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Phosphorus (P) fertilizer is generally applied to enhance the soil P pool and meet crop
demand, but most of the added P is absorbed by soil. This study aimed to explore the
importance of P fractions and adsorption–desorption characteristics on the demand for P
fertilizer to determine the optimum P fertilizer amount for a cotton field under mulched drip
irrigation in Xinjiang, China. A 4-year experiment (2016–2019) was conducted in a cotton
field to evaluate the effects of five P fertilizer addition levels (0, 75, 150, 300, and 450 kg
P2O5 ha−1 year−1) on inorganic P fractions and P adsorption–desorption properties at
different soil depths and explore the effects of soil properties on P adsorption. The 4-year
continuous P fertilization enhanced the inorganic P content and altered the proportions of
various P forms. A large proportion of P accumulated in soil was transformed into Ca8-P,
followed by Ca2-P, mainly in the surface layer. The accumulation and transformation of P in
fertilized soil reduced P adsorption and enhanced P desorption. Soils with higher P
application levels had higher inorganic P accumulation with lower adsorption and higher
desorption. The total P andOlsen-P in a 0- to 5-cm soil layer; Ca8-P and calcium carbonate
(CaCO3) in a 5- to 10-cm soil layer; Olsen-P, Ca10-P, clay, and cation exchange capacity in
a 10- to 20-cm soil layer; andOlsen-P in a 20- to 40-cm soil layer significantly affected the P
adsorption–desorption (p < 0.05). The application rate of 75–150 kg P2O5 ha−1 year−1

produced lower inorganic P accumulation, favorable adsorption–desorption properties,
and high cotton yield, and thus could be considered the optimal P fertilizer application level.
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INTRODUCTION

Phosphorus (P) accumulation in soil is often associated with
intensive agricultural production (MacDonald, et al., 2011; Mai
et al., 2018), in which high amounts of P fertilizer are applied to
overcome soil P deficiency. However, soils receiving huge
fertilizer input have accumulated P to a level beyond the
agronomic optimum required for satisfactory crop production
(Dou et al., 2009). Therefore, it is important to explore P fertilizer
application levels and P dynamics in soil to achieve efficient
management of P fertilizer in agricultural production. Both
transformation of P forms and P adsorption–desorption
behavior are key aspects of soil P dynamics (Bai et al., 2017;
Yan et al., 2017).

Soil inorganic P, the main component of the soil P pool in
calcareous soil, can be separated into the following six forms: Ca2-
P, Ca8-P, Fe-P, Al-P, occluded P (O-P), and Ca10-P (Jiang and Gu,
1989). These different forms of inorganic P in soil are in the
process of continuous transformation. Soil physicochemical
properties, environmental factors, and management measures
are the main factors affecting the transformation and availability
of inorganic P (Jiao et al., 2020). Addition of P fertilizer affects the
status of soil P fractions and total P (TP) accumulation by directly
or indirectly changing soil properties (Yan et al., 2017). Li W. W.
et al. (2020) showed that the proportion of P fractions was in an
order of moderate-activity P sources (Ca8-P, Fe-P, Al-P) >
potential P sources (O-P, Ca10-P) > available P source (Ca2-P)
in a 15-year experiment of P fertilization on greenhouse
vegetables in calcareous soil. Lv and Yang (2019) showed that
Fe-P and Ca10-P were the main inorganic P fractions present after
long-term fertilization of black soil. Wang et al. (2020) observed
that the increasing P application rate led to an increase in Al-P,
Fe-P, and Ca-P proportions in yellow-mud paddy soil. In general,
there is an increase in the proportion of inorganic labile and
moderate labile P fractions but a decrease or stable trend in the
proportion of low labile fractions to TP with the history of long-
term P fertilization (Pavinato et al., 2009; Li W. W. et al., 2020).
However, there are significant differences in P fraction
proportions among different regions or soil types, and further
research is needed to explore the transformation of inorganic P
fractions under drip irrigation in arid regions.

The P adsorption–desorption reaction of soil affects the P
availability of the crop directly (Bera et al., 2006; Yang et al., 2019)
and can determine the key process controlling the utilization
efficiency of P fertilizer (McLaughlin et al., 2011). It is generally
accepted that the soil properties such as pH, soil organic matter
(SOM), clay, and calcium carbonate (CaCO3) contents affect the
P adsorption–desorption characteristics of soil (Bai et al., 2017;
Zhang Y. et al., 2018; Yan et al., 2018; Yang et al., 2019). Prakash
et al. (2017) pointed out that the existing soil P, clay, and CaCO3

contents were the main factors affecting soil P
adsorption–desorption. The Langmuir and Freundlich
equations can provide a suitable description of P adsorption
properties of soil. Some P sorption parameters can be determined
via these equations, which can express the capacity of soil for P
adsorption (Yan et al., 2018; Yang et al., 2019; Sun et al., 2020). In
general, soils with a high P application have less capacity to retain

P at a higher P adsorption saturation (Yan et al., 2018;Wang et al.,
2019), posing a greater risk for P leaching than soils receiving
limited or no P application (McDowell, 2012). Zhang Y. et al.
(2018) found that a fine-textured soil had stronger P absorption
and weaker desorption ability with a higher maximum P buffer
capacity, but a coarse-textured soil had the opposite
absorption–desorption ability. However, most reports of the
effect of some soil properties (e.g., pH, SOM, and CaCO3) on
P adsorption are contradictory (Carreira et al., 2006; Bai et al.,
2017; Yang et al., 2019). The relationship between soil properties
and P adsorption capacity, though highly studied, does not tell a
straightforward story. Accordingly, researchers are interested in P
adsorption–desorption in soil and factors controlling P binding at
both the local and international scales.

