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Lakes are currently responsible for a significant amount of total natural

methane emission. Microbial oxidation of methane plays a central role in

Arctic carbon cycling, potentially reducing methane emissions from lakes,

though little is known about methane cycling in the water column of Arctic

lakes. We previously detected surprisingly large enrichments of heavy

carbon and hydrogen isotopes of methane in three small lakes in

Greenland suggesting unusually efficient methanotrophic communities in

these Arctic lakes. Using stable isotope and 16S rRNA gene sequencing we

determined carbon and hydrogen isotopes and microbial community

composition down the water column of Teardrop lake, under open-water

conditions. We found that isotopic values of methane in Teardrop lake were

again highly enriched 13C and 2H at 4 m depth with −13.2‰ and −27.1‰

values for carbon and hydrogen isotopes, respectively. Methane

concentrations slightly increased at the depth interval with isotope

enrichment, not typical of classic methanotrophy. Consistent with

isotopic enrichment of the heavy isotopes we detected the highest

relative abundance of putative methanotrophs, in particular

Methylovulum at 4 m. The highest relative abundance of putative

methanogens was detected at 3 m as well as at 5 m. At the same depth

interval, temperature and oxidation reduction potential also increase,

supporting increased microbial activity within the water column. Based

on geochemical and microbial observations, we suggest that the

methane cycling in Teardrop lake is decoupled from a traditional depth

dependent model where the dominant source of methane is in the anoxic

sediments. Instead, methane in the water column is likely from a

combination of anoxic sediment, littoral transport and oxic

methanogenesis in the mid-water column, and recycling of carbon within

the water column is leading to extreme isotope enrichments. Thus,

understanding linkages between depth-dependent microbial dynamics

and methane biogeochemistry are necessary to constrain the sensitivity

of the methane cycle to future climate change.
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1 Introduction

Lakes are currently responsible for 6%–16% of total natural

emissions of methane (Bastviken et al., 2004; Rosentreter et al.,

2021), an important greenhouse gas, with about 25% greater

radiative forcing than CO2 on a per molecule basis over a period

of 100 years (Whalen, 2005; Etminan et al., 2016). As the climate

continues to warm, methane production and emissions from

freshwater environments are expected to increase (Tan and

Zhuang, 2015). In the Arctic, small lakes (< 10 km2) represent

approximately half of the total area of surface water

environments (Abnizova et al., 2012) and emit more methane

per unit area than larger lakes (Downing, 2010). Microbial

production of methane by methanogens is dependent upon

anoxia, temperature and the amount and quality of organic

substrates (Liikanen et al., 2003; Kankaala et al., 2006; Duc

et al., 2010; Borrel et al., 2011). Microbial oxidation of

methane plays a central role in carbon cycling, potentially

reducing emissions of methane from lakes where warming

climate has increased biogenic methane production. In

northern lakes, up to 88% of the methane produced is

oxidized by methanotrophs (Lopez Bellido et al., 2009),

lowering concentrations of methane in surface waters, and

thereby attenuating the positive feedback potential from

biogenic methane.

In lakes, methane is primarily produced in anoxic sediments

by methanogenic archaea. A depth-dependent model for

methane cycling assumes methane is predominantly produced

within anoxic sediments and is exported into the water column

by ebullition or diffusion. However, recent studies suggest that

methane is also produced in oxic conditions leading to an

oversaturation in oxic waters (Keppler et al., 2006; Tang et al.,

2016; Günthel et al., 2019; Bizic et al., 2020). For example, in Lake

Cromwell, oxic methane production accounted for 20% of

methane emissions (Bogard et al., 2014). Additionally,

methane has the potential to be introduced into the lake

water column by lateral transport from peripheral water

bodies, littoral sediments and in situ biological production in

addition to profundal sediments (Günthel et al., 2019).

Therefore, it is possible then to have cyclic production and

consumption of methane happening simultaneously within the

water column.

The fraction of in-lake methane production that is oxidized

before emission varies greatly from negligible to nearly complete.

Methane oxidation rates in aquatic systems are likely dependent on a

suite of environmental variables, including methane concentration,

dissolved O2 concentration, water temperature and light. Incubation

experiments suggest that methane concentration is often a major

factor affecting methane oxidation rate (Loften et al., 2014; Shelley

et al., 2014). However, methanotrophs can also adapt to lowmethane

concentrations (Mau et al., 2013). In many lakes, the highest

methanotrophic activity is associated with depths where dissolved

O2 concentrations are very low, suggesting partial inhibition of

methanotrophic activity at high O2 concentrations (Kankaala

et al., 2013; Blees et al., 2014; Martinez-Cruz et al., 2015). Several

studies have shown no effect of temperature on methane oxidation

rate; however, others suggest that methane oxidation is temperature

dependent (Duc et al., 2010; Shelley et al., 2014). Additionally, light

has been suggested to inhibit methane oxidation in the euphotic zone

(Murase and Sugimoto, 2005), potentially leading to increased

methane emissions. Recent studies found a decline of methane

emissions with increasing dissolved organic carbon concentration

and lake color, potentially the result of increased methanotrophic

activity under low light (Rasilo et al., 2015). However, in shallow lakes

with light penetration below the oxycline, increased methane

oxidation can occur due to coupling with in situ production of

oxygen by photosynthesis, known as cryptic photosynthetic oxygen

production (Milucka et al., 2015; Oswald et al., 2015, 2016; Brand

et al., 2016). The localized photosynthetic oxygen production might

in turn support methanotrophy that suppresses methane emissions.

