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Climate change and rapid urbanization have made it difficult to predict the risk of pollution
in cities under different types of rainfall. In this study, a data-driven approach to quantify the
effects of rainfall characteristics on river pollution was proposed and applied in a case study
of Shiyan River, Shenzhen, China. The results indicate that the most important factor
affecting river pollution is the dry period followed by average rainfall intensity, maximum
rainfall in 10 min, total amount of rainfall, and initial runoff intensity. In addition, an artificial
neural network model was developed to predict the event mean concentration (EMC) of
COD in the river based on the correlations between rainfall characteristics and EMC.
Compared to under light rain (< 10 mm/day), the predicted EMC was five times lower under
heavy rain (25-49.9 mm/day) and two times lower under moderate rain (10-24.9 mm/day).
By converting the EMC to chemical oxygen demand in the river, the pollution load under
non-point-source runoff was estimated to be 497.6 t/year (with an accuracy of 95.98%) in
Shiyan River under typical rainfall characteristics. The results of this study can be used to
guide urban rainwater utilization and engineering design in Shenzhen. The findings also
provide insights for predicting the risk of rainfall-runoff pollution and developing related
policies in other cities.

Keywords: rainfall-runoff pollution, rainfall characteristics, EMC, integrated learning methods, ANN

1 INTRODUCTION

Rapid urbanization has adverse effects on the natural environment, especially in aquatic
environments. Due to changes in the hydrological cycle and the high diversity of pollutants,
urban rainfall-runoff pollution has become a major problem (Kammen and Sunter, 2016). Especially
in the initial stage of rainfall, the river pollutant content is the highest in the entire runoff process,
which is referred to as the first flush effect (Gnecco et al., 2005; Feng et al., 2017). Common
contaminants of river mainly include suspended solids, nutrients and heavy metals which have a
major effects on the water quality of urban rivers (Perera et al., 2019; Yang et al., 2021).

Rapid urbanization has increased the impervious areas in cities, thereby reducing rainwater
infiltration and increasing the total amount of runoff into urban rivers and the pollution load of
urban surface runoff (Chen et al., 2017; He et al., 2018). Li et al. (2021) found that human activity has
contributed to long-term reductions in the total amount and frequency of weak precipitation and the
significant increases in the total amount and frequency of heavy precipitation in China. Human
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activities such as land use and land cover change, the construction
of dams and irrigation canals, and mining have altered urban
river runoff (Adeyeri et al., 2020) and significantly affected the
rainfall characteristics. Urban rainfall-runoff pollution has
become the main cause of global urban water pollution (Wang
et al,, 2021). Thus, identifying the factors affecting this type of
pollution is critically important for controlling urban river
pollution.

To make timely predictions related to rainfall-runoff pollution
with minimal data, researchers have begun to apply machine
learning methods. These methods do not require a
comprehensive understanding of the mechanism underlying
the interactions between various parameters. These methods
are also effective for simulating nonlinear and non-stationary
hydrological environmental processes (Wang and Yao, 2013;
Badrzadeh et al., 2015). Machine learning-based methods have
shown advantages for the analysis of rainfall-runoff pollution,
and with the development of data science, various machine
learning methods have been explored and developed to predict
rainfall-runoff pollution in urban rivers (Jeung et al., 2019). These
methods including random forest (RF), gradient boosting
decision tree (GBDT), and extreme gradient boosting
(XGBoost) methods, which have been applied to analyze the
relationships between rainfall characteristics and runoff pollution
(Wuetal, 2014; Wang et al., 2015). RF algorithms have been used
to rank the importance of multiple rainfall characteristics
affecting the initial scouring effect of river runoff, revealing
the following six most important characteristics: total rainfall
amount; maximum rainfall intensity in 5 min; rainfall duration;
total amount of runoff; peak runoff; and average rainfall intensity
(Alias et al., 2014; Perera et al., 2019). By using the boosting
method, GBDT will integrate multiple decision trees (DT) for
analysis, which has shown a good prediction performances (Liang
et al,, 2020). Huan et al. (2020) applied a GBDT method to select
characteristic factors with strong effects on dissolved oxygen and
used these factors as input data to reduce the time needed for
calculations. Joslyn (2018) evaluated the performance of XGBoost
in predicting nine water quality factors (each factor was
separately predicted using the other eight factors) and
obtained success rates ranging from 80% to 90%.