Low availability of inorganic P and adsorption–desorption
properties in soil are often the limiting factors for P utilization
efficiency and crop productivity (Sun et al., 2020; Yang et al.,
2020). Phosphorus is the second nutrient limiting factor for
cotton yield under film drip irrigation (Chen et al., 2020).
Therefore, the objective of this study was to explore P
dynamics of soil in cotton fields under medium- and short-
term fertilization management with drip irrigation under film
in the arid area. The specific objectives were to 1) investigate
effects of different P application levels on the transformation of
inorganic P forms under mulched drip irrigation, 2) evaluate P
adsorption–desorption properties under mulched drip irrigation,
3) determine the influence and contribution of different soil
properties on the characteristics of P adsorption behavior in a
4-year field assessment, and 4) identify the optimization of P
fertilizer application to resolve agronomic P imbalances in the
cotton field.

MATERIALS AND METHODS

Experimental Site
The field experiment was conducted in Manas County, Xinjiang,
Northwest China (86°44′N, 44°79′E). The site has a temperate
continental climate with an average annual temperature of 7.2°C,
2,500–3,000 annual sunshine hours, 160–180 frost-free days per
year, and an average annual precipitation of 173.3 mm. The mean
daily temperature and precipitation from April to September in
2016–2019 are presented in Supplementary Figure S1. The soil
type at the experimental field is a gray desert soil with a loam
texture. The soil physicochemical properties are shown in
Table 1. Cotton “XinLuZao57,” the main cultivated cotton
genotype in the region, was selected for planting during
this study.

Experimental Design
The experiment was conducted for 4 years (2016–2019). Five P
fertilization treatments were set in randomized blocks with three
replicates: P0 (control without any applications of P fertilization),
P75 (75 kg P2O5 ha−1 year−1), P150 (150 kg P2O5 ha−1 year−1),
P300 (300 kg P2O5 ha−1 year−1), and P450 (450 kg P2O5

ha−1 year−1). There were 15 plots in total, and the size of each
plot was 8.8 × 6 m. The five P fertilizer treatments were applied

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8749022

Tang et al. P Fractions and Adsorption–Desorption Characteristics

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


along with nitrogen fertilizer (300 kg N ha−1 year−1) and potash
fertilizer (75 kg K2O ha−1 year−1). The P fertilizer
(superphosphate), 40% of the nitrogen fertilizer (urea), and
50% of the potash fertilizer (potassium sulfate) were applied
on the surface and then incorporated into the soil by ploughing
before sowing as a basal dressing. The remainder of the N
fertilizer and potash fertilizer was applied with irrigation.
Cotton was normally sown in mid-April, and the other field
management practices were consistent with the local cotton
agronomic practices.

Soil Sampling and Analysis
Soil samples were collected at 0 to 40 cm depth with 20-cm
increments to analyze the properties of background before
fertilization in April 2016. The soil profile was sampled at 0–5,
5–10, 10–20, and 20–40 cm in the cotton flowering and boll set
(maximum efficiency stage of P nutrition in cotton) stages
annually, with a total of 80 soil samples. Each mixed soil
sample consisted of five parallel samples from a plot, which
were air-dried under natural conditions and sequentially
sieved through 2-, 1-, 0.25-, and 0.15-mm sieves after the
removal of gravel, film, roots, and other debris.

Soil physicochemical properties were measured using the
methods outlined by Bao (2000). Briefly, the soil pH was
determined in a 1:5 soil:water suspension using a pH meter
(FE28-TRIS pH), and the salinity was measured by weighing
the dry residue after the evaporation of suspension on a sand
bath. The SOM was determined using the KCr2O7 redox titration
method. Soil available P (Olsen-P) and TP were determined by
the NaHCO3 (pH 8.5) extraction method and H2SO4–HClO4

digestion, respectively. The soil mechanical composition was
determined by using the pipette method and divided into clay
(<0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2 mm). The
CaCO3 content was determined by the gasometric method. The
cation exchange capacity (CEC) was measured using the NaOAc
method.

Determination of Soil Inorganic Phosphorus
Fractions
Soil inorganic P fractions were measured by using the sequential
fractionation method developed for calcareous soils (Jiang and
Gu, 1989). A 0.5 g air-dried soil sample (0.15 mm) was placed in a
50-ml plastic centrifuge tube and successively extracted with
25 ml each of 0.25 mol L−1 NaHCO3, 0.5 mol L−1 NH4Ac,

0.5 mol L−1 NH4F, 0.1 mol L−1 NaOH–Na2CO3, 0.3 mol L−1

Na3C6H5O7 (20 ml) + 0.5 g Na2S2O4 + 0.5 mol L−1 (5 ml)
NaOH, and 0.25 mol L−1 H2SO4 in that order, and inorganic P
concentrations in the extracts were assayed by using the
molybdenum blue colorimetric method (Murphy and Riley,
1962). The results were the average of three replications. In
this article, these inorganic P fractions are referred to as Ca2-
P, Ca8-P, Al-P, Fe-P, O-P, and Ca10-P, respectively.

