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Zhouqu has narrow terrain and steepmountains on both sides of the Bailong River. It is one
of the most serious landslide disaster areas in China due to the fracture development of
rock and complex geological conditions. To identify the slope active deformation areas
(SADAs) in the region accurately, the Distributed Scatter Interferometric Synthetic Aperture
Radar (DS-InSAR) technique was used based on the process of the sentinel ascending
and descending orbit data. Deformation results of the region from January 2019 to
February 2021 were obtained. A new method for automatically identifying SADA while
accounting for radar geometric distortion was established to quickly and efficiently identify
SADA from the large-scale deformation results in the region. The SADA identified by this
method can eliminate the region affected by geometric distortion. Based on the method,
62 SADAs including 12 in the upstream and 50 in the downstream of Zhouqu County were
identified. Compared with 12 typical landslide areas in the study area, 9 typical landslides
match with the detected SADA. The SADA is mainly concentrated in the section from the
downstream of Zhouqu County to Lianghekou, and statistical analysis showed that the
vegetation coverage and topographic slope angle are two main reasons for this difference.
At the same time, the analysis of the typical landslide time-series deformation reveals that
the slope deformation activity mainly takes place during the rainy season. It has high
correlation with precipitation. These results of the study provided an important reference
for geological disaster prevention in the Zhouqu region.

Keywords: DS-InSAR, slope active deformation areas, automatic identification, geometric distortion, temporal and
spatial characteristics

1 INTRODUCTION

The process and phenomenon of slope geotechnical body sliding downward with a certain
acceleration along the continuous penetrating damage surface is called landslide (Aleotti and
Chowdhury 1999). As the global population continues to grow and the interaction between man
and nature intensifies, the landslide has become one of the serious natural disasters threatening
human survival and development, and especially under the influence of heavy rainfall and
earthquake, the damage caused by landslide disaster is more serious (Schuster and Highland
2007; Zhang et al., 2020). The movement of landslides is sliding rather than tipping or rolling.
Slow landslide movements last longer, usually not catastrophically and suddenly, and do not
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terminate the movement immediately (Sun et al., 2016; Kavoura
et al., 2020; Novellino et al., 2021). Slope angle, height, rock
weathering, fissures, geological structure, hydrogeological
conditions, etc. are all factors that cause landslides (Dai et al.,
2002; Vilímek et al., 2021). Quickly identifying the deformation of
slope areas can provide help for landslide investigation and
interpretation. The Zhouqu region is a typical geological
disaster-prone area, and there have been many geological
disaster events in the history of the area. Several large
mudslide disasters occurred around the Zhouqu region in
1978, 1989, 1992, and 2010, which caused great loss of life
and property (Zhang et al., 2018; Dai et al., 2021). The
Xieliupo landslide, which was in the downstream of the
county, has continued to deform, and a large landslide occurred
in 1981, causing blockage of the river and inundation of villages
(Sun et al., 2015). The Suoertou landslide located in the upstream of
Zhouqu County, with its landslide volume of tens of millions
of cubic meters, has been in the creeping slip deformation stage
since the last century after the resurrection. On 8 August 2010, a
mudslide formed in the northern mountainous area of the Zhouqu
region due to heavy rainfall, causing most of the Zhouqu region to
be destroyed and death of 1,765 people, and on 12 July 2018, a
large-scale destabilization occurred in the landslide of Jiangdingya
in Nanyu Township, blocking the Bailong River to form a weir,
making the issue of landslide stability in the region once again
attract great attention from all walks of life (Wang 2013; Zhang
et al., 2016). Therefore, early identification of the SADA in the
region is important to protect the lives and properties of local
residents and infrastructure safety.

In the past decade, landslides in the Zhouqu region have
become a hot spot for geological hazard research. Numerous
scholars have conducted research from the perspectives of
landslide genesis, hazard evaluation, and detection methods.
Bai et al. (2012) evaluated the landslide susceptibility of the
Zhouqu area using GIS and logistic regression models. Cui
et al. (2013) studied the influence of complex topography and
landscape on the scale of landslide and debris flow disasters in the
Zhouqu region. Jiang et al. (2016) discussed the activity
mechanism of the Xieliupo landslide using GPS monitoring
data. Zhang et al. (2018) used InSAR technology to identify
the slow landslides in the Zhouqu region and analyzed the
patterns of the movements of typical landslides. Dai et al.
(2021) used InSAR technology to identify landslides around
Zhouqu county. InSAR is increasingly used by researchers in
landslide monitoring, and although the technology is limited in
sudden landslide monitoring, it has a promising future in the
fields of wide-area potential landslide identification and slow
landslide activity pattern research.

