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The atmosphere plays a fundamental role in transporting airborne prokaryotes

across the oceans and land. Despite the harsh atmospheric conditions, a

considerable fraction of the airborne prokaryotic microorganisms survive the

journey and remain viable upon deposition, and can affect the receiving

environment. Here, we provide the first estimate of potential viability proxy

for airborne prokaryotic cells at the Southeastern Mediterranean coast in

22 events during 2015, representing marine and terrestrial air-mass

trajectories and a significant dust storm event. This was assessed using

sequence amplicons of the small subunit ribosomal RNA gene (SSU rRNA)

jointly with other complementary measurements. To estimate the relative

viability in our dataset we used the ratio between the abundance of the

bacterial SSU rRNA transcripts in a given sampling date and the lowest

measured value (23.7.2015) as a measure of a relative viability proxy. The

abundance of prokaryotes SSU rRNA transcripts ranged from ~500 to

11,000 copies m3, with ~2-fold higher relative viability proxy in marine-origin

aerosols than predominantly terrestrial atmospheric trajectories. The relative

viability proxy of prokaryotes was low during the peak of an intense and

prolonged dust storm, and increased by ~1.5-fold in the subsequent days

representing background conditions (<1700 ng Al m−3). Furthermore, we

show that anthropogenic/toxic trace-metals (Cu/Al, Pb/Al) negatively

correlates with potentially viable airborne prokaryotes in marine trajectory

aerosols, whereas mineral dust load (Al, Fe proxy) positively affect their

potential viability proxy. This may suggest that airborne prokaryotes

associated to marine trajectories benefit from a particle-associate lifestyle,

enabling relatively higher humidity and supply of nutrients attributed to

mineral dust particles.
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Introduction

Aerosol deposition provide external nutrients that contribute to

phytoplankton/bacterial growth and activity in the surface layers of

the ocean (Moore et al., 2009; Tsagaraki et al., 2017). Experimental

results, however, show that aerosol addition do not consistently

induce the expected nutrient fertilization effect on phytoplankton/

bacteria (Hill et al., 2010; Guieu et al., 2014; Torfstein et al., 2017).

Several processes may contribute to this lack of response, including

differences in the chemical composition of aerosols and associated

release of macro and micro-nutrients (Moore et al., 2013) and toxic

elements (Paytan et al., 2009; Després et al., 2012; Jordi et al., 2012).

Specifically, variability in the ambient natural assemblages of

organisms at different locations and during different seasons may

also result in variable responses to atmospheric deposition (Gallisai

et al., 2014). Transport and deposition of dust during storms, or the

frequency and intensity of the pulses of deposition, may also

contribute to the observed variability in ecosystem responses

(Giovagnetti et al., 2013). Another factor that may contribute to

the observed variability, which has been far less investigated, is the

supply of airborne microorganisms upon aerosols deposition to the

surface water (Polymenakou, 2012; Peter et al., 2014; Rahav et al.,

2016a), resulting in unique interaction with the in situ microbial

communities (Mescioglu et al., 2019b; Fragola et al., 2021; Peng

et al., 2021).

Airborne prokaryotic microorganisms were often neglected

as a microbial habitat and a significant ecological vector (Kellogg

and Griffin, 2006; Polymenakou, 2012; Mayol et al., 2014). This is

partly due to the assumption that most microorganisms in

aerosols die while in the atmosphere, before their deposition,

as a result of inhospitable conditions including exposure to solar

UV-radiation, desiccation, and/or due to low nutrients

availability or high levels of toxic constituents (Griffin, 2007).

Yet, many bacterial phylum can form spores that protect the cells

from desiccation, heat, acidity, radiation, and nutrient-poor

conditions (Tang, 2009). Moreover, many bacteria are highly

pigmented, which may help shield the cells from damaging

radiation levels (Kellogg et al., 2004; Fahlgren et al., 2010).

Clouds, fog, smoke and desert dust particles can also shed

airborne bacteria from damaging UV radiation (Hara and

Zhang, 2012). Evidently, atmospheric aerosols contain

bacteria, archaea, algae, viruses, fungi, and pollen originating

from land (Kellogg and Griffin, 2006; Griffin et al., 2007) or the

ocean (Prospero et al., 2005; Flores et al., 2020). Airborne

microorganisms were identified in almost every aerosol

sample collected over aquatic and terrestrial environments

(Leck and Bigg, 2005; Favet et al., 2013; Yahya et al., 2019),

usually ranging from ~103 to ~107 cells per m3 of air (Mayol et al.,

2017; Rahav et al., 2019; Alsante et al., 2021), and were shown to

contribute to bacterial production, primary production, N2

fixation and viral infections (Peter et al., 2014; Rahav et al.,

2018; Rahav et al., 2020). Understanding the parameters that

determine the survival of airborne microorganisms is of great

ecological significance and may shed light on microbial

dispersion throughout the world’s oceans.