In freshwater environments, methane oxidation is carried out by

type I and type II methanotrophs, primarily by aerobic methane

oxidizing bacteria, such as Methylobacter, Methylosoma,

Methylovulum, Methylosoma, Methylosarcina and

Methylomicrobium (He et al., 2012; Oswald et al., 2017).

Methanotrophs have been observed throughout the water column

and sediments and their abundance is influenced by methane

concentration, temperature, depth, dissolved oxygen, dissolved

phosphate concentration and season. Abundance of

methanotrophs generally increases with depth and relative

abundance is higher in the winter compared to the summer

(Samad and Bertilsson, 2017). While microbial communities in

aquatic polar environments are receiving increased interest

(Comeau et al., 2012; Stoeva et al., 2014; Vick-Majors et al., 2014;

Osudar et al., 2016; Ruuskaanen et al., 2018; Bomberg et al., 2019;

Butler et al., 2019; Vigneron et al., 2019; Møller et al., 2020; Somers

et al., 2020; Emerson et al., 2021), most studies focusing on the role of

microbial communities in methane cycling are based on lake

sediments (He et al., 2012, 2022; Martinez-Cruz et al., 2017;

Colby et al., 2020; Møller et al., 2020; Zandt et al., 2020). For

example, carbon acquisition in lake sediments is driven

predominantly by Methylobacter, Methylosoma, Methylosoma (He

et al., 2012), andMethylobacter has been shown to acquire carbon in

anaerobic sediments (Martinez-Cruz et al., 2017). Microbial methane

cycling in the water column is less well understood.

Isotopic signatures of methane are useful indicators of

microbial methane processes, including microbial methane

oxidation. During anoxic biogenic methanogenesis a kinetic

isotope effect yields methane that is depleted in 13C and 2H

relative to precursor substrates (Whiticar et al., 1986; Balabane
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et al., 1987; Valentine et al., 2004). However, oxic methane

production, such as methyl-phosphonate demethylation, has

been shown to have minimal fractionation (Taenzer et al.,

2020), whereas isotopic fractionation from other oxic methane

production pathways have not been reported (Bizic et al., 2020;

Wang et al., 2021). Methanotrophy exhibits a kinetic isotope

effect that leaves the residual methane pool isotopically enriched

in 13C and 2H (Coleman et al., 1981; Happell et al., 1994;

Templeton et al., 2006; Kinnaman et al., 2007). The isotope

discrimination during oxidation can yield residual methane pools

that are enriched by < 1‰–30‰ for δ13CCH4 and 3‰–200‰ for

δ2HCH4 (Coleman et al., 1981; Happela et al., 1994; Bastviken

et al., 2002).

Isotopic measurements of C and H of dissolved methane in

small Greenlandic lakes under both ice-free and ice-covered

conditions from 2013–2014 revealed surprisingly large ranges

for both δ13C and δ2H. Under open-water conditions, δ13C
ranged from −68.7‰ to +7.4‰ and δ2H from −370‰ to

+250‰, while under ice covered conditions, δ13C ranged

from −72.2‰ to −33.2‰ and δ2H from -388‰ to -29‰. The

most enriched 13C and 2H isotopic values were observed in a

single lake, Teardrop lake, under open-water conditions,

coinciding with a metalimnetic oxygen minimum at 4 m

depth in summer 2013. The enrichment in 13C and 2H was

associated with low methane concentrations, as is characteristic

with consumption of methane bymicrobial oxidation of methane

(Coleman et al., 1981; Happell et al., 1994; Templeton et al., 2006;

Kinnaman et al., 2007). Isotope excursions have been

demonstrated in other Arctic lakes at mid-water column

depths, with carbon isotope values as high as +1.4‰ reported

in shallow Canadian lakes (Thottathil et al., 2018, 2019).

Similarly, in these lakes, the most enriched carbon isotope

values of methane were associated with low methane

concentrations near the oxycline, supporting the potential of

highly efficient methanotrophic communities at intermediate

water depth.

In order to study water column methane oxidation in greater

detail, we returned to Teardrop lake in summer 2015 and

expanded the scope of the investigation to include more

detailed water column chemistry, stable isotopic signatures

of dissolved methane, and a characterization of the microbial

communities with depth. We have had success in identifying

spatial agreement between methane, sulfur and nitrogen

gradients and changes in the microbial community using

amplicon-based sequencing targeting the 16S rRNA genes

and aqueous geochemistry in these lakes (Schütte et al.,

2016). Our objectives were to answer the following

questions: 1) is extreme isotopic enrichment 13C and 2H

of dissolved methane observed in subsequent years, or was

the phenomenon in 2013 a unique occurrence? And 2) if

enrichment in 13C and 2H is observed, what microbial

communities are present? Could microbial community

composition explain the isotope enrichment in 13C and 2H

of dissolved methane? Climate change has the potential to

increase methane emissions from freshwater systems, which

would in turn induce further climate change, resulting in a

positive climate feedback. Understanding linkages between

microbial communities and methane biogeochemistry are

necessary to constrain the sensitivity of the methane cycle to

future climate predictions.

2 Materials and methods

2.1 Site description

The ice-free margin of southwest Greenland is

characterized by a low continental climate and is strongly

influenced by the high-pressure system over the Greenland

Ice Sheet (Bennike, 2000). In Kangerlussuaq, the average

annual temperature is −5°C from 2008 to present, the

maximum temperature measured was 15.4°C in June of

2018, and the minimum temperature measured

was −44.9°C in February of 2015. The average rainfall is

243 mm. Teardrop lake (informal name) is located ~5 km

from the terminal moraine of the Russell Glacier (Figure 1).