Traditional surface deformation monitoring techniques and
means, such as level measurement and GPS measurement, are
characterized by high monitoring accuracy and flexibility.
However, with the increasing requirements of deformation
monitoring, these point-based surface deformation monitoring
techniques and means have the shortcomings of large workload,
high cost, and low spatial sampling rate, which can hardly meet
the requirements of a long-time and large-scale surface
deformation monitoring. With the development of space

geodesy technology, Interferometric Synthetic Aperture Radar
(InSAR), which is an important method for deformation
monitoring, has gradually matured and is widely used in
deformation monitoring (Hilley et al., 2004; Zhao et al., 2012;
Wild et al., 2018). The Differential InSAR (D-InSAR) is
susceptible to the influence of atmospheric and spatio-
temporal decoherence factors. In order to overcome the
disadvantages of the D-InSAR technique, Ferretti et al. (2001)
proposed the Persistent Scatterer InSAR (PS-InSAR) algorithm in
2001, which can effectively weaken the effects of atmospheric
delay and spatio-temporal decoherence by detecting and
calculating the features (such as buildings, concrete dikes,
rocks, and artificial corner reflectors) that can maintain strong
and stable characteristics to radar waves in long time sequences.
Compared with persistent scatterers, the unstable phase of radar
echoes of concrete, fields, and other surface features targets limits
the PS-InSAR point target extraction and reduces the spatial
sampling rate of deformation information. To compensate for the
disadvantage of the PS-InSAR technique in the poorly coherent
region with small point density, Ferretti et al. (2011)proposed a
method to combine PS points and Distributed Scatter (DS) points
for solving, which is based on the feature that similar DS points
have the same statistical properties, and the density of points is
increased by screening DS points with specific thresholds to
obtain more detailed surface deformation information, which
is suitable for natural scenes such as landslides in mountainous
areas. InSAR technology can not only capture landslide signals on
a large scale from the spatial scale but also orbit the movement of
landslides in a longer period from the temporal scale, which has
unique monitoring advantages such as long time, large range, fast
acquisition, and accuracy.

In the high mountain canyon area, due to the characteristics of
synthetic aperture radar and side-view imaging, SAR images
inevitably show geometric distortion phenomena (including
shadow, layover, and foreshortening), resulting in a decrease
in the resolution, and the monitoring accuracy becomes low
or even cannot be monitored (Cigna et al., 2014; Liu et al., 2018;
Ren et al., 2021). Carrying out accurate qualitative and
quantitative geometric distortion analysis can help to correctly
judge the reliability of InSAR deformation monitoring results and
improve the accuracy of SADA identification.

Conventional ground survey methods to identify potential
landslides are time consuming and laborious, and numerous
studies have been conducted using automatic and semi-
automatic methods to identify Active Deformation Areas
(ADAs) and then determine whether the target is a landslide.
Barra et al. (2017) proposed a method to automatically identify
ADA based on PS-InSAR results and update the geohazard database
in real time; Luo et al. (2021) proposed a method for automatic
identification and evaluation of geological hazards based on spatial
and temporal characteristics of deformation. The automatic
identification method can efficiently and accurately identify and
separate potential landslide hazard areas from large-scale data.

In this study, the Sentinel-1A ascending and descending data
covering the study area are processed by a time-series InSAR
processingmethod that takes into account the DS points to obtain
the deformation results of the study area. Based on previous
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studies, an automatic identification method of SADA based on
InSAR deformation results and terrain visibility is proposed. The
method not only considers the spatial distribution of deformation
in the monitoring area but also takes into account the visibility of
SAR satellites in the monitoring area, which improves the
accuracy of potential SADA identification and judgment.
Based on the results of automatic identification and optical
images and other information, this study analyzes the spatial
and temporal characteristics of deformation of typical landslides
in the study area. This study will provide a reference for automatic
identification of deformation areas and active landslide
prevention in complex terrain.