The Southeastern Mediterranean Sea is a semi-enclosed

oligotrophic basin (Siokou-Frangou et al., 2010; Sisma-

Ventura et al., 2021), subjected to relatively high input of

aerosols originated from neighboring deserts (Herut et al.,

2002; Guieu et al., 2014). The aerosols could have different

atmospheric transport routes dominated by marine and/or

terrestrial paths (Rahav et al., 2019). Previous indirect

evidences suggest that airborne microbes can become active

following deposition in Southeastern Mediterranean seawater

(e.g., Rahav et al., 2018), highlighting the need to quantify their

viability and better understand their biochemical role.

Here, we proxy the potential viable airborne prokaryotic

microbes (bacteria and archaea) in naturally occurring aerosols

and during an extreme dust event in the Southeastern

Mediterranean coastal Sea in 22 events over 2015. We

hypothesized that terrestrial air-mass trajectories or dust

storm events will have relatively lower viable prokaryotic

microorganisms upon deposition in seawater. Contrary,

marine air-mass trajectories, which likely contain a larger

fraction of sea-spray derived prokaryotes, will be more

protected from the hostile atmospheric conditions and thus

have a relatively higher viable airborne cells.

Material and methods

Bioaerosols collection

Aerosols were collected onto sterile 0.22-μm polycarbonate

filters (PALL) using a custom-made high-volume sampler with a

collection rate of 40 m3 h−1 (Figure 1). Aerosols were collected

over a few hours (4–6 h) to minimize prokaryotes RNA

degradation, accumulate sufficient amount of genetic material

and prevent prokaryotic cell damage caused by prolonged

filtration (Hu et al., 2017). The sampler was placed ~22 m

above sea level at the shoreline of the Southeastern

Mediterranean Sea (Lat. 32.28ʺN, Lon. 34.9ʺE). A total of

22 sampling events were undertaken between February and

December 2015 thus covering different seasonal conditions.

Three filters were collected in parallel; one for RNA

extractions, the second for airborne prokaryotes abundance

measurements, and the third as an unused blank placed on

the aerosol sampler without any pumping. For some samples

(n = 14), bacterial production measurements were also

undertaken from a fourth filter pumped in parallel.

Trace-metals and PM2.5 measurements

Total suspended particles in air (TSP) were sampled in

parallel at the same location using a high-volume sampler at a
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constant flow rate of 60 m3 h−1. After collection, a subsample of

the Whatman 41 filters was dried in a desiccator for 24 h before

being reweighed. Al, Fe, Pb, and Cu were measured after total

digestion with hydrogen fluoride (Herut et al., 2001) following

the procedure of ASTM (1983) by an atomic absorption

spectrometer Agilent 280FS AA and graphite furnace Agilent

240Z AA.

Suspended particulate matter smaller than 2.5 μm (PM2.5)

were collected every 5 min using a low-volume sampler (Thermo

Scientific Ambient Particulate Monitor, TEOM® 1400ab;

Precision: ±1.5 μg m3 (1-h average).

Air mass backward trajectories

Air mass backward trajectory analyses arriving at 10–250 m

altitudes were computed using the HYSPLIT model (http://ready.

arl.noaa.gov/HYSPLIT_traj.php). The GDAS 0.5-degree

meteorology data was used to run the backward trajectories

using a vertical velocity motion. The aerosols were classified to

terrestrial or marine origin based on their main route 3 days prior

their arrival to the Southeastern Mediterranean coast (Figure 2).

Airborne prokaryotes abundance

One filter from each event was suspended in 0.22-μm

filtered Southeastern Mediterranean costal seawater

containing microscopy-grade glutaraldehyde solution (Sigma-

Aldrich G7651, final concentration 0.2%). Then, the tube was

sonicated for 1 min in a bath sonicator (Symphony) and mixed

vigorously for additional 2 min to remove all prokaryotic cells

from the filter. Before analyses, triplicate 100 μl aliquots were

stained with SYTO9 (1:105 v:v) for 10 min in the dark, and

heterotrophic prokaryotes cells were counted using an

Attune®Acoustic Focusing Flow Cytometer (Applied

Biosystems) equipped with 488 and 405-nm lasers at a rate

of 25 μl min−1 using a discrimination threshold of green

fluorescence and forward-scatter. Additional unstained

triplicate samples were also run for cyanobacterial

abundance determination using the orange and red

fluorescence, side-scatter and on forward-scatter

discriminations. The total airborne cell count is set as the

sum of heterotrophic prokaryotes and cyanobacteria. Size

beads of ~1 μm (Polysciences) were run with blank seawater

every five samples.