It is a relatively small lake, with a surface area of 0.97 ha,

volume of 34,000 m3 and maximum depth of 5.25 m.

Teardrop is a moderately brackish, mesotrophic lake, with

mean conductivity of 2,740 μS cm−1and mean dissolved

organic carbon of 97.6 mg L−1 (Cadieux et al., 2016).

Under open-water conditions in 2013, the pH was alkaline

and buffered, ranging from 8.98 to 9.3. Currently, Teardrop

lake is a hydrologically closed basin, with no direct inflow or

outflow channel. Due to continuous permafrost,

groundwater seepage is assumed to be limited. While

many lakes in the Kangerlussuaq region are cold

monomictic (Anderson et al., 2001), Teardrop lake is a

dimictic lake, exhibiting ice cover from late October to

early June (Cadieux et al., 2016).

2.2 Sampling and in situ analysis

Water samples and measurements were taken at two

depth profiles located in the deepest basin of Teardrop

lake (Figure 1C) in August of 2015. Profiles were similar

between the two locations, noted East and West

(Supplementary Figures S1,S2). Herein, we will present

findings from the East sampling station located in the

center of the basin at the maximum depth point. Dissolved

oxygen (D. O., mg L−1), pH, specific conductivity (μS cm−1)

and oxidation reduction potential (ORP, mV) were measured

using a YSI 6039 Data Sonde (Yellow Springs Inc., Yellow

Springs, OH, United States) deployed at 0.5 m depth intervals

down to maximum depth. Photosynthetically active radiation
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(PAR) was measured using a Li-Cor LI193 Spherical

Quantum Sensor. Water samples were taken with a

submersible pump at 0.5 m–1 m intervals throughout the

water column at each location, with the exception for

methane, where only one sample was obtained from the

well-mixed epilimnion and the remainder of the water

column was sampled at 0.5 m intervals.

For methane, 1 L of water at each interval was immediately

stripped in the field using a headspace-equilibrium technique to

extract methane gas from water (Westendorp, 1985). Headspace

gas was displaced into a Cali-5-Bond bag using surficial water

(Cadieux et al., 2016, 2017). For chlorophyll, 250 ml of water was

filtered onto a 0.7 nm glass filter, and the filter was transferred to

an amber bottle and remained frozen until analysis. Additionally,

1 L of water was collected into sterile HDPE Nalgene bottles and

filtered through 0.22 μm Isopore Membrane Filters (Millipore

SiGMa, Burlington, MA) for microbial analysis. Filters were

frozen until analysis.

2.3 Chemical analysis

Chlorophyll-a concentrations were determined using

acetone pigment extraction in aqueous acetone solution

and spectrophotometric determination of chlorophyll a

with pheophytin correction at Indiana University (APHA,

2012). Concentrations of dissolved aqueous methane were

measured on a Gas Chromatography Flame Ionization

Detector (GC-FID) at Indiana University. Stable C and H

isotopes of methane were analyzed using continuous-flow gas

chromatography-oxidation/pyrolysis isotope ratio mass

spectrometry (GC-ox/pyr-IRMS) with a laboratory-built gas

pre-concentrator interfaced with a ThermoFinnigan GCC and

Delta Plus XP IRMS at the Stable Isotope Research Facility

(SIRF) at Indiana University in Bloomington Indiana

(Cadieux et al., 2016). Carbon isotope values are referenced

to Vienna Pee Dee Belemnite standard (VPDB) and hydrogen

isotope values are referenced to Vienna Standard Mean Ocean

FIGURE 1
Figure 1: Maps of (A) Greenland showing Kangerlussuaq; (B) zoom in of Kangerlussuaq region. Red box highlights Teardrop lake; (C) Teardrop
lake bathymetry (contour interval = 1 m) showing sample locations. White star shows East sampling location (discussed in paper); black star shows
West sampling location. Modifed from Cadieux et al., 2016.
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Water (VSMOW) by comparison with pure methane where

the isotopic composition has been measured by off-line

combustion. Instrument uncertainty of δ13C and δ2H from

the GC-C-IRMS was calculated as 0.4‰ and 10‰

respectively, which is one standard deviation for repeated

measurements of the gas standards analyzed during

sample runs.

2.4 Microbial community composition

Genomic DNA was extracted using the PowerWater

DNA isolation kit (MOBIO laboratories, Carlsbard, CA).

Amplification of the 16S rRNA genes was performed using

the forward primer 515f and a barcoded reverse primer 806r

(Caporaso et al., 2012, http://www.earthmicrobiome.org).

Each reaction was 25 μl in volume with 5 μl 5′ HF Buffer

(New England BioLabs), 1.5 μl of 50 mM MgCl2, 0.5 ml

10 mM dNTPs, 0.5 μl of each 10 mM primer (Integrated

DNA Technologies, Coraville, IA) 0.25 μl of 2,000 U/ml

Phusion DNA Polymerase (New England Biolabs),

10 ng–20 ng of DNA, and 15.75 μl PCR water.

Amplification was performed using an initial incubation

step at 94°C for 3 min followed by 35 cycles of 94°C for

45 s, 50°C for 1 min, 72°C for 1.5 min and a final extension

step at 72°C for 10 min. PCR amplicons were cleaned using

the PCR purification kit (QIAgen, Valencia, CA). Amplicons

were pooled in an equimolar mixture and the pool was

cleaned an additional time using the Agencourt AMPure

XP (Beckman Coulter, Brea, CA). Sequences were generated

on the MiSeq Illumina platform using MiSeq Reagent Kit v2

(300 cycles, PE 300 bp, Illumina Inc., San Diego, CA) and

custom-made sequencing primers (http://www.

earthmicrobiome.org).