Rainfall characteristics can also significantly affect the
concentrations of river pollutants (Feng et al., 2015; Zhang
et al, 2021), and rainfall duration and rainfall intensity are
two of the most important factors affecting hydrological
processes (Ran et al, 2012). Rainfall-runoff pollution is also
affected by other rainfall characteristics such as the total
amount of rainfall, which can affect the scouring effect of
runoff (Liu et al, 2014), and the dry period (Zhang, 2011;
Pang et al, 2012). Jeung et al. (2019) assessed the effects of
rainfall characteristics on water quality parameters in urban rivers
and found that different water quality parameters were affected
by different rainfall characteristics; for example, biochemical
oxygen demand and chemical oxygen demand (COD) were
closely related to rainfall intensity, whereas total organic
carbon and total phosphorus were strongly affected by the dry
period. Gnecco et al. (2005) analyzed the event mean
concentrations (EMCs) of various pollutants in urban rivers
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and found a strong correlation between maximum rainfall
intensity and EMC.

Although several previous studies have analyzed rainfall
characteristics and their qualitative effects on rainfall-runoff
pollution, few studies have quantitatively analyzed the effects
of rainfall characteristics on its pollution. Neural network models
including artificial neural network (ANN), convolutional neural
network, and back-propagation neural network models can
consider multiple rainfall features together to predict rainfall-
runoff pollution (Wu et al., 2014; Wang et al., 2015; Chau, 2017;
Fotovatikhah et al., 2018). Some researchers have used neural
network models to generalize the complex relationships between
rainfall characteristics and water quality parameters to enhance
the accuracy of rainfall-runoff simulation and prediction
(Fernandes et al,, 2020). For example, ANN models can be
used to accurately determine whether the surface water quality
meets the criteria set by national regulations or quantify the
characteristics of water bodies (Palani et al., 2008; Shi et al., 2018).
Using rainfall characteristics such as rainfall duration and
confluence area as inputs and EMC as a training target, a
back-propagation neural network model showed high accuracy
for evaluating the total amount of pollutants in rainwater runoff
(Tian, 2016). Ye et al. (2020) summarized the characteristics of
neural network models used in environmental pollution research
and found that ANN models can significantly improve the
efficiency of pollutant prediction in rivers.

The objectives of this study were to analyze the CODs of
Shiyan River and Shiyan Reservoir and explore the relationships
between COD and rainfall characteristics. To achieve these
objectives, we: 1) ranked the importance of different rainfall
characteristics in terms of their effects on rainfall-runoff
pollution using various integrated learning methods; 2)
quantified the relationships between rainfall characteristics and
runoff pollution in Shiyan River using an ANN model; and 3)
estimated the non-point-source pollution load based on the
typical EMC in the Shiyan River. As verified in this paper, the
data-driven method presented herein can quickly predict the
COD of the river. The findings provide a reference for water
quality analysis in other fields.

2 DATA AND METHODS
2.1 Study Area

Opver the past 40 years, precipitation and extreme precipitation in
the western urban area of Shenzhen have increased. Changes in
the underlying surface and rainfall characteristics have also
affected the temporal and spatial distributions of non-point-
source pollution. In this study, Shiyan River in Shenzhen,
China is taken as a research case, as can be seen in Figure 1.
Shiyan River is located in Shiyan Street, Bao’an District and is a
first-level tributary in the Maozhou River Basin. The total length
of Shiyan River is 10.44 km, and the catchment area of the basin is
27.05km®. The Shiyan River eventually merges into the Shiyan
Reservoir, which is one of the four major reservoirs in Shenzhen
and one of the largest sources of drinking water in Bao’an District.
With the rapid economic development of Bao’an District, Shiyan
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TABLE 1 | Typical rainfall characteristics under different rainfall types (2013-2018) (Li, 2020).