Phosphorus Adsorption and Desorption
Experiments
In the adsorption experiment, 2q air-dried soil samples
(0.25 mm) were placed in a 50-ml plastic centrifuge tube, and
40 ml P standard solutions (prepared by Ca(H2PO4)2H2O) of
various concentrations (0, 5, 10, 20, 30, 40, 50, 75, 100, 150, and
200 mg L−1) were added. The P standard solutions contained
0.01 mol L−1 CaCl2, and each series was performed in triplicate.
Two drops of toluene were added to inhibit microbial activities.
The tubes were capped and placed at a constant temperature of
25°C in a shaker at 200 rpm for 2 h. The mixtures were then
intermittently shaken for 24 h at intervals of 12 h for 30 min each
time. Thereafter, the suspensions were centrifuged at 2,200 ×g for
10 min, and after filtration, the P concentration in the equilibrium
solution was determined by using the molybdenum blue
colorimetric method. The quantity of P adsorbed was the
difference between P added and P remaining in the filtrate.

For the desorption experiment, the residual soils obtained
from the adsorption experiment were washed twice with 30 ml
saturated NaCl to remove adsorbents. Subsequently, a 40 ml of
0.02 mol L−1 KCl was added to the tubes and shaken at 200 rpm
for 1 h at 25°C in a thermostat shaker. The tubes were periodically
shaken twice a day for 2 days (30 min each time). The
suspensions were centrifuged for 10 min at 2,200 ×g. The
content of P desorbed was measured by using the
molybdenum blue colorimetric method (Bao, 2000).

Adsorption and Desorption Models for
Phosphorus
The adsorption models can quantitatively illustrate the
equilibrium characteristics of P adsorption onto the particle
surface of soil. In the present study, P adsorption was modeled
with the Langmuir and Freundlich equations. The Langmuir
equation is as follows:

TABLE 1 | Background of soil physicochemical properties.

Depth
(cm)

pH SOM
(g

kg−1)

Salinity
(g kg−1)

Olsen-P
(mg
kg−1)

TP (g
kg−1)

CaCO3

(g kg−1)
CEC
(cmol
kg−1)

Mechanical composition

Clay
(%)

Silt
(%)

Sand
(%)

0–20 8.19 11.16 4.07 9.07 0.86 76.52 9.38 23.22 52.47 24.31
20–40 8.29 10.98 4.67 5.43 0.84 79.26 9.87 21.91 51.82 26.27

SOM, soil organic matter; TP, total phosphorus; CEC, cation exchange capacity.
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C
Q

� C
Qm

+ 1
KL × Qm

,

where C is the P concentration (mg L−1) in the adsorption
equilibrium solution, Q is the amount of P adsorbed in each
soil sample (mg kg−1), KL is a constant associated with the
adsorption energy of P (L mg−1), and Qm is the maximum
adsorption capacity of P (mg kg−1). In addition, the maximum
P buffer capacity (MBC, mg kg−1) of soil was calculated from the
product of Langmuir parameters Qm and KL. The degree of P
saturation (DPS, %) was calculated from the ratio of available P
(Olsen-P) to P adsorption maximum (Qm).

The Freundlich equation is as follows:

lgQ � 1
n
lgC + lgKF,

where KF is the Freundlich affinity coefficient (L kg−1) and n is a
constant related to adsorption intensity.

Statistical Analysis
The data were preprocessed using Microsoft Excel spreadsheets
(MS. Co., Redmond, WA, United States). Means and standard
deviations for each variable were calculated. Differences in P
fractions, P adsorption parameters, and soil properties between
the five treatments were analyzed statistically using the one-way
analysis of variance, and significant differences between
individual treatments were determined by Tukey’s post hoc
testing. Linear regression analysis was applied to the Langmuir
and Freundlich isotherms of P adsorption on soil with different P
contents. All statistical analyses were conducted using SPSS 19.0
(SPSS Inc., Chicago, IL, United States) with a significance

threshold of p < 0.05. Redundancy analysis (RDA) was
conducted to study the relationship between P adsorption
parameters and different soil properties using Canoco 5
software package (Microcomputer Power, Ithaca, NY,
United States). Curve fitting and figure creation were
conducted using Origin 2018 software package (OriginLab Co.,
Northampton, MA, United States).