2 Study Area
The Bailong River Basin is located in the transition zone
between the first and second terraces of China’s landforms
and is the intersection of three major geomorphic units: the
Loess Plateau, the Sichuan Basin, and the Qinghai–Tibet
Plateau. Affected by tectonic movements, concentrated
rainfall, and human activities, landslides and mudslides are
frequent and widespread in the basin, making it one of the

four major geological disaster-prone areas in China (Ma et al.,
2020). The Zhouqu region is located in the middle reaches of the
Bailong River Basin in southern Gansu. The Bailong River enters
from the northwest of the Zhouqu region and passes through the
city in the southeast. The terrain is high in the west and low in
the east. The elevation, slope, and aspect of the study area are
shown in Figure 1. From the figure, it can be seen that the region
has large mountains, deep ditches, and broken terrain, and the
relative height difference between the valley peaks reaches more
than 1,000 m, and the slope of the ditch is large, which is
conducive to the development of gravity geological phenomena
such as collapse (Zhang et al., 2016).

The average annual precipitation in the study area is 434 mm,
which is low, but because the rain falls mostly from May to
September and the rainfall is mostly in the form of continuous
rain and heavy rainfall, this concentrated rainfall provides
hydrodynamic conditions for the formation of landslide and
debris flow geological disasters (Zhang and Matsushima,
2016). At the same time, due to the loose geological structure
in the area, engineering activities such as slope reclamation, water
conservancy, highway construction, and hydroelectric power

FIGURE 1 | Location map of the study area. (A) Elevation map. (B) Slope angle map. (C) Aspect map.
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station construction directly destroy the rock structure of the
slope and reduce the stability of the slope, even directly lead to
landslides and landslides, coupled with the narrow terrain in the
mountainous area, the unreasonable piling or random dumping
of construction debris, etc., and deteriorate the already fragile
ecological environment. In addition, the vegetation cover of the
section from Zhouqu County to Lianghekou along the Bailong
River is poor, and it is mainly debris landslides, most of which are
rocky landslides re-activated, large in scale, mostly large and giant
landslides, and large in number, mainly medium and deep
landslides, which are the key areas of concern in this study.

3 DATA AND METHODS

3.1 Data
This study uses the 45 Sentinel-1A ascending images and
43 Sentinel-1A descending images covering the study area
from January 2019 to February 2021 for estimating the
deformation rate in the study area, and the data coverage is
shown in Figure 2. The external reference DEM is required for
terrain phase removal, geocoding, during the InSAR data
processing. The DEM is also required for terrain visibility
calculation, and the ALOS 12.5 m DEM provided by JAXA is

used in this study. The basic parameters of Sentinel-1A data used
are shown in Table 1.

3.2 Data Process
3.2.1 DS-InSAR
Compared with other monitoring targets, the surface of the slope
is mostly covered with natural features and fewer artificial
structures. PS-InSAR mostly monitors man-made feature
targets, which is suitable for urban ground settlement
monitoring, and it is difficult to obtain detailed and accurate
deformation information for the monitoring of distributed
scatterer targets such as grass and bare ground with fewer
points extracted. Because the DS-InSAR method can improve
the distribution density of points and obtain richer and more
reliable deformation information for targets such as landslides,
we use this method.

The DS-InSAR method to obtain the deformation mainly
consists of the following steps:

(1) Selecting a master image: the temporal and spatial baselines
between all image pairs are calculated, a temporal and spatial
baseline distribution map is generated, and an image with the
centered temporal and spatial baseline is selected as the
master image.

FIGURE 2 | The spatial coverage of the images used in the study.

TABLE 1 | SAR data parameters.

Satellite Direction Time Angle of
incidence

Heading Resolution

Sentinel-1A Ascending 20190104–20210210 36.26° −10.44° 5m*20m
Sentinel-1A Descending 20190104–20210210 39.15° −169.85° 5m*20m
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(2) Image coregistration: the SAR image is coregistered with the
master image. The coregistration accuracy is greater than
0.001 pixels.

