pollutants in organisms has been paid due
to biomagnification and bioconcentration (Wu et al., 2016).
Thus, several researchers have studied HMs concentrations of
the terrestrial biota (Supplementary Table S5). For instance,
mosses and lichens have been widely used for biomonitoring
of trace metals in the atmosphere (Shao et al., 2016; Fabri
et al., 2018). Bing et al. (2014) analyzed the Pb of moss and
revealed that its concentration ranged from 20.0 to
62.1 mgkg " in the Hailuogou Glacier Foreland, eastern
TP, suggesting that the contribution of the anthropogenic
PDb to the mosses was 41.6%-65.9%. Shao et al. (2017) collected
moss and lichen, and THg concentration was 13.1-273.0 and
20.2-345.9 ng g, respectively. Moreover, Shao et al. (2017),
Shao et al. (2015) pointed out that the concentration of HMs
in mosses increased with the elevation, and the spatial
distribution of most HMs decreased from west to east and
from south to north in the TP.

In addition, HMs concentrations varied with species and
organs of vegetations (Nabulo et al., 2006; Zhang et al,
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2016b). Jia et al. (2021) measured and analyzed Pb and Cd
concentrations in needles and twigs of fir and spruce collected
from 26 sites in the eastern TP, indicating concentrations of
Pb and Cd in twigs were higher than those in needles.
Furthermore, most HMs are still at the root (Eid et al,
2012; Bonanno, 2013), fine roots were able to adsorb Pb in
the soil humus horizon (Luo et al., 2015; Jia et al., 2021). In
addition, leaves absorbed and accumulated HMs particles
directly from the atmosphere (Grigholm et al., 2016). Cd,
Mn, Fe, and Zn fell to the surface of leaves and return to the
soil through the litter. Sun et al. (2020) measured the gaseous
Hg fluxes of alpine meadows in the central TP during the
whole vegetation period, suggesting that the alpine steppe
hindered the emission of Hg and provided a sink for total
gaseous Hg. Therefore, vegetation provides a sink for HMs
accumulation.

3.7.2 Aquatic Biota

HMs concentrations in fish were still of great significance for
understanding its impact on aquatic ecosystems in the TP (Xiong
etal., 2020). As, methylmercury (MeHg), and Pb were observed in
wild fish in many lakes and rivers of the TP (Figure 6;
Supplementary Table S6). As and Pb concentrations of wild
fish far exceeded the MAC (0.1 and 0.5 mg kg_l) of Chinese Food
Health Standard (MOH and SAC, 2017), and Pb concentrations
of all lakes and rivers were similar. Hg is easily converted to
MeHg, a neurotoxin that bioaccumulate in humans and wildlife
(Gilmour et al., 1992; Sun et al., 2021). The average concentration
of MeHg in most Tibetan fish was less than the MAC, but the
recent survey of wild fish in Niyang River and Lhasa River found
that the dry weights of MeHg concentrations were
276-1,158 ngg ', 281-1,331ngg ', exceeding MAC (Shao
et al, 2015). Overall, high MeHg concentration in wild fish
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might be related to low temperature, poor nutrition in the water
environment, and slow growth of fish (Zhang Q. et al., 2014; Shao
et al, 2015). Therefore, attention should be paid to the high
concentrations of As, MeHg and Pb in wild fish in the TP.

4 DISCUSSION

4.1 Sources of Heavy Metals

The results of PCA and cluster analysis indicated that Cu, Cr, Ni,
and As may be generated from similar sources, and Cd, Pb, and
Zn are enriched by another category. Sheng et al. (2012) pointed
out that weathering products of the basic bedrocks might be the
chief origins of most HMs in Tibetan soils. For instance, As-
enriched rocks, such as shales, are widely distributed in the QTP
(Lietal., 2011). Besides, previous studies pointed out that Tibetan
soils developed from ultramafic rocks are usually enriched in Ni,
Co, and others (Yin and Harrison, 2003). In addition, researchers
revealed transportation (Zhang H et al., 2015; Wang et al., 2017),
mining and smelting (Bing et al., 2016; Zhang et al., 2019) are the
primary anthropogenic sources of elevated Cd, Pb, Zn, and Hg in
the TP. Meanwhile, previous reports have demonstrated that Hg
accumulation in soils is determined by the formation of organic
complex and dissolution processes after precipitation (Huang
et al., 2012¢; Tripathee et al., 2019; Tripathee et al., 2020), so
atmospheric transport and deposition may be the sources of Hg
deposited in topsoil. Therefore, HMs may be derived from
geogenic/pedogenic associations (Cu, Cr, Ni, As, and Co) and
anthropogenic emissions (Cd, Pb, Zn, and Hg) of local or long-
distance atmospheric transmission.

4.2 Atmospheric Transport of Heavy Metals
Although the Himalayas in the southern TP hinder atmospheric
transport, the transport of pollutants cannot be completely

blocked (Wang et al, 2016). For instance, mountain peak-
valley wind patterns might promote the trans-Himalayan
transportation of contamination (Cong et al, 2015; Liithi
et al.,, 2015). Additionally, the atmospheric circulation pattern
is dominated by the Indian summer monsoons from May to
September and the westerlies from October to April in the TP
(Figure 7). Atmospheric circulation patterns affect remote
plateau regions. For instance, Cong et al. (2007) pointed out
that South Asia may be the source region of HMs contaminants in
TSP of Nam Co. In addition, Zhang N. et al. (2014) evaluated
HMs in TSP and PM, 5 samples of Qinghai Lake and proposed
that Pb and Zn were affected by the wind migration in eastern
China. Therefore, the Indian and East Asian monsoons during
the monsoon period and southern branch of westerly winds may
have a significant impact on the long-distance cross-border
migration of HMs in southwestern China, South Asia, and
Southeast Asia.