Rainfall Light rain Moderate rain Heavy rain Torrential rain Rainstorm Extraordinary
characteristics rainstorm
Total amount of rainfall (mm) 4.03 6.28 1711 34.20 96.34 165.04
Rainfall duration (min) 108.82 153.26 239.43 556.12 761.93 1698.12
Maximum rainfall per minute (mm) 0.32 0.49 1.06 1.68 1.63 1.75
Maximum rainfall in 10 min (mm) 0.92 1.83 6.38 7.74 9.33 13.76
Rainfall intensity (mm/h) 0.70 1.03 1.53 2.03 3.19 4.03
Dry period (h) 34.00 22.43 20.10 22.10 26.30 14.67
Dongguan N Huizhou
>
q

Legend

® Monitoring point
Shiyan reservoir
! Shiyan River catchment
Meteorological station

I 1
@
A Hydrology station

FIGURE 1 | Map of Shiyan River, Shenzhen, China.
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[ —

River and Shiyan Reservoir will play increasingly important roles
in water supply.

2.2 Data
The following data were used in this study. First, the hourly/daily/
annual river discharge (m>/s) and COD data (mg/L) for Shiyan
River from 2009 to 2012 were obtained from Qin et al. (2013). We
also used data from Qin et al. (2013) to select the most influential
rainfall characteristics for EMC and build the ANN model based on
rainfall characteristics to predict the EMC value. Rainfall-runoff
data (mm/min) for 2013-2018 were obtained from Li (2020).
Due to the uncertainty of rainfall events, there is currently no
uniform and clear criteria for classifying rainfall events. Based on

recent research considering the effects of rainfall confluence time
and rainfall duration, 180 min was used as the minimum time
interval between two rainfall events, and the cumulative rainfall of
each event had to be greater than 3 mm (Huang et al,, 2021).
According to the amount of rainfall in 24 h, all rainfall events
were divided into six categories: light rain (< 10 mm); moderate
rain (10-24.9 mm); heavy rain (25-49.9 mm); torrential rain
(50-99.9 mm); rainstorm (100-249.9 mm); and extraordinary
rainstorm (> 250 mm). Based on the above definitions of
rainfall event and rainfall type, we obtained the typical rainfall
characteristics (total amount of rainfall, rainfall duration,
maximum rainfall per minute, maximum rainfall in 10 min,
rainfall intensity, and dry period) for the study area and used
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FIGURE 2 | Research framework for this study.

them in the subsequent verification of the pollution load of
Shiyan River (Table 1).

2.3 Methods

As shown in Figure 2, we first processed the minute-level rainfall data
(2013-2018) into different rainfall characteristics (total amount of
rainfall, rainfall duration, maximum rainfall per minute, maximum
rainfall in 10 min, rainfall intensity, and dry period). Subsequently, we
identified the rainfall characteristics that most strongly affect EMC
using mathematical statistical methods and three integrated learning
methods (RF, GBDT, and XGBoost). Next, we developed an ANN
model to predict the EMC values of Shiyan River by inputting typical
rainfall characteristics under different rainfall types in terms of rainfall
intensity per 24 h (namely, light rain, moderate rain, heavy rain, and
torrential rain). Finally, we calculated and verified the runoff pollution
load of the Shiyan Reservoir using the predicted EMC value.

2.3.1 Integrated Learning Methods

The integrated learning methods mainly completes research tasks
by building and combining multiple different approaches, which
can have a high accuracy rate. In this study, three widely used
integrated learning algorithms (RF, GBDT, and XGBoost) were
used to analyze the importance of various rainfall characteristics.
RF is one of the most popular algorithms for solving classification
and regression problems in recent years, with extremely high
accuracy. GBDT can process a wide range of data types, and
tuning parameter is relatively easy. XGBoost is efficient and
flexible, which prevent overfitting and reduce model complexity.

2.3.1.1 Random Forest
RF is a method for accurately classifying large amounts of data by
creating multiple decision trees. The RF algorithm consists of a

combination of tree classifiers where each classifier is generated
using a random vector sampled independently from the input
vector, and each tree casts a unit vote for the most popular class to
classify an input vector. The decision trees use the CART algorithm
to select variables based on the splitting criteria of the root node
and make judgments based on the characteristic evaluation
standard; the root node recursively generates child nodes
through the internal node. The internal nodes represent the
judgments of the characteristics, and each child node represents
a regression result. Random attributes are introduced into the
training process of decision trees, and the results are determined by
the predicted mean values of multiple decision trees. Averaging can
alleviate the problem of high variance and high deviation by
finding a natural balance between the two extremes. Because
RFs are often used as black-box models, they can generate
reasonable predictions for data without configuration.