(3) Calculating the interferogram phase: all the coregistered
images are combined with the master image in pairs
according to the time series. The interferometric phase is
calculated pixel by pixel to generate a time-series
interferogram set.

(4) Selecting PS and DS: the selection of the DS consists of two
main steps: homogeneous time dimensional filtering and
phase optimization estimation. They are described in
detail in the following.

(5) The flat earth phase and topographic phase are removed.
(6) From the differential interferometric phase, the spatio-

temporal deformation is estimated and the time-series
deformation phase of each point target is obtained.

(7) Deformation calculation: based on the radar wavelength
parameters, the unwrapping phase is converted into
millimeter-scale deformation variables in the line-of-sight
direction.

Two key steps of the DS-InSAR technique are homogeneous
pixel identification and phase reconstruction, respectively (Goel
and Adam 2014; Fornaro et al., 2015; Cao et al., 2016). Distributed
targets are usually represented as neighboring pixels with
homogeneous scattering characteristics and obey the same
statistical distribution on the time-series SAR magnitude
images. Therefore, spatial adaptive filtering of the
interferometric phase is generally performed first, and then, a
statistical test is used to determine statistically homogeneous pixels
for each pixel to extract distributed targets (Jiang et al., 2015). Since
the spatial adaptive filtering causes the interferometric phases to
not strictly satisfy the phase consistency, it is necessary to adopt a
certain phase optimization algorithm to construct a set of single
master image optimized phase values under the condition of phase
consistency and obtain a set of best-fit phases after the adaptive
multi-look process to minimize the effect of the decoherence
phenomenon of the distributed targets.

In this study, spatial adaptive filtering based on the KS hypothesis
testing method is used to identify homogeneous pixels, and phase
triangulation is used to estimate the optimal phase. The KS

FIGURE 3 | DS-InSAR processing chain used in the study.
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hypothesis test is based on the cumulative distribution function and
is used as a method to test whether a distribution conforms to a
certain theoretical distribution or to compare whether two empirical
distributions are significantly different from each other. In the time-
series SAR image set, the backscattered intensity information of
homogeneous pixels is similar in the time dimension, and when the
test statistic of the intensity information in the time dimension of
two pixels is less than the critical value at the significant level, the two
pixels are considered to be homogeneous pixels. The DS-InSAR
processing flow chart is shown in Figure 3.

3.2.2 Decomposition of Deformation Along the Aspect
In mountainous areas with complex topography, the surface
deformation information is complicated, and it is difficult to
obtain accurate surface deformation using single orbit data,
especially for slope areas, where the deformation has a high
correlation with slope angle and aspect. Therefore, this study
adopts a combination of ascending and descending orbits and
external DEM to obtain the deformation information along the
aspect in the Nanyu landslide, and the results can more truly

reflect the motion of unstable slopes. The relationship between
the line-of-sight (LOS) deformation (Dlos) and the three-
dimensional motion can be shown as follows (Zhao et al., 2016):

Dlos � Du cos θ −Dn sin θ cos(α − 3
2
π) −De sin θ sin(α − 3

2
π),
(1)

where θ and α represent the radar incidence angle and satellite
heading angle, Dn, De, and Du represent the north–south
direction deformation, the east–west direction deformation,
and the vertical direction deformation, respectively.

Since the horizontal motion of a slope generally points along
the aspect, it can be assumed that the deformation of a slope can
be decomposed into two directions, Dhor and Du, and then, the
functional relationship for solving the joint ascending and
descending can be expressed as follows:

(Du

Dhor
) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θA,−sin θA cos(β − αA + 3
2
π)

cos θD,−sin θD cos(β − αD + 3
2
π)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(DA
los

DD
los

), (2)

where θA and θD are the radar incidence angles from the ascending
and descending orbits, respectively; αA and αD are the satellite
heading angles from the ascending and descending orbits,
respectively; and β represents the aspect of the point. The final
deformation along the aspect of the slope (Df) can be expressed as

Df �
�������������
(Dhor)2 + (Du)2

√
. (3)

3.2.3 Automatic Identification Method of SADA
The method of automatic identification SADA is divided into
four steps:

(1) The DS-InSAR deformation results are read in a shapefile
format. The data are spatially filtered by sliding window point

FIGURE 4 | Geometric distortion diagram of radar side-view imaging.
When illuminated towards the satellite, foreshortening (C–D) occurs when the
slope angle is less than or equal to, and layover (B–A) occurs when the slope
angle is greater than. When backward facing the satellite, shadowing
(G–H) occurs when the slope angle is greater.