RESULTS

Inorganic Phosphorus Fractions
The contents of inorganic P fractions in the soils are shown in
Figure 1. The Ca-P content was the highest among the fractions,
accounting for more than 82% of total inorganic P (Figure 2),
whereas the contents of Al-P, Fe-P, and O-P were lower. The
highest content of Ca-P was in the form of Ca10-P, followed by
Ca8-P and Ca2-P. Inorganic P fraction contents increased
holistically with the increase in the P application rate and
exhibited much higher levels in the P300 or P450 treatments
than those under the P0 treatment. Inorganic P fraction contents
generally declined along the soil profiles. And these inorganic P
fraction contents increased in all depths over time, whereas those
under the P0 treatment decreased over time. The analysis of the
proportion of different P fractions in total inorganic P (Figure 2)
shows that the proportions of Ca2-P, Ca8-P, Al-P, and Fe-P
increased initially and then decreased as the P application rate
increased. The proportions of Ca2-P and Ca8-P peaked under the
P300 treatment, whereas the proportions of Al-P and Fe-P peaked
under the P150 treatment. The proportions of O-P and Ca10-P
decreased to a nadir under the P300 treatment initially and then

FIGURE 1 | Inorganic P fractions (A) Ca2-P, (B) O-P, (C) Al-P, (D) Fe-P, (E) Ca8-P, and (F) Ca10-P contents in different treatments in 2016–2019.
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increased as the P application rate increased. The proportions of
Ca2-P and Ca8-P decreased gradually as the experiment time
increased under the P0 treatment but increased to different
degrees under other treatments (P75, P150, P300, and P450),
whereas the opposite tendency was shown for the variation of the
Ca10-P proportion. The proportions of Al-P, Fe-P, and O-P
showed irregular change with small variances.

Soil P Adsorption Characteristics
The P-adsorption isotherms are shown in Figure 3, which were
similar among treatments, and the adsorption capacity first
increased rapidly and then slowly with the increase in the
equilibrium solution P concentration in 2016–2019 under the
five fertilization treatments and at the four soil depths. Among
them, the P-adsorption isotherms in 2016 did not reach the
plateau of the isotherms (Figures 3A–D); therefore, a higher
initial P concentration was confidently added in other years,
enabling the isotherms to curve.

Different fertilization treatments showed a marked influence
on the P adsorption isotherms. The amount of P absorbed from
soils in 2016 increased first and then decreased with the increase
in the P application rate, that is, the amount of P absorbed from
soils was in an order of P150 and P300 > P450 > P0 and P75
(Figures 3A–D). Moreover, there was little discrepancy in the
amount of soil P adsorption among treatments in 2016. The P
adsorption in 2017 was relatively low in P75 and P450, and the
capacity of P150 was higher than that of other treatments
(Figures 3E–H). The adsorption capacity of soil P in 2018 and
2019 decreased in the order P0 > P75 > P150 > P300 > P450
(Figures 3I–P), showing a decrease in P adsorption with an
increasing P application rate. Compared with the adsorption
characteristics among treatments in 2016 (Figures 3A–D),
there were significant differences in the P adsorption capacity
among treatments in 2017, 2018, and 2019 (Figures 3E–P).
Moreover, the depth of soil layers had a certain influence on

the P adsorption capacity. The soil P adsorption capacity of each
treatment increased gradually with the increase in soil depth
(Figure 3). In addition, the P0 and P75 treatments caused
increases in the soil P adsorption capacity for 4 years;
however, the soil P adsorption capacity of the P150, P300, and
P450 treatments decreased with prolonged fertilization, especially
in the P450 treatment.

In order to better quantify the variation of adsorbed P in
different treatments, the Freundlich and Langmuir P adsorption
models were fitted, and the parameters are listed in
Supplementary Tables S1, S2. The optimal model was the
Freundlich equation, with the correlation coefficient of fitting
(R2) in the range of 0.916–0.998 (Supplementary Table S1). The
n values obtained from the Freundlich model were greater than 1
(Supplementary Table S1). The correlation of fitting for the
Langmuir equation was poor compared with that of the
Freundlich model, but it also reached a significant level (R2 =
0.518–0.994; Supplementary Table S2). The parameters of Qm
and KL fitted by the Langmuir equation along with MBC and DPS
related to the Langmuir equation are important indicators of the
ability of soil P adsorption. The results showed that the value of
KL was positive (Supplementary Table S2), indicating that the
adsorption reaction was spontaneous. The 4 years of P
application could reduce the value of Qm and enhance the
DPS (Supplementary Table S3). Moreover, the adsorption of
P0 increased depending on the shortage of soil P for years as Qm
was in the range of 303–833 mg kg−1 under P fertilizer treatments
at all four depths in 2019 compared with 769–1,000 mg kg−1 for
the soils under the P0 treatment in 2019 (Supplementary
Table S2).

Soil P Desorption Characteristics
As shown in Figure 4, the P desorption capacity increased
substantially at a lower initial P concentration, and then the
increase in P desorption tended to be slower or near steady as the

FIGURE 2 | Proportion of different P fractions in the total inorganic P in 2016–2019.
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initial P concentration increased. In addition, the order of P
desorption capacity in different fertilization treatments was
opposite to that of adsorption. In general, the P desorption
capacity increased as the P application rate increased and
decreased gradually with the increase in soil depth. Moreover,
as the number of fertilization years increased, the P desorption
capacity decreased in the P0 and P75 treatments but increased in
the P150, P300, and P450 treatments.

As shown in Figure 5, the P desorption rate first decreased and
then gradually leveled off. In addition, the order of the P
desorption rate in different fertilization treatments was
opposite to that of the P adsorption capacity. In general, the P
desorption rate increased as the P application rate increased, and
decreased gradually with the increase in soil depth. Moreover,
there was a decrease in the P desorption rate under the P0 and
P75 treatments but an increase in those of the P150, P300, and
P450 treatments as the number of P fertilization years increased.