After quality control amplicon sequence variants (ASVs)

were generated using the DADA2 (Callahan et al., 2016)

subcommand from within QIIME2 (Bolyen et al., 2019)

release 2018.2 with the parameters “--p-trunc-len-f 200-

--p-trunc-len-r 95”. A portion of the Mothur MiSeq SOP

(Kozich et al., 2013) was then followed to align reads to the

RDP training set v.9 and remove reads identified as anything

other than bacteria or archaea. Remaining reads were

imported back into QIIME2 and chimeras were removed

using the “vsearch uchime-denovo” subcommand. ASVs

were classified using the “classify-sklearn” command in

QIIME2 against release 138 of the Silva SSU database

(Quast et al., 2013) and a rooted tree was generated using

the phylogeny subpackage with default parameters. Shannon

entropy and Faith pd diversity measures were generated

within QIIME 2. We used these sequence data to assess

changes in microbial community composition based on

differences in relative abundances with depth in Teardrop

lake. Recent studies have pointed out that using differences

in relative abundances without determining changes in total

abundance through e.g., qPCR can be misleading when

inferring changes in microbial community composition in

the environment (Aitchison 1982; Gloor et al., 2017; Knight

et al., 2018; Morton et al., 2019). An increase in the relative

abundance of e.g., methanotrophs can be associated with low

absolute numbers of methanotrophs at a particular location

suggesting that the relevance of this function may still be

limited. Furthermore, changes in the relative abundance of

one taxa results in compensatory changes in at least one

other taxa as the relative abundances of the microbial taxa

are not independent from one another (Aitchison 1982;

Gloor et al., 2017). Many different underlying scenarios

for changes in the microbial community lead to the same

relative abundances of taxa (Morton et al., 2019). However,

in this study we assessed the changes in microbial

community composition in combination with changes in

multiple geochemical parameters. This approach has

allowed us to investigate linkages between inferred

microbial functional groups and corresponding

geochemical processes.

Phytoplankton samples were concentrated via

sedimentation and settling using an Utermoehl settling

chamber. Taxa present were identified, and plankton

enumeration was done using a nanoplankton counting

chamber at 200x magnification ensuring a minimum of

200 organisms were counted for each sample depth.

Colony forming phytoplankton were enumerated and

individual cells were counted from a minimum of

10 organisms to generate an average cell count. This

multiplication factor was used to generate cells per

milliliter (APHA, 2012).

3 Results

At the time of sampling in August 2015, the temperature

in the lake ranged from 14.1°C at the surface to 10.2°C at the

bottom, with a slight increase of 0.6°C from 3.5 m–4.0 m

depth (Figure 2A). The lake was well-mixed from surface to

3.5 m depth, with uniform pH, specific conductivity, D. O

and ORP. At 3.5 m depth, pH decreased from 9.3 to 8.7 and

D.O. decreased from 12.6 mg L−1 to 0.6 mg L−1 (115%–5.3%).

Specific conductivity increased with depth from 1,545 μS

cm−1 to 2,318 μS cm−1. ORP also increased from 121.1 mV

to 136.2 mV at 4.5 m, but decreased to 120.7 mV at the

sediment water interface (Figure 2B). Light penetrated

through the entire water column, with 1.3% of PAR

surface irradiance remaining at the sediment water

interface (Figure 3C). Chlorophyll concentrations were

highest at the sediment water interface, and varied

throughout the water column, ranging from 0.74 μg/L to

3.9 μg/L.
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The overall microbial community composition changed

throughout the water column with two distinct changes, one

at 3 m and one below 4.5 m (Figure 4). Both Shannon

diversity and Faith pd indicated highest diversity of the

microbial community at 5 m; microbial diversity and

community composition were similar at the West and

East depth profiles (Supplementary Figures S3-S5). These

shifts in community composition are consistent with

changes in ORP and dissolved oxygen (Figure 2B). The

community composition in the upper water column

showed higher relative abundances of Luteolibacter,

Polynucleobacter, Burkholderiaceae, Candidatus

Limnoluna, and hgcl clade (family Sporichthyaceae)

among others (Figure 4). At 3 m GKS98 freshwater group,

family Alcaligenaceae increased in relative abundance and

taxa such as NS11-12 marine group (order

Sphingobacteriales), Pseudarcicella, Flavobacterium, and

Algoriphagus decreased in relative abundance. Below 3 m

besides an increase in the relative abundance of Pedobacter

and a decrease in the relative abundance of Polynucleobacter

the community composition was surprisingly similar to the

composition in the upper water column. The most distinct

change in microbial community composition occurred

below 4.5 m with a sharp decrease in the number of taxa

with a relative abundance of over 1% and a decrease in the

relative abundance of Luteolibacter, Pedobacter, NS11-12

marine group, Pseudarcicella, and Sporichthyaceae. In

contrast the relative abundance of Hgcl clade increased.

The phytoplankton population was dominated by

Cyanobacteria, in particular Aphanocapsa, with

concentrations increasing from 1.4 × 104 cells/ml at 3.5 m

to 2.9 × 104 cells/ml at 5.0 m (Figure 3A,B). Other

cyanobacteria exhibited lower concentrations ranging

from 50 cells/ml to just below 250 cells/ml. The most

abundant other cyanobacteria included Dolichospermum,

Aphanizomenon, and Chroococcus at the surface, with

Chroococcus being the most abundant throughout the

water column. The second most abundant group of

phytoplankton was Chlorophyta with Oocystis the most

abundant at the surface. Sphaerocystis showed an increase

in abundance at 3 m and the Micratinium increased from

2 m–4 m.