FIGURE 5 | Average deformation velocities in the LOS direction are derived from (A) ascending images and (B) descending images. The black boundary is the
extent of each SADA.
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by point to remove outliers and isolated points from the data.
The radius of the sliding window is set to two times the spatial
resolution of the data, and 40 m is used. Z-score
normalization is used to determine the outliers, and the
outliers are determined when the normalized value of the
deformation rate is greater than 3 or less than −3. If the
number of adjacent points in the sliding window is less than
one, it is considered as an isolated point.

(2) The absolute value of the deformation rate threshold is set
to filter out the obvious deformation points. All
deformation points are constructed into Delaunay
triangulation irregular net, and edges larger than the
radius of clustering are eliminated to form numerous
isolated triangulation irregular net clusters. A recursive
approach is used to cluster the deformation points and
generate polygonal active deformation areas. Combined
with the experience of previous studies, the absolute value
of the rate threshold adopted is 15 mm/a, and the
clustering radius is set to three times the image
resolution, i.e., 60 m.

(3) Combined with the DEM data, the slope of each ADA is
calculated, and the ADA with a slope greater than 10° is
considered as SADA.

(4) The obtained SADA is overlaid with the terrain visibility
map, and unreliable areas such as overlay and shadow areas
are removed to obtain the final accurate SADA.

The abovementioned process involves the following main
parameters:

(1) Denoising radius: this parameter is mainly used to remove
noise points; when the number of PS + DS points in the
radius of influence of a point is small, the point is deleted.

(2) Number of neighboring points: it is determined whether PS
or DS points are isolated points; when the number in the
influence radius is less than this value, they are isolated
points.

(3) Rate threshold: this parameter is used to determine the
points where deformation occurs. Unlike other studies
where the rate threshold is determined based on the
standard deviation of the rate, this method takes into
account the monitoring accuracy of the conventional
time-series InSAR method and the flexibility of the actual
operation process and directly gives the upper and lower
limits of the rate threshold, automatically extracts the
deformation points with a certain step size several times,
and generates multiple ADA results for judging potential
landslides.

(4) Clustering radius: points within this radius are considered as
the same deformation area.

(5) Minimum number of PS + DS points within the ADA: the
number of PS + DS points within each ADA must be greater
than this value; otherwise, it is not considered as an ADA.

FIGURE 6 | Visibility results of sentinel-1A from the (A) ascending orbit and (B) descending orbit.

TABLE 2 | SAR data observation information ratio.

Type Ascending (%) Descending (%) Ascending and descending

Shadow 0.2 0.4 0
Parallel Illumination 0.1 0.1 0
Layover 11.8 9 0.2%
Low sensitivity 14.1 15.0 0.7%
Sensitivity 71.2 72.7 96.4%
Flat area 2.6 2.6 2.7%
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(6) Slope angle: the slope angle of the ADA is greater than this
threshold value, and then, it is considered as a SADA.

3.3 Terrain Visibility
The distortion on the SAR images is mainly of the types of layover,
shadow, and foreshortening, depending on the geometric
parameters of the radar satellite acquisition data, the angle of the

LOS direction, and the slope angle and aspect of the terrain. Figure 4
shows the geometric distortion of radar side view imaging. When
illuminated towards the satellite, foreshortening (c–d) occurs when
the slope angle is less than or equal to θ, and layover (b–a) occurs
when the slope angle is greater than θ. When backward facing the
satellite, shadowing (g–h) occurs when the slope angle is greater than
90 − α (Dun et al., 2021).

FIGURE 7 | The distribution map of unreliable SADA. The image shows one SADA in the geometric distortion area from ascending data, and three SADA in the
geometric distortion area from descending data.