2.3.1.2 Gradient Boosting Decision Tree

GBDT is a characteristics selection method with high
interpretability. GBDT has high nonlinear processing ability
when considering the interactions of multiple groups of
characteristics (Huan et al, 2020). GBDT is a powerful
machine learning tool consisting of three parts: regression
decision tree, gradient boosting, and shrinkage. GBDT is based
on the linear combination of basic functions; multiple rounds of
iteration are performed, and each round of iteration produces a
weak classifier (regression decision tree). Each classifier is trained
based on the gradient of the previous classifiers, and the accuracy
of the result is continuously improved by reducing the deviation.
The algorithm aims to obtain a set of decision rules using the
original characteristics as input to create a new decision tree (He
et al., 2014).
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2.3.1.3 Extreme Gradient Boosting

XGBoost is an integrated machine learning algorithm based on
decision trees that uses a gradient boosting framework. XGBoost
has been widely used for regression, classification, and other
applications. The core idea of XGBoost is to increase the number
of decision trees by continuously splitting characteristics. Every
time a tree is added, a new function f(x) is learned to fit the
residual of the last prediction. When the training is completed,
resulting in k trees, the score of a sample is predicted based on the

Prediction of Rainfall-Runoff Pollution

characteristics of this sample, and the score corresponding to each
tree is added to the predicted value of the sample. This method
uses normalization in the objective function to prevent overfitting
and reduce the complexity of the model.

2.3.2 Artificial Neural Network Models

ANN models are networks of parallel distributed information
processing systems that link input vectors to output vectors. They
are composed of many information processing elements called
neurons or nodes (Bisht et al., 2013). ANNs are mainly composed
of three parts: the input layer, hidden layer, and output layer. The
input layer primarily provides input data for the ANN model, and
the hidden layer performs various transformations of the data
(fitting the data by adjusting the function type and the number of
neurons in the hidden layer), thus enhancing the network’s ability
to simulate complex functions. The output layer is considered to
be a summary of the parallel calculation results performed by the
hidden layer. The result of each neuron is the input of neurons
existing in the next layer of the network, and the result of the
output layer can be compared with the observed result (Haghiabi
et al, 2018). Because the model is relatively simple and
convenient for practical applications and prediction, it is a
powerful tool for modeling many nonlinear hydrological
processes; for example, ANN models have proven effective for
use in the fields of water quality analysis and prediction.

2.3.3 Definition of Event Mean Concentration

Rainfall-runoff pollution events are characterized by uncertainty,
and river runoff pollution is affected by factors such as the rainfall
characteristics and underlying surface types. Instantaneous

-0.4 -0.2 0.0
| T [
4 Rainfall duration
. EMC
2 - L]
)

0.2 0.4 0.6

| amount of rainfall - 0.5

Dry perio

Average runoff intensity
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\L\Aaxi um rainfall in ten minutes

Initial runoff in'tensity

- -0.5

characteristics to PC1 and PC2.

-2 - o
L]
Avefage rainfall intensity
-4 4 e Score
95% Confidence Interval
—® Load
T T T T T T
-6 -4 -2 0 2 4 6 8

PC1 (42.0%)

FIGURE 4 | PCA results between rainfall characteristics and EMC. PC1 and PC2 represent 42% and 20.5% of the total variance of the data, respectively. Red dots
represent the scores of rainfall events. The red circle represents the 95% confidence interval. The blue arrows represent the proportions contributed by rainfall
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FIGURE 5 | Correlations between rainfall characteristics and EMC. Red and blue squares represent positive and negative correlations between two characteristics,
respectively. Deeper color indicates a stronger correlation.

pollution concentrations do not accurately capture the
characteristics of runoff pollution (Lee et al, 2011), it is
necessary to find a variable to describe the pollution
concentration in each rainfall-runoff pollution event.
Therefore, in each event, COD was used to characterize water
quality, and the degree of rainfall-runoff pollution was analyzed
based on the event mean concentration (EMC) (Kim et al., 2007),
which was calculated as the following equation (EMC formula):

e

Where: EMC = event mean concentration, mg/L; M = amount of
pollutant, mg/L; V = runoff volume, m* T = rainfall duration, s;
C, = concentration of pollutant over time, mg/L; and Q, = flow
rate over time, m’/s.