Methane concentrations were greatest at the sediment-

water interface (27.2 μM) and decreased up the water column

to 4.0 μM (Figure 5C). A slight increase in concentration

occurred from 4.5 m to 3.5 m. Corresponding with the

increase in methane concentration at 4.0 m is an isotope

enrichment for both δ13C (−13.2‰) and δ2H (−101‰).

Carbon and hydrogen isotope values of methane are

statistically significantly related throughout the water

column (Figure 5C). The putative methanotrophs we

detected included Methylovulum, Methylobacter,

Crenothrix, and Methylomonaceae (Figure 5A;

Supplementary Figure S6). Consistent with an increased

isotope enrichment of δ13C at 4 m we detected the highest

relative abundance of putative methanotrophs (0.038). The

combined geochemical evidence of isotope enrichment and

redox change supports the increase in the relative

abundances of putative methanotrophs and

methanotrophy. This lessens the concern of solely using

relative abundances to assess changes in microbial

community composition (Aitchison 1982; Gloor et al.,

2017; Knight et al., 2018; Morton et al., 2019). Differences

in methanotrophs with depth was in particular due to

changes in the relative abundance of Methylovulum,

making up 90% of all the putative methanotrophs detected

at 4 m. Below 4 m the overall relative abundance of putative

methanotrophs decreased to below 1%, but the relative

abundance of Methylobacter and Crenothrix increased.

The overall relative abundance of putative methanogens

ranged from 0.07%–0.22% across the water column

(Figure 5B, Supplementary Figure S7). Methanobacterium,

Methanosaeta, and Methanoregula made up among others

the community of putative methanogens throughout the

water column. Surprisingly, the highest relative abundance

of putative methanogens was detected at 3 m and also at 5 m

with Methanobacterium making up most of the relative

abundance of putative methanogens at 3 m and

Methanobacterium, Methanosaeta, Methanospirillum,

Methanoregula, and Methanolinea being the putative

methanogens with the highest relative abundance.

Nitrite is the most abundant nitrogen species throughout

the water column, with median concentration 295.5 μM,

20 times greater than nitrate concentrations (median

FIGURE 2
(A) Changes in temperature (T), pH, specific conductivity, (B)
dissolved oxygen (D. O.), and Redox Potential (ORP) down the
water column.
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14.5 μM, Figure 6D). Nitrogen concentrations were overall

uniform throughout the water column, with a slight increase

in nitrite from 3.5 m to 4.0 m depth, and slight decrease in

both nitrate and ammonia from 3.5 m to 4.0 m depth.

Putative denitrifiers overall had the highest relative

abundances (0.4–0.5, Figure 6B) followed by putative

dissimilatory nitrate reducers ranging in relative

abundance between < 0.001 and 0.009 at 5 m (Figure 6C,

Supplementary Figure S9) and putative ammonia oxidizers

ranging from < 0.001 to 0.001 (Figure 6A, Supplementary

Figure S10). Consistent with the uniform concentrations of

nitrate throughout the water column, the relative

abundances of putative denitrifiers did not change with

depth (Figure 6B, Supplementary Figure S9). In contrast,

putative ammonia oxidizers showed the highest relative

abundances at 3.5 m and 4.5 m (Figure 6A). The decrease

in the relative abundances of putative ammonia oxidizers

and dissimilatory nitrate reducers (DNRA) at 4.0 m

corresponds to the shift in nitrogen concentration at that

depth (Figure 6C, Supplementary Figure S11). The

geochemical evidence supports changes in microbial

functional groups involved in nitrogen cycling throughout

the water column in Teardrop lake. This lessens the concern

of solely using relative abundances to assess changes in the

microbial community composition (Aitchison 1982; Gloor

et al., 2017; Knight et al., 2018; Morton et al., 2019). We did

detect very low relative abundances of Candidatus

Anammoximicrobium up to 3.5 m and again at 5.0 m

indicating that the potential for anaerobic ammonia

oxidation exists in Teardrop lake.

FIGURE 3
Changes in phytoplankton (A,B) and (C) photosynthetically active radiation (PAR) down thewater column. Aphanocapsawas themost dominant
phytoplankton. Phytoplankton were determined by visual analysis and counting.
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4 Discussion

4.1 Geochemical, isotopic and genomic
evidence of traditional methane cycling

The traditional conceptual model of methane cycling in

northern lakes involves methane production in anoxic

sediments that is transported vertically up the water

column by ebullition and diffusion, with oxidative removal

along the transport path that generates a concentration profile

of dissolved methane that decreases up the water column (Wik

et al., 2016; Thottathil and Prairie, 2021). Our results for

dissolved methane in Teardrop lake exhibited this general

pattern - methane concentrations decreased from a maximum

just above the sediment/water interface to a minimum in the

upper water column. Oxidative removal of methane along the

path was also likely. Dissolved oxygen was clinograde,

reaching hypoxic conditions at the sediment-water

interface. Oxidation of methane by aerobic methanotrophic

bacteria was likely occurring throughout the water column as

evidenced by the inverse relationship between dissolved

oxygen and dissolved methane concentrations throughout,

the change in methane isotopic signature, and the presence of

methanotrophs throughout the water column (Figure 5).