Soil Properties
The average values of soil physicochemical properties in the
4 years of fertilization treatment are shown in Table 2. The P
application treatments had no significant effect on pH, SOM
content, and salinity of soil in the cotton field, but a slight
decrease in pH and SOM content and a small increase in
salinity were shown as P application levels increased. Soils

under P application treatments exhibited substantial increases
in Olsen-P and TP contents, and the largest increase was
observed in the P450 treatment when compared with the P0
treatment. By contrast, CaCO3 and CEC were not significantly
affected by P fertilization. Moreover, the mechanical
composition of soil changed under P application, as
indicated by the significant increase in sand and a decrease
in clay and silt (p < 0.05). In addition, there were some
differences in soil properties among different layers, and the
history of P fertilization can also contribute to further effects
on soil properties.

Response of P Adsorption–Desorption
Parameters to Soil Properties
The RDA showed that the selected soil variables could explain
96.41, 85.41, 96.01, and 95.67% of the total variance observed in
the characteristic parameters of P adsorption and desorption for
the 0–5, 5–10, 10–20, and 20–40 cm soil depths, respectively
(Figure 6). At 0–5 cm soil depth (Figure 6A), TP and Olsen-P
were the major factors explaining 49.7% (p = 0.008) and 15.1%
(p = 0.008) of the variance, respectively. In the 5- to 10-cm soil
layer (Figure 6B), Ca8-P and CaCO3 were the main factors
explaining 56.2% (p = 0.004) and 17.5% (p = 0.018) of the
variance, respectively. In the 10- to 20-cm soil layer, Olsen-P

FIGURE 3 | Phosphate isothermal adsorption curves of different treatments in 2016–2019. (A–D) 0–5, 5–10, 10–20, and 20–40 cm in 2016; (E–H) 0–5, 5–10,
10–20, and 20–40 cm in 2017; (I–L) 0–5, 5–10, 10–20, and 20–40 cm in 2018; and (M–P) 0–5, 5–10, 10–20, and 20–40 cm in 2019. C, the P concentration in the
adsorption equilibrium solution; Q, the equilibrium adsorption capacity.
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(p = 0.002), Ca10-P (p = 0.010), clay (p = 0.022), and CEC (p =
0.032) accounted for the majority of the variance (91.5%)
(Figure 6C), whereas Olsen-P was the main explanatory factor
in the 20- to 40-cm soil layer, explaining 62.2% (p = 0.002) of the
variance (Figure 6D).

DISCUSSION

Effects of Different Fertilization Treatments
on Inorganic Phosphorus Fractions
A 4-year continuous P fertilizer application resulted in the
variation of the accumulation and distribution of P fractions
and enhanced the contents of different forms of inorganic P,
except under the P0 treatment (Figure 1). Compared with
2016, the total amount of inorganic P in the 0- to 40-cm soil
layer of the P0 treatment in 2019 decreased by 8.2–10.8%
(Figure 1). This is perhaps because of the lack of enough soil P
available in the P0 treatment or the easy uptake of inorganic P
by cotton (Guo et al., 2008). The proportions of Ca2-P and
Ca8-P decreased over time, but the proportions of O-P and
Ca10-P increased under the P0 treatment (Figure 2). This
shows that Ca2-P and Ca8-P were easily used by cotton,
whereas O-P and Ca10-P were less easily used and
accumulated in soil, which is consistent with Zhang et al.

(2021). Zhang et al. (2020) further clarified that after P
fertilization ceased in a long-term cropland, plants mainly
absorbed the available inorganic P and then moderate-activity
P was desorbed to replenish the available P pool. The P
fertilization enhanced the contents of inorganic P fractions,
which increased with an increasing P application level under
moderate P application treatments (P75, P150, and P300).
Compared with the P0 treatment, the average content of Ca2-
P, Ca8-P, and Al-P under moderate P application treatments
(P75, P150, and P300) increased to 97.9, 76.8, and 52.6%,
respectively (Figure 1). The possible reason is that the
moderate P application activates soil biological
characteristics, so as to promote the transformation of
insoluble P to medium stable P and active P (Jiao et al.,
2020). Excessive P fertilizer application (P450) may reduce
the Ca2-P, Ca8-P, and Al-P contents compared with moderate
application (Figure 1), which illustrates that excessive P
fertilizer application was not the best way to improve the
availability of soil inorganic P. By contrast, the P450
treatment increased the proportion of low available P (Ca10-
P, O-P) compared with the P300 treatment. This increase was
similar to that shown by Mahmood et al. (2020), which
indicates that excessive P application can alter soil P
availability and limit plant growth by compacting soil and
fixation of P into different forms.