2.3.4 Model for Estimating Rainfall-Runoff Pollution

Due to the randomness of surface runoff discharge, the annual
pollution load is usually to estimate the pollution load
concentration of urban surface runoff, that is, the total
amount of pollutants discharged from surface runoff caused
by multiple rainfall events in a year (Li et al., 2010). The
annual non-point-source runoff pollution load of Shiyan River

was estimated based on the EMC values under typical rainfall
characteristics. This estimation method has been widely used
both within and outside of China (Wang, 2015). The annual
runoff pollution load based on the EMC of the site was calculated
using the following formula:

L,=CexyxAxPxC )

where: L, = annual pollution load, t; Cr = proportion of rainfall
events that produce runoff, usually taken when data are lacking,
0.9 was the empirical coefficient (Wang, 2015); ¥ = runoff
coefficient; A = catchment area, km,; P = average annual
rainfall, mm; and C = EMC, mg/L.

3 RESULTS

3.1 Effects of Rainfall Characteristics on

Event Mean Concentration

In this study, Shiyan River and Shiyan Reservoir were taken as
typical research areas to explore the correlation between rainfall
characteristics and runoff pollution. COD was used as a typical
metric for pollution analysis. For convenience, the EMC formula
was used to convert COD to EMC. Due to the low frequency of
rainstorms and extraordinary rainstorms (0.03 and 0.01,
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respectively), these rainfall types were combined with torrential ~ probability of EMC. Therefore, the typical value of EMC
rainfall events in this analysis. represents the location corresponding to the maximum

Figure 3 shows the relationships between rainfall type and  distribution probability. In general, the typical EMC value is
EMC based on rainfall data from 26 rainfall events (2009-2012).  largest during light rain; the EMC during light rain (based on the
The vertical axis of the box plot represents the degree of data ~ median value) was almost four times higher than that during
dispersion, and the center represents the typical distribution  moderate rain, which was associated with the lowest EMC.

Frontiers in Environmental Science | www.frontiersin.org 7 June 2022 | Volume 10 | Article 887446


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Tian et al.

1400
® EMC value
— Fittiing of a polyniomial q
| [—— 1:1 fitting
1200 95% Confidence interval o

95% Prediction interval

y=0.98x+18.16
R?=0.90

1000 -

800

N
o
S

Simulated EMC value by ANN model (mg/L)
N
o
Lo

0 1 1 1 1 1 1
200 400 600 800 1000 1200

Measured EMC value (mg/L)

FIGURE 8 | Plot showing the ANN training performance.

Meanwhile, the EMC values corresponding to heavy rain and
torrential rain were much lower than that for light rain.

Evaluating the effect of rainfall type on EMC requires
analyzing the effects of different rainfall characteristics on
EMC. In the case of light rain, the initial stage of rainfall will
wash urban surface pollutants into the river, increasing the EMC.
During moderate rain, rainfall runoff gradually increases, and the
pollutants washed into the river channel change little, which
reduces the EMC to a large degree. For heavy rain and torrential
rain, the erosion of the river channel may wash pollutants from
the deep layers of the ground into the river channel, resulting in a
gradual increase in EMC.

Principal component analysis (PCA) was used to identify the
correlations between rainfall characteristics and EMC. Figure 4
shows the results of the PCA of rainfall characteristics and EMC.
PC1 and PC2 explained 42% and 20.5% of the total variance of the
data, respectively. The proportion contributed by each rainfall
characteristic to PC1 and PC2 can be obtained from the
directions and lengths of the blue arrows in Figure 4. Most of
the scattered points in Figure 4 are within the 95% confidence
interval (shown by the red circle), which indicates that there were
no obvious extreme values. A correlation matrix was used to
calculate the correlation coefficients between EMC and the
rainfall characteristics (Figure 5). In Figure 5, red and blue

Prediction of Rainfall-Runoff Pollution

represent positive and negative correlations, respectively, and
the intensity of the color indicates the strength of the correlation.
Among the rainfall characteristics, dry period showed the
strongest correlation with EMC (correlation coefficient = 0.5).
Average rainfall intensity was negatively correlated with EMC
(correlation coefficient = -0.13). The initial, average, and
maximum runoff intensities were highly correlated. If the
angle between the two rainfall eigenvalues in Figure 4 was less
than 30°, and the correlation coefficient was greater than 0.8 in
Figure 5, we considered the correlation between two variables to
be significant. Using these criteria, no significant correlations
were observed between EMC and any single rainfall
characteristic. Thus, it was necessary further analyze the data
to reveal the relationships between multiple rainfall
characteristics and EMC.