Dissolved oxygen concentrations were sufficient to support

methanotrophy throughout the water column which is

consistent with an increase in relative abundance of

putative methanotrophs we observed below 3.5 m

(Figure 5). Additionally, a strong positive correlation was

observed between δ13C and δ2H of dissolved methane (n =

12, R = 0.93, p < 0.001; Supplementary Figure S12),

characteristic of residual methane following aerobic

methanotrophic activity (Whiticar and Faber, 1985; Happell

et al., 1994; Whiticar, 1999; Bastviken et al., 2002; Alstad and

Whiticar, 2011; Wik et al., 2020). The average slope of

enrichment of 13C and 2H of dissolved methane, calculated

FIGURE 4
Depth profile of microbial community composition down the water column based on changes in the relative abundances of 16S rRNA gene
sequences. All ASVs with a relative abundance > 1% are shown. ASVs with identical identification were combined into the same taxonomic
group. ASVswith a relative abundance < 1% are combined in the category ‘others’. The number of ASVs included in each taxonomic group is included
with the number given after the taxonomic name. If no number is given, the group only contains one ASV.
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as δ2H/δ13C (5.2) is similar to the slope of projected oxidation

predicted by previous experimental studies, which range from

5.9 to 13 (Coleman and Risatti, 1981; Whiticar, 1999;

Kinnaman et al., 2007). These results are consistent with

previous findings from Teardrop lake, other Greenlandic

lakes in this area (Cadieux et al., 2016), and other Arctic

freshwater environments (Wik et al., 2020).

Putative methanotrophic communities were present

throughout the water column of Teardrop lake and were

similar to other lacustrine systems. Gammaproteobacteria, the

dominant putative methanotrophs observed here, were also the

most abundant taxa in high oxidation zones in several other

lacustrine systems (Carini et al., 2005; Blees et al., 2014; Oswald

et al., 2015, 2016; Zigah et al., 2015). In neighboring Potentilla

lake, where microbial communities were collected under ice in

late winter, we detected high relative abundances of

Gammaproteobacteria known to be type I methanotrophs,

including Crenothrix and Methylobacter, which dominated

between 4 m and 5 m depth (Schütte et al., 2016). In

Teardrop lake, Methylovulum was the dominant type I

methanotroph, and exhibited the highest relative abundance at

4 m. Beijerinckiaceae (Alphaproteobacteria) including

Methylobacterium were present in low relative abundance in

Teardrop lake. However, Tamas et al. (2014) reported that

members of Beijerinckiaceae lost their capabilities of

methanotrophy and are not methanotrophs. Others report

that Methylobacterium is methylotrophic and not

methanotrophic (Dedysh et al., 2004; Theisen and Murrell,

2005). Most other studies of Arctic lakes described

methanotroph community composition mainly in lake

sediments rather than from the water column (He et al., 2012,

2022). Consistent with our results, He et al. (2012) found the

methanotrophic community in an Arctic lake in Alaska to be

dominated by members of the Gammaproteobacteria. In

contrast, studies from boreal lake systems found that

Gammaproteobacteria, in particular Candidatus

FIGURE 5
Depth profiles of (A) putative methanogen relative abundances, (B) putative methanotroph relative abundances based on 16S rRNA gene
sequences, as well as (C) concentration and stable C and H isotope composition of dissolvedmethane down the water column. The number of ASVs
included in each taxonomic group is included with the number given after the taxonomic name. If no number is given, the group only contains
one ASV.
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Methylumidiphilus within the order Methylococcales, had high

relative abundances throughout the lake, but

Alphaproteobacteria known to be type II methanotrophs had

high relative abundance in surface water where methane

concentrations were comparatively low (0 μM–1 μM) (Martin

et al., 2021). In comparison, methane concentrations in Teardrop

FIGURE 6
Depth profiles of putative (A) ammonia oxidizers, (B) denitrifiers, (C)DNRA based on 16S rRNA gene sequences, as well as (D) concentrations of
nitrate, nitrite and ammonia down the water column. (A–C). The number of ASVs included in each taxonomic group is included with the number
given after the taxonomic name. If no number is given, the group only contains one ASV.
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lake were elevated throughout the water column (2 μM–27 μM),

consistent with the ubiquitous presence of type I methanotrophs,

which have been suggested to have lower methane affinity

compared to type II methanotrophs (Martin et al., 2021).

4.2 Decoupled methane cycle at
intermediate depth

Coexisting with a traditional methane cycle functioning

throughout the water column, we found evidence of methane

cycling centered between 3 and 5 m depth that may be decoupled

from the full water column cycle. Extreme isotope enrichment of
13C and 2H of dissolved methane centered at 4 m depth may

result from methanogenesis coupled tightly to methanotrophy in

what approaches closed-system characteristics. Microbial

oxidation of methane under these conditions leads to a

systematic enrichment in both 13C and 2H of the residual un-

oxidized methane pool (Whiticar and Faber, 1985; Happell et al.,

1994; Whiticar, 1999; Bastviken et al., 2002; Alstad andWhiticar,

2011; Wik et al., 2020). At the time of sampling in August 2015,

dissolved methane in Teardrop lake at 3 m–4 m depth was

isotopically enriched by as much as 36‰ for 13C and 279‰

for 2H relative to bottom waters at 5 m depth. The lake was

weakly thermally stratified and likely approaching holomixis.