FIGURE 4 | Phosphate isothermal desorption curves of different treatments in 2016–2019. (A–D) 0–5, 5–10, 10–20, and 20–40 cm in 2016; (E–H) 0–5, 5–10,
10–20, and 20–40 cm in 2017; (I–L) 0–5, 5–10, 10–20, and 20–40 cm in 2018; and (M–P) 0–5, 5–10, 10–20, and 20–40 cm in 2019.
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In addition, P accumulated in soil was mainly converted into
Ca8-P, followed by Ca2-P, whereas the proportion of Ca10-P in
total inorganic P decreased over the 4 years of P application. The
proportion of other inorganic P forms (Al-P, Fe-P, and O-P)
remained relatively stable over time. As the first available P source
of soil, the Ca2-P content was low, and the increase in its
proportion was consistent with the increase in the Olsen-P
content over time (Supplementary Table S7). Previous studies

have shown that an excess of available P in soil could promote the
transformation of Ca2-P to Ca8-P, which reveals that the
application of P fertilizer mainly added the moderate-activity
P sources of soil (Li W. W. et al., 2020; Li C. L. et al., 2020).
However, the proportions of Al-P and Fe-P did not increase
significantly over time, maybe owing to their low contribution to
total inorganic P or the differences in soil types (Sugihara et al.,
2012). The O-P and Ca10-P forms represented the main potential

FIGURE 5 | Phosphate desorption rate of different treatments in 2016–2019. (A–D) 0–5, 5–10, 10–20, and 20–40 cm in 2016; (E–H) 0–5, 5–10, 10–20, and
20–40 cm in 2017; (I–L) 0–5, 5–10, 10–20, and 20–40 cm in 2018; and (M–P) 0–5, 5–10, 10–20, and 20–40 cm in 2019.

TABLE 2 | Mean values of soil properties (0–40 cm) of different treatments under 4-year fertilization.

Parameter P0 P75 P150 P300 P450 p value

pH 8.15 ± 0.04 8.15 ± 0.05 8.12 ± 0.04 8.02 ± 0.03 8.09 ± 0.04 NS
SOM (g kg−1) 8.57 ± 0.49 8.61 ± 0.47 8.26 ± 0.37 8.04 ± 0.47 7.93 ± 0.53 NS
Salinity (g kg−1) 3.56 ± 0.20 3.89 ± 0.17 3.62 ± 0.18 3.79 ± 0.20 4.15 ± 0.16 NS
Olsen-P (mg kg−1) 7.47 ± 0.71c 11.99 ± 1.25bc 16.14 ± 2.40abc 20.89 ± 3.80 ab 27.42 ± 5.05a *
TP (g kg−1) 0.81 ± 0.01b 0.86 ± 0.01ab 0.87 ± 0.02ab 0.89 ± 0.02a 0.92 ± 0.02a *
CaCO3 (g kg−1) 74.36 ± 0.84 73.53 ± 0.58 74.53 ± 0.89 74.00 ± 1.37 76.52 ± 1.28 NS
CEC (cmol kg−1) 11.80 ± 0.37 10.83 ± 0.13 11.37 ± 0.27 11.08 ± 0.26 11.08 ± 0.26 NS
Clay (%) 22.65 ± 0.38a 20.45 ± 0.31b 19.28 ± 0.22c 17.72 ± 0.23d 16.83 ± 0.26d *
Silt (%) 51.23 ± 0.47ab 51.73 ± 0.44a 51.20 ± 0.53ab 49.29 ± 0.70bc 48.86 ± 0.61c *
Sand (%) 26.12 ± 0.33c 27.82 ± 0.35bc 29.52 ± 0.55b 32.98 ± 0.71a 34.31 ± 0.60a *

SOM, soil organic matter; TP, total phosphorus; CEC, cation exchange capacity.
Different letters and * indicate significant differences among five P fertilization treatments (p < 0.05).
NS, not significant.
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P sources. The lowered proportion of Ca10-P over time may be
due to the transformation of Ca10-P to Ca8-P. Li C. L. et al. (2020)
observed that P fertilization for 32 years led to the transformation
of Ca2-P, Fe-P, O-P, and Ca10-P into Ca8-P in a Mollisol of
Northeast China under single spring maize cropping. The
proportion of O-P is relatively stable with years in the current
study, which may be because its inherent stability made it less
affected by fertilization (Wang et al., 2020).

The change characteristics of inorganic P in the soil profile
were in line with those shown by Pavinato et al. (2009); the
inorganic P mainly accumulated in the uppermost soil layer, with
a lower inorganic P level in deeper soil (Figure 1). In this study,
Ca2-P, Ca8-P, and Al-P in the 0- to 10-cm soil layer of the five
treatments were significantly higher than those in the 20- to 40-
cm soil layer. However, the Fe-P, O-P, and Ca10-P had no
significant differences in each soil layer in the five treatments
(Figure 1). The movement of inorganic P fractions in the soil
profile indicated that the movement of P in soil was affected by
the form of inorganic P and soil characteristics (Keter and Ahn,
2010). Compared with the P accumulation in deeper soil (60–70-
cm depth) observed by previous long-term studies (Rubaek et al.,
2013; Wang et al., 2015), the P accumulation depth was shallower

in the 4-year experiment (20–40 cm), owing to the shorter period
of fertilization.