FIGURE 8 | SADA and landslide maps. (A) Final result of the SADA distribute and (B) typical landslide distribute.
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4 RESULTS AND ANALYSIS

4.1 Deformation Identification Results
The LOS direction surface deformation results for the study area
obtained using the DS-InSARmethod are shown in Figure 5. The
annual average deformation rate in the LOS direction of the
ascending orbit ranges from −79 to 47 mm/a, and the absolute
value of the large deformation rate exceeds 20 mm/a. The annual

average deformation rate in the LOS direction of the descending
orbit ranges from −66–79 mm/a. The larger deformation areas
obtained from the descending orbit coincide with the ascending
orbit, which are mainly distributed on both sides of the gully from
Zhouqu County to Lianghekou.

Based on the results of surface deformation in the study area,
combined with previous research results and experience, the
SADA was detected with the absolute value of deformation

FIGURE 9 | Deformation from the descending orbit data.

FIGURE 10 | The deformation along the aspect.
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rate greater than 15 mm/a as the threshold value. Through the
automatic identification program, 40 SADAwere identified in the
ascending orbit data, covering an area of about 5.37 km2, and 48
SADA were identified in the descending orbit data, covering an
area of about 6.32 km2. Comparing the results of the ascending
and descending orbit identification, a total of 16 SADA were
found to overlap, but the specific extent was not exactly the same,
and the results of the SADA identification for the ascending and
descending orbits are shown in Figure 5.

4.2 Identifying the Results of SADA With
Terrain Visibility
Due to the special of radar side view imaging, geometric
distortion such as layover and shadow may be produced
according to the angle of incidence and different terrain
features. In mountainous areas with large topographic relief,
the aspect and slope angle characteristics are decisive factors
for generating geometric distortion, and the topography needs to
be fully considered first. In this study area, there are several

FIGURE 11 | Motion direction map of Nanyu landslide.

FIGURE 12 | Landslide body division map.
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geometric distortions on SAR images along the undulating sides
of the river. In order to improve the accuracy of identification, the
relationship between the location of SADA and geometric
distortion must be considered comprehensively, the areas that
may be inaccurate are eliminated, and the results are refined.
Based on the incidence angle, heading angle, and external DEM
data of the satellite, the terrain visibility results of the ascending
and descending orbit SAR satellites in the study area were
obtained, and the results are shown in Figure 6. The
percentage of each visibility type for ascending and descending
orbits were counted, and the results are shown in Table 2. From
the results, it can be seen that there are many geometric distortion
areas in the single orbit data, among which the percentage of
layover and shadow areas in the ascending orbit data is 12.0%,
and the percentage of stacked and shadowed areas in the
descending orbit data is 9.4%. For most of the layover and
shadow areas, the ascending and descending orbit data can
complement each other, and after the combination of
ascending and descending orbit, the area of stacked and
shadowed areas is only 0.2%.

As shown in Figure 7, based on the aboveobtained visibility
results, geometric distortion analysis and verification were
performed on the SADA identified from this study area,
among which one SADA on the ascending orbit was located
in the geometric distortion area, and three SADAs on the
descending orbit were located in the geometric distortion area.
It should be noted that the purpose of our automatic extraction
method is to obtain the deformation area more efficiently, and the
deformation area obtained after eliminating the geometric
distortion area is the result we like to obtain, and the
abovementioned process is automatic.

To count the total number identified, optical images are
needed to assist. For the same landslide, different parts of the
deformation may be identified in the ascending and descending
results, so it is necessary to combine the optical images to
determine whether the identified deformation areas are
located on the same slope to avoid double counting. After

combining the integrated identify SADA with the
GoogleEarth long time-series optical images and eliminating
the unreliable areas located in geometric distortion, the final
statistics obtained a total of 62 SADA found in this study area,
and the study area was divided into two sections with the
Zhouqu County as the boundary, of which there were 10
upstream and 52 downstream, and the final result of the
SADA is shown in Figure 8A. By comparing with 12 typical
landslides in the study area, 9 typical landslides match with the
detected SADA, which indicates the high accuracy of this
method. In addition, Sun et al. (2016) used InSAR to identify
four typical deformation areas, all of which are located in the
identified 62 SADAs. Dai et al. (2021) used SBAS-InSAR to
detect 23 active landslides around Zhouqu County, which are
highly consistent with the SADA obtained in this paper.