However, a slight increase in temperature was observed at 4 m

depth, potentially supporting increased microbial processes

leading to a thermal discontinuity or temporary biogenic

meromixis. Oxidation-reduction potential was also elevated

within this zone by 15 mV. A subsurface maximum in the

isotopic enrichment of 13C and 2H in dissolved methane is an

unusual pattern relative to other local lakes that we first observed

in Teardrop lake in 2013 (Cadieux et al., 2016). However, this

pattern has recently been reported in a German lake (Lake

Stechlin; Hartmann et al., 2018), as well as group of northern

freshwater lakes in the Canadian Shield (i.e., Morency Lake,

Croche Lake, Cromwell Lake, Gelil Lake), with δ13C mid-depth

values as high as +1.7‰ and is attributed to localized elevated

methanotrophic activity (Thottathil et al., 2019).

Photosynthesis in the euphotic zone of lakes is known to fuel

aerobic methane oxidation as the addition of dissolved oxygen

can stimulate methane oxidation and rates of oxygen production

can be of the same magnitude as methane oxidation (Oswald

et al., 2015). In Teardrop lake, the entire water column was

euphotic, with photosynthesis likely occurring at all depths,

including 3.5 m–4.5 m depth. Additionally, we observed

concentrated layers of potential microbial growth suspended

throughout the lake at mid-depths, supported by increased

phytoplankton counts at 3 m (Figure 3). These suspended

microbial communities could contribute to enhanced oxygenic

photosynthesis. At the major methane isotope excursion at 4 m,

there was no observable increase in dissolved oxygen, as oxygen is

saturated and not a limiting factor. However, there was a 10%

increase in ORP to +134 mV between 4.5 m and 3.5 m

confirming sufficient concentration of dissolved oxygen to

meet terminal electron acceptor demand from aerobic

methanotrophy.

Corresponding with the extreme isotope enrichment in 13C

and 2H of methane at 4 m was an increase in the relative

abundance of putative methanotrophs. The putative

methanotrophic community was dominated by type I

methanotrophs belonging to the Gammaproteobacteria.

Despite being microaerophilic, incubation studies suggest that

Gamma-MOB also have a high tolerance for dissolved oxygen

(Reis et al., 2020). Methylovulum had the highest relative

abundance at 4 m in Teardrop lake. The change in relative

abundances of putative methanotrophs with depth was

consistent with changes in putative methylotrophic bacteria.

Methylotrophic bacteria such as Methylotenera and

Methylobacterium were present throughout the water column,

but showed a significant increase at 4 m consistent with the

increase in methanotrophs (i.e., relative abundance of 0.002 at

3 m to 0.312 at 4 m forMethylotenera; Supplementary Figure S8).

Recent studies have shown that methylotrophs can co-feed with

methanotrophs (Krause et al., 2016). The presence of

methylotrophs can lead to a change in gene expression and

the production of a different enzyme that results in the release of

methanol that methylotrophs can then metabolize (Krause et al.,

2016). Metagenomic analysis of methanotrophs in Arctic lake

sediments showed that methanotrophs also have the capability to

produce methanol (He et al., 2022). This suggests that

methylotrophs in Teardrop lake have the capability to co-feed

with methanotrophs and that the increase in relative abundance

of methanotrophs at 4 m may help account for the increase of

methylotrophs at that depth.

In Teardrop lake, methane concentrations increased at the

interval corresponding with extreme isotope enrichment of 13C

and 2H, which is not typical of classic methanotrophy.

Production and accumulation of methane in oxic waters,

known as the “methane paradox,” has been documented in

other lakes, globally (Keppler et al., 2006; Bogard et al., 2014;

Tang et al., 2014, 2016; Günthel et al., 2019; Bizic et al., 2020;

Bizic 2021; Wang et al., 2021) and could lead to a mid-water-

depth increase inmethane concentrations. Putative methanogens

were identified both above and below the zone of 13C and 2H

isotope enrichment of methane at 3 m and 5 m, though relative

abundances were overall low. Methanogenesis in oxic water has

been demonstrated to be driven by acetoclastic production

(Bogard et al., 2014). We only detected two ASVs classified as

Methanosaeta known to be capable of acetoclastic production

with increased relative abundance at 5 m (Fournier and Gogarten

2008). All other putative methanogens we detected carry out

hydrogenotrophic and/or methylotrophic methanogenesis

(Vanwonterghem et al., 2016). Isotopic composition of

methane above and below the interval of isotopic excursion

ranged between −37‰ and −38‰ for δ13C and −100‰
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to −227‰ for δ2H, which is closer to the isotopic range from

acetoclastic methanogenesis than to that from hydrogenotrophic

methanogenesis (Whiticar 1999). Additionally, accumulation of

methane in oxygenated freshwater systems, though lower than

archaeal methanogenic production rates, has been associated

with the presence of phytoplankton including cyanobacteria,

which readily convert fixed inorganic carbon into methane

under both light and dark conditions (Bizic et al., 2020, 2021;

Hartmann et al., 2020; Bizic 2021). Potential pathways include

association of archaeal methanogens with cyanobacteria (Berg

et al., 2014), demethylation of methylophosphates (Yao et al.,

2016) under phosphorus starvation (Bizic et al., 2020), and a

connection to the photosynthetic electron transfer chain in

cyanobacteria (Bizic et al., 2020, 2021). In Teardrop lake,

phytoplankton were present throughout the water column,

with highest abundance especially of the cyanobacteria,

Anabaena, at the surface, but a marked increase of

Aphanocapsa at 4 m and other phytoplankton at 3 m depth. If

methanogenesis in the oxic water column is associated with algal

activity, the increased abundance of more labile organic matter

could potentially promote methanogenesis. Microbial

degradation of methylphosphate to methane has been shown

to result in minimal fractionation (Taenzer et al., 2020), but

isotopic fractionation from other oxic methane production

pathways has not been reported (Bizic et al., 2020; Wang

et al., 2021). Therefore, we are unable to use isotopic

signatures of methane to confirm if oxic methane production

is occurring in Teardrop Lake.