Using six rainfall characteristics (dry period, total amount of
rainfall, average rainfall intensity, rainfall duration, maximum
rainfall intensity in 10 min, and initial runoff intensity), we
performed multiple linear regression fitting for EMC. Figure 6
shows the relationships between EMC and various rainfall
characteristics. Each black dot represents the EMC value of a
rainfall event, and each figure contains 26 rainfall events. By
constructing a linear fitting curve, we can observe the effects of
different rainfall characteristics on EMC. In Figure 6, the dark
orange range represents the 95% confidence interval between
different rainfall characteristics and EMC, while the light orange
range represents the 95% prediction interval between them. A
positive correlation was observed between the dry period and
EMC, while EMC gradually decreased as the initial runoff
intensity increased. As the total amount of rainfall increased,
EMC first decreased and then increased; a similar trend in EMC
was observed for the maximum rainfall intensity. Thus, EMC
showed different relationships with the various rainfall
characteristics.

3.2 Analysis of the Relative Importance of
Different Rainfall Characteristics in

Determining Event Mean Concentration

Three widely used machine learning algorithms (RF, GBDT, and
XGBoost) were used to analyze the relative importance of rainfall
characteristics affecting runoff pollution (Figure 7). The most
important rainfall characteristic affecting EMC was the dry
period followed by the average rainfall intensity, the maximum
rainfall in 10 min, the total amount of rainfall, and the initial
runoff intensity. The high importance of the dry period may be

TABLE 2 | Effects of typical rainfall characteristics on EMC.

Rainfall characteristics Light rain
Dry period (h) 34.00
Rainfall depth (mm) 4.03
Maximum rainfall in 10 min (mm) 0.92
Rainfall intensity (mm/h) 0.70
Initial runoff (m°/s) 0.76
Frequency 0.20
EMC (mg/L) 2612.20

Moderate rain Heavy rain Torrential rain

22.43 20.10 22.10
6.28 17.11 34.20
1.83 6.38 7.74
1.03 1.53 2.03
0.94 2.07 1.40
0.37 0.18 0.11

1404.50 596.24 649.50
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FIGURE 9 | Plot showing the training performance by RF and XGBoost.
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related to the accumulation of surface pollutants during dry
periods. During rainfall after an extended dry period, large
quantities of pollutants are washed into the river, causing the
EMC in the river to increase. However, due to the large
differences in rainfall duration observed in the data, the effect
of rainfall duration on EMC was relatively weak. The risk of
runoff pollution was quantified by selecting the rainfall
characteristics with the strongest effects on EMC based on the
above analysis.

3.3 Construction and Analysis of the

Prediction Model

Analyzing the input data improves the interpretability of the input
data for neural network models. We established a model to predict
runoff pollution from rainfall characteristics based on the relative
importance of different rainfall characteristics and the availability of
actual forecast data. The model considered the five rainfall
characteristics with the strongest effects on EMC (i.e., dry period,
average rainfall intensity, maximum rainfall in 10 min, total amount
of rainfall, and initial runoff intensity), and the corresponding EMC
values were used as the training targets. A total of 70% of the original
data was used to train the ANN model, while the remaining 30% of
the original data was used to verify the ANN model.

Figure 8 shows the training performance of the ANN model.
The model training performance was 0.976, the test performance
was 0.989, and the verification performance was 0.883. It also can
be found that most of these scattered points are clustered near the
fitted line from Figure 8, which show that the response results of
this model are good; thus, the model can be used to predict EMC.
The frequencies of rainstorms and extraordinary rainstorms were
extremely low; thus, these rainfall types were ignored in the
analysis of runoff pollution. Therefore, the typical EMC values
for each rainfall characteristic under the other four rainfall types
were used to predict EMC.