4.3 Nanyu Landslide Deformation Analysis
The Nanyu landslide is located on a large paleo-landslide
body which includes two large landslides: the Nanyu
landslide and the Jiangdingya landslide. Due to many
repeated activities, the surface of the Nanyu landslide is
undulating and part of the area has been artificially
transformed into an arable land. The trailing edge of the
landslide is steep, forming a chert ridge. The longitudinal
gully of the landslide is developed, and the deep gully of
erosion on the east and west sides is the boundary of the
landslide (Zhang et al., 2018). The landslide body has a loose
structure, and the main components are gravel and loess.

4.3.1 Spatial Characteristics of Deformation
As shown in Figure 9 and Figure 10, the deformation of the
whole Nanyu landslide obtained from the descending orbit data
and the deformation along the aspect obtained from the
decomposition of the ascending and descending orbit are
shown, respectively. From the monitoring results, it can be
seen that there is obvious deformation of the Nanyu landslide
located on the northwest side of the landslide body. From the
aspect deformation rate diagram, the deformation rate of the top
of the landslide is more than 70 mm/a, and the maximum can
reach 102 mm/a, while the deformation rate of the middle and
lower part is about 20 mm/a~40 mm/a. The rate of the trailing
edge of the landslide is much larger than the front edge, which
indicates that the movement mode of the landslide is pushing
type. The direction of movement of each point of the Nanyu
landslide is shown in Figure 11. The landslide belongs to the
overall decline, and the bottom of the slope slides into the river
after the rapid decline, so there is no obvious siltation
phenomenon on the slope.

4.3.2 Temporal Characteristics of the Deformation
As shown in Figure 12, to study the temporal characteristics of
landslide deformation, the landslide body was divided into three
parts, front, middle, and back, and the average deformation of
each part was calculated separately. The calculation was carried
out only for the points where the deformation rate was greater
than 15 mm/a. The cumulative deformation curves of the three
parts are shown in Figure 13. The average deformation rate of the

FIGURE 13 | Time-series deformation and precipitation of three parts.
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front part is −21 mm/a, and the cumulative deformation is
−44 mm; the average deformation rate of the middle part is
−30 mm/a, and the cumulative deformation is −64 mm; the
average deformation rate of the back part is −48 mm/a, and
the cumulative deformation is −96 mm. During the monitoring
time period, the deformation trend of the three parts is more
consistent, and all of them show the deformation away from the
satellite direction.

As shown in Figure 13, the landslide deformation did not
accelerate immediately with the increase in precipitation at
the beginning of the rainy season in June each year but began
to accelerate when the precipitation reached its peak in

August. This indicates that the accelerated deformation of
the landslide is related to the high intensity of intensive
precipitation. When the rainfall is not enough to make the
landslide unstable, the accelerated deformation of the
landslide body lags behind the rainfall, and the accelerated
deformation of the landslide body continues after each cycle
of rainfall. This phenomenon is highly consistent with the
study results of Yang et al. (2014) and Ma et al. (2020).
Significantly, the acceleration of landslide deformation in
2019 is less than in 2020, which correlates well with the
magnitude of the rainfall peak, suggesting that more
intense precipitation triggers faster deformation.

FIGURE 14 | Factors influencing landslides. (A) Vegetation coverage and fault distribution map of study area, (B) relative frequency distributions of slope angle, (C)
relative frequency distributions of vegetation coverage.
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5 DISCUSSION

Landslides occur as a result of coupled internal and external
dynamics. Fault distribution, slope, vegetation coverage,
precipitation, and human activities can all affect landslides.

5.1 Active Faults and Slope
Fault is the basic factor controlling the formation and
development of landslides. Fault activity causes slope
fragmentation and changes in the regional tectonic stress field
so that landslides are distributed along major active fault zones.
As shown in Figure 14A, the spatial distribution of the identified
SADA is highly correlated with the distribution of active faults,
which indicates that faults are one of the important factors
affecting landslides in the area. As shown in Figure 14B, the
slope of the SADA and the whole study area were counted
separately, and the maximum frequency slope of the SADA
area is 15°, which is smaller than the maximum frequency
slope of the whole study area of 38°, which indicates that the
landslides in this area are mostly developed on smaller slopes,
which is consistent with the study of Zhang et al. (2018). The
focus should be on the gentle slopes within the influence of faults
in future disaster control.