In addition to mid-depth methanogenesis, methane in

surface intervals may also derive from different source areas

than the anoxic sediments of deeper waters. One possibility is

lateral transport of methane from littoral sediments, which has

been reported in other lakes, and can amount to 30%–40% of

methane emitted during the summer stratification (Günthel

et al., 2020). Though in lower relative abundance, we detected

putative methanogens throughout the water column (Figure 5).

Teardrop lake is a hydrologically closed basin, with no inputs

from other water bodies. Lateral methane source areas are limited

to shallow littoral sediments. Carbon isotopic composition of

porewater methane collected from littoral sediments in

2013 ranged from −48.6 to −36.5‰ (Cadieux et al., 2016),

within the range of epilimnetic waters in Teardrop lake. The

dissolved methane in profundal sediments of Teardrop lake was

more depleted in 13C and enriched in 2H relative to the methane

in littoral sediments, suggesting different microbial production

pathways (Cadieux et al., 2016). Partial oxidation of porewater

methane or more isotopically enriched methanogenic substrates

in littoral sediments can also contribute to differences in the

isotopic composition of dissolved methane between littoral and

profundal sediments in small Arctic lakes (Thompson et al.,

2018).

Biogeochemical cycles in lakes are often coupled, and driven

by underlying microbial community interactions (Wetzel, 2001).

In particular, methane and nitrogen cycling are known to be

coupled (Bodelier and Steenbergh, 2014; Zhu et al., 2016; Jing

et al., 2020). Under anaerobic conditions, methane oxidation

occurs using alternative electron acceptors such as nitrate and

nitrite instead of oxygen (Valentine, 2002; Oswald et al., 2017).

Nitrogen concentrations have been found to both inhibit and

stimulate methanotrophic activity and methane oxidation. For

example, ammonium-based fertilization has been found to

stimulate the growth and activity of methane oxidizers in rice

patties (Bodelier et al., 2000; Krüger and Frenzel, 2003), however,

ammonium concentrations > 4 mM have also been found to

repress methane oxidation in littoral lake sediments (Bosse et al.,

1993). Ammonium concentrations in Teardrop lake are 3 orders

of magnitude below the threshold for inhibition and unlikely to

influence methane oxidation. Methanotrophic bacteria have also

been suggested to co-oxidize ammonia when nitrite is present

(Harrits and Hanson, 1980). Nitrite concentrations in Teardrop

lake exceeded nitrate concentrations, which has also been

reported in other local Greenlandic lakes (Cadieux et al.,

2016, 2017; Schütte et al., 2016). In Teardrop lake, nitrite

concentrations increased slightly at 4 m where extreme isotope

enrichment of 13C and 2H was observed associated with a drop in

the relative abundance of putative ammonia oxidizers

(Figure 6A), but concentrations remained overall stable

throughout the water column. Additionally, the presence of

nitrate has been suggested to stimulate methane oxidation

rates under oxic conditions, with Methylotenera being capable

of denitrification (van Grinsven et al., 2020). Relative proportions

of putative denitrifiers were overall constant in Teardrop lake,

though the putative methylotroph Methylotenera increased at

4 m–2.5% (Supplementary Figure S9). This increase in the

relative abundance of Methylotenera was mostly driven by one

ASV. Despite not finding clear linkages between methane and

nitrogen biogeochemical cycles in Teardrop lake, it is possible

that the extreme isotope enrichment of 13C and 2H in dissolved

methane resulted from alternative co-cycling of nutrients.

4.3 Implications

Arctic lakes are likely to represent a growingnet source ofmethane

to the atmosphere with rapid warming of northern landscapes (Wik

et al., 2016; Li and Xue, 2021). Measurements of global atmospheric

δ13C-CH4 suggest a rapidly increasing microbial source (Lan et al.,

2021) that may account for up to 85% of the recent growth in

atmospheric methane (Tollefson, 2022). Identification and inclusion

of the key biogeochemical processes in climate models is a significant

challenge (Lan et al., 2021). In the last 10 years, the methane paradox

has been unfolding in the literature, demonstrating that methane in

oxic water is not exclusively from transport from anoxic sources, and

oxic methane production may account for 18%–90% of surface

emissions (Keppler et al., 2006; Grossart et al., 2011; Bogard et al.,

2014; Tang et al., 2014, 2016; Günthel et al., 2019, 2020). We suggest
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that, inTeardrop lake,methane in thewater columnmayderive froma

combination of sources: anoxic sediments, lateral transport from

littoral areas and oxic methanogenesis in the mid-water column.

Additionally, there is evidence for tight carbon recycling within a

limited depth interval of the water column, leading to extreme isotope

enrichment in 13C and 2H of the dissolved methane pool. Our work

from Teardrop lake highlights the challenge in predicting potential

methane emissions from small, shallow water bodies. Most conceptual

models of greenhouse gas emissions from northern landscapes utilize

large lakes and assume methane emissions from conventional anoxic

sources (IPCC 2013; Saunois et al., 2016). Feedbacks involving small

lakes have been lacking (Rasilo et al., 2015).As permafrost thaw rapidly

expands with warming climate, smaller thermokarst lakes are

increasing in number and area in the Arctic (Abnizova et al., 2012;

Gao et al., 2013). It is important to integrate methane cycling of small

Arctic lakes into the conceptual modeling framework for greenhouse

gas emissions from the terrestrial biosphere.
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