Under typical rainfall characteristics, the predicted EMC value
was highest under the light rain scenario (2612.20 mg/L), and this

EMC was approximately two times the predicted EMC under
moderate rain (Table 2). The EMC prediction values for heavy
rain and torrential rain were almost the same (both were one-fifth
of the predicted EMC value for light rain). This may be explained
by the fact that the dry period under the light rain scenario was
typically longer than that under other rain types; thus, the
dilution effect of pollutants washing into the river channel
during light rain was weak. The dilution effect of heavy and
moderate rain was more pronounced; under the torrential rain
scenario, the predicted EMC value increased slowly because of the
stronger effects of rainfall duration and runoff area. Rainfall
events following long dry periods and light rain events require
additional attention, and measures should be enacted in a timely
manner to prevent water pollution.

The annual pollution load of non-point-source runoff for
Shiyan River was estimated based on the predicted EMC
values under typical rainfall characteristics (Table 1). EMC
was used to approximate the annual runoff pollution load.
Given that the traditional method of EMC value selection is
relatively random, the predicted EMC values under typical
rainfall events should be used. Hence, the estimation of
rainfall-runoff pollution load considered the predicted values
of EMC under typical rainfall events along with the
probabilities of different rainfall patterns. The proportion of
runoff events was 0.9, and the multi-year runoff depth of
Shiyan River was 860 mm (average runoff depth is the product
of the runoff coefficient and annual average rainfall). The EMC
under different rainfall pattern was predicted based on the typical
rainfall characteristics of the model, then the actual EMC value of
this river can be obtained by weighted average of the probability
values of different rainfall pattern, which was 1460 mg/L. Thus,
according to the conversion of Eq. 2, the annual non-point-
source COD pollution load was calculated to be 497.6t. The
annual non-point-source pollution load of COD in the built-up
area of Shiyan Reservoir was previously reported to be 477t
(Yang et al.,, 2013), indicating an estimation accuracy for our
model of 95.98%.
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4 CONCLUSION AND DISCUSSION

Integrated learning methods were used to analyze the
relationships between rainfall characteristics and EMC for
Shiyan River. Rainfall characteristics were then used to predict
the water quality by constructing an ANN model. The main
findings are summarized below.

PCA of the rainfall characteristics revealed no significant
correlations between rainfall characteristics. A  positive
correlation was observed between rainfall dry period and
EMC, while EMC was negatively correlated with initial runoff
intensity. Using mathematical statistical analysis and a variety of
machine learning algorithms, we qualitatively described and
ranked the effects of different rainfall characteristics on EMC.
Among all rainfall characteristics, the dry period was the most
important factor influencing EMC. This can be attributed to the
build-up of surface pollutants as the dry period becomes longer.
When rainfall occurs after a long dry period, large quantities of
pollutants are washed into the river, causing EMC to increase.
After dry period, the next most important rainfall characteristics
were average rainfall intensity, maximum rainfall in 10 min, total
amount of rainfall, and initial runoff intensity.

A model to predict EMC based on rainfall characteristics was
constructed using the above five most influential rainfall
characteristics as inputs, which greatly improved the
interpretability of the neural network and the accuracy of the
ANN model. The model training performance was 0.976, the test
performance was 0.989, and the verification performance was
0.883. The prediction results under typical rainfall characteristics
revealed that the runoff pollution caused by light rain is
approximately two times that under moderate rain and five
times that under heavy rain. Based on the predicted EMC
values under typical rainfall characteristics, the annual non-
point-source runoff pollution load of Shiyan River was
estimated to be 497.6t. The accuracy of the estimation
method was 95.98%, indicating the robustness of the model.

We acknowledge that there are several limitations of this
study. The relatively short time scale of the high-precision
rainfall data in Shenzhen precludes a more in-depth study of
future rainfall characteristics and trends under the influence of
climate change. Because of the difficulty in monitoring rainfall-
runoff pollution, the total number of samples used in this study
was only 26 rainfall events. In order to prove the credibility of the
results, we use RF and XGBoost methods to study this data. As
can be seen in Figure 9, the simulation results of these two
methods are good. The values of the coefficients of determination
(r?) obtained by RF and XGBoost methods are 0.879 and 0.914,
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