5.2 Vegetation Coverage
As an important factor in the surface evolution, vegetation is
constantly influencing the surrounding soil evolution,
hydrological evolution, and geomorphological evolution, which
are all closely related to the formation of landslides. As shown in
Figure 14A and Figure 14C, the vegetation coverage of the study
area was calculated based on Landsat8 images. The vegetation
coverage of SADA and the whole study area were counted
separately, the average vegetation coverage of SADA was 0.42,
and the average vegetation coverage of the whole study area was
0.66. The distribution of SADA in this study area was negatively
related to the vegetation coverage, and the higher the vegetation
coverage in this study area, the less likely landslides occurred.

5.3 Precipitation
Continuous and concentrated rainfall plays an important role in
inducing landslide damage (Qiu et al., 2020). The spatial and
temporal distribution of precipitation in the study area is uneven.
As shown in Figure 13, 70% of precipitation is distributed from
June to September, with more localized and concentrated heavy
precipitation. Higher precipitation was seen in the southeastern
part of the study area than in the northwestern part (Li et al.,
2015). This precipitation characteristic leads to landslide
susceptibility in the southeastern part of the study area.

5.4 Human Activities
The population in this study area is distributed along the river
valley, and there is very little land available for development.
Therefore, human activities that are not conducive to slope
stability, such as excavating the foot of the slope and filling
the ditch to create land, occur frequently. Figure 15 shows the
presence of numerous traces of human activities on the Nanayu
landslide. There are trails and roads on the landslide, which
destroy the slope structure and reduce the stability of the
landslide. In addition, most of the transportation routes were
built along the river valleys, and human engineering activities
were particularly intense (Ma et al., 2020).

In this study, the DS-InSAR technology is used to process SAR
data, and the results monitored by different orbit data are slightly
different, which is due to the fact that SAR satellites are side-view
imaging systems, and the use of ascending and descending orbit
data can play a complementary effect. Since the SAR satellite flies
along the north–south direction, it is not sensitive to the
deformation in the north–south direction for either the
ascending or descending orbit data, so the subsequent
introduction of Pixel Offset Tracking or Multiple Aperture
InSAR methods can be considered to assist in the deformation
area identification. Since C-band sentinel data are used in this
study, compared with L-band SAR data, the penetration ability of
this band is weaker for vegetation, which may lead to difficulties
in obtaining valid and reliable observations on slopes partially
covered with vegetation. Otherwise, for areas with more
vegetation cover, it is necessary to use high-resolution optical
images, stratigraphic lithology and other data, and ground
investigation to make interpretations and judgments.

The proposed identification method relies on the validity of
InSAR monitoring results, and for low-coherence regions,
accurate InSAR monitoring results cannot be obtained, and
the SADA cannot be identified by this method. In addition, it
is worth noting that the accuracy of terrain visibility depends on
the accuracy of DEM, which is also the limitation of the method.

6 CONCLUSION

Based on the DS-InSAR deformation monitoring results, this
study proposes a method for automatic identification of SADA.
Compared with previous studies, the method can identify SADA
from large-scale deformation data efficiently and rapidly; also, the
accuracy of identification can be improved by considering the

FIGURE 15 | Optical image of Nanyu landslide.
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influence of SAR image geometric distortion in the high
mountain canyon area.

The method was used to identify the areas on both sides of the
Bailong River in the Zhouqu region. The study showed that
landslide hazard detection using single orbit radar satellite data
could lead to the leakage of landslide hazards easily, and a total of
62 SADA were identified in the study area by integrating the
deformation results obtained from ascending and descending
orbit images and SAR visibility analysis results. It is proven that
the results of deformation area identification have high accuracy.

The deformation of theNanayu landslide began to accelerate when
the precipitation reached its peak and lasted for a period of time. The
deformation of this landslide has a high correlation with rainfall.
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