Effects of Different Fertilization Treatments
on Phosphorus Adsorption and Desorption
The continuous application of P fertilizer profoundly affected the
characteristics of P adsorption and desorption. The accumulation
and transformation of soil P under the P application treatments
distinctly decreased the P adsorption capacities, but those of the
soil without P application were higher, as confirmed by the
decreases in Qm and the increases in DPS as the P application
rate increased. The decreasing P adsorption capacity in
P-fertilized soils suggests that part of the excessive phosphate
was occupying the adsorption sites, hence blocking further
reaction. In the present study, the variation characteristics of
soil P adsorption in 2016 were slightly different from those in
other years, indicating that the adsorption capacity first increased
and then decreased as the P application rate increased. This may
be because the equilibrium concentration of
adsorption–desorption reactions could be higher and more
sensitive to the surrounding environment under the lower P

FIGURE 6 | Redundancy analysis showing the correlations between the adsorption–desorption parameters and soil physicochemical properties of different
treatments under 4-year fertilization. (A) 0–5 cm, (B) 5–10 cm, (C) 10–20 cm, and (D) 20–40 cm. 1, 2, 3, and 4 indicate 2016, 2017, 2018, and 2019, respectively.
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content in the P0 and P75 treatments in 2016 (Supplementary
Tables S7, S8) (Zhao et al., 2019). Correspondingly, the P fixation
ability was relatively poorer in the P0 and P75 treatments,
showing a lower adsorption capacity and a greater desorption
capacity. Of these, P75 treatment had a lower Qm and a larger
DPS. By contrast, the P150, P300, and P450 treatments had a
higher Qm and a smaller KL value, which was similar to the
findings of Shahabifar et al. (2019) for the adsorption parameters
of calcareous soils with different inherent P levels. The
discrepancy of the relationship between the soil P adsorption
capacity and P application rate in 2016 (the first year of the
experiment) and other years implies that the effect of different P
application rates on soil P adsorption properties was also affected
by the continuous P application. The organic acids secreted by
plant roots will restrict the number of soil adsorption sites and
complex with iron and aluminum ions, so as to inhibit the
absorption of phosphorus by soil (Zhang X. et al., 2018). As
the P content and cotton root distribution in deep soil were low
(Prakash et al., 2017; Zhang Y. et al., 2018), the soil P adsorption
capacity increased progressively toward the deep soil.

In a previous study, the soil P adsorption capacity increased
in the unfertilized control but decreased in P application
treatments in response to 6-year fertilization (Yan et al.,
2018). Similarly, the interannual variation of the adsorption
characteristics of different P application treatments in the
current study mainly manifested in the continuous
consumption of P in the cotton field under the P0
treatment, along with the increase in Qm and the decrease
in DPS over time. In addition, Qm in the P75 treatment
increased gradually over the 4-year study period. Moreover,
P accumulated progressively in the P150, P300, and P450
treatments, along with the decrease in Qm and the increase
in DPS over time. The differences of the soil P content and
adsorption capacity among different P application treatments
peaked in 2019 (the fourth year of the experiment), indicating
a lower adsorption capacity under the higher P application
amount. Moreover, the change in the DPS value with P
application years showed that P fertilization over an
extended period could significantly enhance the ability of
soil to release the absorbed P to the environment. In 2019,
the DPS value of surface soil under the P450 treatment was
26%, which was 8-fold than in 2016, and reached the critical
value of soil P loss of 25% (Schoumans and Groenendijk,
2000). An increased DPS value in soil has resulted in P
transport to the deeper soil (Rubaek et al., 2013), confirmed
by the P accumulation in soil at all depths (Figure 1;
Supplementary Tables S7, S8).

The desorption of P in soil is a reversible process, which is
directly related to the reuse of adsorbed P and the
improvement of P availability in soil (Heidari et al., 2017).
The P desorption capacity of the cotton field soil decreased
with the increase in adsorption capacity, coinciding with the
results of Jalali and Peikam (2013) and Bai et al. (2017). For 4
consecutive years, the amount and rate of soil P desorption
increased with the increase in the P application rate. The soil
that absorbed a low proportion of applied P during the
adsorption reaction tended to release a higher proportion

during the desorption reaction (Bhattacharyya et al., 2015).
Because soil capacity is full in the soil with higher P application
and cannot uptake or adsorb more P, the desorption increases
compared with adsorption. In the soil profile of the cotton
field, the desorption capacity of soil P gradually decreased with
the increase in soil depth. This supports the findings of Yan
et al. (2018), wherein the desorption capacity of the 0- to 30-
cm soil layer was about 1.5 times that of the 30- to 60-cm soil
layer in P-fertilized calcareous soil. The stronger P desorption
capacity of surface soil provided more P for cotton growth,
whereas the desorption capacity of deep soil was weak, which
reduced P leaching down the soil profile. Under a consecutive
4-year P fertilization, the P desorption capacity of the P150,
P300, and P450 treatments increased over time, whereas it
decreased in the P0 and P75 treatments. This was contrary to
the change in P adsorption parameters and the soil P level
under 4 years of P addition. The difference of P the level
between different P application treatments increased further
over time. Under the higher P application treatments, the soil P
pools tended to be saturated and the limited adsorption sites of
soil were occupied (Guo et al., 2008; Bhattacharyya et al., 2015;
Wang et al., 2019). Therefore, the effect on the higher P
adsorption–desorption capacity and desorption rate was
different between years. Combined with the
adsorption–desorption properties of soil and cotton yield
among different P application treatments (Supplementary
Figure S2), the optimal P fertilizer application for the
cotton field was 75–150 kg P2O5 ha

−1 year−1.