4.3 Local Anthropogenic Heavy Metals

Sources

In recent decades, the social economy of the TP has been
accelerated, especially the remarkable growth of the
transportation industry. Transportation brings many
benefits, but it is one of the most essential sources of HMs
around the TP (Zhang Y. et al,, 2015; Liu et al., 2019). In
addition, biomass combustion (yak dung) is a local source of
HMs for the TP. The yak dung combustion releases aerosols
rich in HMs into the atmosphere (Chen et al., 2015; Ye et al,,
2020). Besides, urban living garbage (Wang et al., 2020) and
religious rituals (Duo et al., 2015; Cui et al., 2018) may be the
main sources of anthropogenic HMs in the TP. Therefore,

anthropogenic activities are one of the criminal sources of
HMs around the TP.
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4.4 Impact of Climate Change on Heavy

Metals Emissions

The TP is a vital cryosphere in the middle and low altitude regions
(Qiu, 2008; Yao et al,, 2012), which has experienced tremendous
climate change (Kang et al., 2010; You et al,, 2016; Keyimu et al,
2021a). Since 1960, the average temperature has increased by 0.36°C
per decade (Wang et al., 2008). In addition, 82% of plateau glaciers
have degraded over the past half-century (Qiu, 2008), snow cover has
decreased by 5.7%, and 10% of permafrost has degraded from 1997
to 2012 in the TP (Qiu, 2012; Qiu, 2014). Therefore, changes in the
cryosphere around the TP affect the geophysical, biological and
geochemical interactions of environmental pollutants.

The cryosphere is a temporary repository of pollutants (Kang
et al., 2019a). However, with global change, pollutants stored in the
cryosphere would be released into the different environmental media
(Potapowicz et al., 2019; Zhu et al., 2020). Zhu et al. (2020) analyzed
the historical trend of contaminants in lake sediments of the
southern TP and concluded that the rate of contaminants
released by glacial meltwater is 40%-61%, corresponding to the
warmer climate. In addition, permafrost contains more extensive
chemical storage, and its degradation accelerated the emission of
HMs (Yu et al,, 2019; Ci et al,, 2020; Mu et al,, 2020; Zhang S. et al,,
2021). Therefore, climate change causes the cryosphere to melt,
releasing HMs, which may increase the accumulation of pollutants
and affect the global environment in the future.

4.5 Limitations and Outlooks

The following limitations are put forward to study HMs around the
TP: 1) Similar to the Arctic and Antarctica, the TP is also a core
region for studying climate change and pollution. For instance,
anthropogenic activities cause long-distance transport of pollutants
to sink in glaciers and permafrost range; climate warming may
promote the secondary release of pollutants from glaciers and

permafrost to the atmosphere, discharge with meltwater, and
other processes. 2) In terms of pollution source analysis, many
studies are carried out by the occurrence frequency of reverse air
mass trajectories. Despite providing a potential source, its
identification accuracy needs to be improved, especially in the
quantitative assessment of transmission flux. Experiments using
multiple means such as particle lidar, satellite remote sensing,
and isotope tracer methods are needed to combine ground
monitoring data with big data models to quantify sources and
characteristics of pollutants in TP. 3) In the lakes and rivers of
the TP, wild fish with high concentrations of As, Hg, and Pb were
found. However, so far, no data have been reported on HMs in the
terrestrial food chain, and the impact of HMs on other organisms
and humans is still lacking in the TP. 4) Soil, water, snow, glacier,
sediment, and biota are essential sinks of atmospheric HMs.
However, the specific relationship between HMs in different
environmental media is still unclear.

In the future, the following points should be focused on: 1) It is
necessary to study the accumulation, distribution, and transformation
of HMs and other pollutants in glacial and permafrost degradation
regions around the TP. 2) Using particle lidar, satellite remote sensing,
isotope tracing, and other means to conduct experiments, and
combining ground monitoring data with big data models to
quantify the sources and characteristics of pollutants in the TP. 3)
The relationship between bioaccumulation of HMs and human health
needs to be further studied in the TP. 4) Conducting a coordinated
sampling and measurement of various environmental media samples
to quantify the pollution status of the TP comprehensively.

5 CONCLUSION

The inorganic pollution in different environmental media was
summarized around the TP. The results showed that 1) HMs
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in the TP may be generated from geogenic/pedogenic
associations (Cu, Cr, Ni, As, and Co) and anthropogenic
activities of local or long-distance atmospheric
transmission (Cd, Pb, Zn, and Hg). 2) The atmospheric
transport emission sources of HMs are mainly from the
surrounding heavily-polluted regions by the Indian and
East Asian monsoons during the monsoon period and
southern branch of westerly winds. 3) Soil, water, glacier,
and vegetation are critical reservoirs of HMs. 4) Significant
bioaccumulation of As, Pb, and MeHg has been found in
terrestrial and aquatic biota chains. 5) The enhancement of
anthropogenic activities, climate change, glacial retreat and
permafrost degradation had potential effects on the behaviors,
fates, and distribution of HMs around the TP. Therefore, we
hope that the ecological risks of the TP should be of increasing
concern and systematically studied, calling for effective
ecological safety strategies to reduce the adverse effects of
environmental pollutants in the TP.
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