Response of Phosphorus
Adsorption–Desorption Characteristics to
Soil Properties Under Different Fertilization
Treatments
A 4-year continuous P fertilizer application significantly affected
some of the soil physicochemical properties and had subsequent
impacts on soil adsorption–desorption characteristics. The RDA
showed that the major factors affecting soil
adsorption–desorption varied with soil depth, and the
contribution of each factor to adsorption–desorption was
unequal. Different P application levels led to significant
differences in the soil P nutrient profit and loss, and the
extreme range of TP and Olsen-P reached 0.33 g kg−1 and
72.19 mg kg−1 in the 0- to 5-cm soil layer in 2019, respectively.
Moreover, there was an inverse relationship between the P
content and adsorption capacity. Accordingly, the cotton field
soil with accumulated P had a reduced P adsorption capacity, and
soil properties contributed to this reduction. The Olsen-P played
a key role in P adsorption in the soil profile, except for the 5- to
10-cm soil layer, and the TP, Ca8-P, and Ca10-P contents were the
major parameters controlling P adsorption in the 0- to 5-, 5- to
10-, and 10- to 20-cm soil layers, respectively.

The P adsorption was also controlled by CaCO3, but this effect
is not dominant in soils with a low P content (Freeman and
Rowell, 1981). As shown in the current study, CaCO3 was
negatively correlated with Qm and positively correlated with
DPS, especially at the 5–10 cm soil depth (Figure 6B). The
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high content of CaCO3 in soil with the main inorganic P form of
Ca-P contributed to the increase in DPS (Wang et al., 2019). The
Qm value exhibited the reverse trend of DPS, indicating that
CaCO3 reduced Qm in the 5- to 10-cm soil layer, which supports
the findings of Bai et al. (2017) but is contrary to the general
results (Leytem and Mikkelsen, 2005; Prakash et al., 2017).
However, the Ca-P content in deep soil was reduced, and the
effect on DPS decreased. Correspondingly, the effect of CaCO3 on
adsorption parameters in the deeper soil layer was not significant,
whichmight also be because the binding capacity of clay with P by
adsorption exceeded that of CaCO3 with P in deep soil at low P
contents (Figure 6C).

Cotton cultivation led to a gradual loss of fine particles by the
influence of P fertilization, and the clay content of soil decreased
with the increase in the P application level (Supplementary Table
S11). Our findings suggest that the clay content was positively
correlated with Qm, especially in the 10- to 20-cm soil layer
(Figure 6C). In general, the majority of the adsorbed P was found
on illite under P application in neutral and alkaline soils (Devau
et al., 2011). Illite is a common clay mineral in the soil of northern
China, which may have resulted in the contribution of clay to P
adsorption. It may also be attributed to the specific surface area
and CEC of clay minerals (Gérard, 2016). The clay accumulated
on the surface layer of cotton field in this study (Supplementary
Table S11); however, it had a reduced adsorption capacity
compared with the deep layer (Figure 3; Supplementary
Table S2). It may be affected by the P content. This indicates
that clay was not the leading factor affecting the variance of soil
adsorption in the soil profile.

It is also worth noting that there was a facilitation of P
adsorption by CEC in the cotton field, especially in the 10- to
20-cm soil layer (Figure 6C), which is consistent with the
result of Gonzalez-Pradas et al. (1994). The effects of CEC on P
adsorption are related not only to the clay mineral type but also
to the SOM content (Messmer et al., 2014). In the current
study, SOM was not the main factor of P adsorption (Figure 6)
as it primarily came from the returned stubble and root of
cotton, and its content is low (Supplementary Table S5).
Perhaps because of the influence of SOM, the effect of CEC
on P absorption was not significant in other soil layers, except
in the 10- to 20-cm soil layer.

Although the salinity was not the main factor affecting P
adsorption and desorption, a higher salinity of soil was found to
inhibit the P adsorption (Figure 6), which supports the previous
research results (Zhang and Huang, 2011; Flower et al., 2017).
Because of the periodic irrigation during the cotton growth
period, the salinity of surface soil was transported downward
with water, and the larger salinity of deep soil caused a clearer
inhibition of P adsorption. Furthermore, an increase in pH could
cause a slight inhibition of P adsorption in surface soil, and a
lower P adsorption capacity was observed because of the
competition for adsorption sites between OH− and HPO4

2− at
pH > 7.0 (Jalali and Matin, 2015; Bai et al., 2017). However, there
was no significant correlation in other soil layers, which may have
been related to the minimal change of pH or the interaction with
other factors.

CONCLUSION

A 4-year gradient P fertilizer application to a cotton field resulted
in varying degrees of P accumulation in soil compared with
unfertilized soil. A large proportion of P added as fertilizer was
adsorbed and remained predominantly in the Ca8-P form and
then may transform into the Ca2-P form, especially in the surface
layer. The accumulation and transformation of P in fertilized soil
altered the P adsorption–desorption capacity, and combined with
the cotton yield, the optimal P fertilizer application was
75–150 kg P2O5 ha−1 year−1. The soil P content (e.g., TP,
Olsen-P, Ca8-P, and Ca10-P), CaCO3, clay, and CEC were
regarded as the primary soil attributes affecting P dynamics in
soil. Further analysis is needed for improved insights into the
detailed P dynamics in the soil of cotton fields with further
corroboration by long-term experiments.
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