FIGURE 1
An illustration showing the custom-made high-volume sampler (40 m3 h−1, 4–6 h in each sampling event) and the experimental setup used to
collect aerosols. The sampler was located ~22 m above sea level at the Southeastern Mediterranean coast. The collected filters were later processed
for measuring the potential viability proxy of airborne prokaryotes and their abundance (n = 22). Blank filters placed on the filter holder without
pumping was also collected and analyzed in each sampling event. Filters were collected throughout 2015.
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Molecular extraction and SSU rRNA gene
copy number

Collected aerosols on filters were placed in an RNA-later

solution (Thermo-Fisher AM7023) and snap-frozen in liquid

nitrogen and stored in −80°C until they were processed within a

few weeks/months. RNA was extracted from the filters using the

mirVana RNA isolation kit (Ambion) as instructed by the

manufacture. A high capacity cDNA reverse transcription kit

(Applied Biosystems) was used to generate cDNAmolecules. The

small subunit ribosomal RNA (SSU rRNA) gene copy number

was determined using a SYBR green-based quantitative real-time

PCR (Applied Biosystems) analyses with the broadly conserved

bacterial primers 331F (TCCTACGGGAGGCAGCAGT) and

518R (ATTACCGCGGCTGCTGG). Previous studies showed

the validity of these primers for RT-qPCR assays (Bräuer et

al., 2011; Gat et al., 2017).

Evaluating the relative viability-proxy of
airborne bacteria

Estimate of the “relative viability proxy” of airborne

microbial cells was defined here as the ratio between the

abundance of the SSU rRNA gene copy number in a given

sampling date and the value for 23 July 2015 that represent

reference conditions with the lowest levels of total prokaryotes

cells and Al per m3 air (Supplementary Table S1). We based our

proxy on the assumption that the physiological state of

prokaryotes is regulated by the expression of ribosomal RNA

(Klumpp and Hwa, 2009). Note, however, this approach assumes

that the average rRNA copies per airborne bacterial cell between

samples/sampling dates is similar.

Results

Aerosols deposition in the Southeastern Mediterranean

coastal seawater during the year 2015 ranged from

2 mg m−2 d−1 to as high as 209 mg m−2 d−1 during a dust storm

in early September 2015, thus exceeding the previously reported

maximal daily average flux of ~140 mg m−2 d−1 in this area

(Lawrence and Neff, 2009). Airborne prokaryotes abundance

ranged from 800 to 21,000 cells m−3, with the highest values

measured in early September 2015 during an intense dust storm

arriving from the North-East (Supplementary Table S1 and

discussion below). The abundance of bacterial SSU rRNA

transcripts ranged from 524 to 10,985 copies m3 (Figure 3A).

FIGURE 2
Representativemarine (blue) and terrestrial (peach) origin of air mass trajectories arriving the SoutheasternMediterranean Sea at 10 m altitude in
2015. The trajectories show the 3-days atmospheric route prior collection.
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We used the abundance of bacterial SSU rRNA transcripts in

23 of July 2015 as a reference (baseline), representing the lowest

ranked dataset value and particulate Al levels in air (see “Material

and Methods”). We thus evaluate the change/enrichment as a

“relative viability proxy,” which ranges from 1 (reference) to ~21

(Figure 3B). A significantly higher relative viability proxy was

found in marine-origin aerosols as compared to aerosols

associated with a dominant terrestrial trajectory (Figure 3B,

t-test, p = 0.03). The average enrichment in marine-origin

aerosols was 13.4 ± 3.7 as compared to 8.6 ± 2.8.

Throughout the dust storm event (Julian day 226–229), both

the Al (~13,000–69,000 ng m−3, Supplementary Table S1) and the

PM2.5 (~200–350 μg L−1) levels were significantly higher

compared to the lower levels of Al (<1700 ng m−3) and PM2.5

FIGURE 3
(A) Small subunit ribosomal RNA gene (SSU rRNA) copies per cubicmeter of air determined by RT-qPCR analysis; (B) The “relative viability proxy”
of airborne prokaryotic cells in respect to their atmospheric path using air-mass backward trajectory analyses. (C) The temporal dynamics of PM2.5

through 2015; (D) SSU rRNA gene copies during a storm (8–12 September 2015) and 8 days afterwards (13–21 September 2015); and (E) The “relative
viability proxy” for airborne prokaryotes during the dust-storm event and following days. The dash red line in panel (B) signifies the relative
baseline conditions with the lowest levels of total prokaryotes cells and Al per m3 air (23 July 2015). The dash red line in panels (D,E) show the
averaged value in a given period. The yellowish background signifies the dust storm duration.
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(<40 μg L−1) measured in the following 8 days (t-test, p < 0.001,

Figure 3C, Supplementary Table S1) and are considered similar

to background conditions in this marine area (Herut et al., 1999).

The abundance of bacterial SSU rRNA transcripts during the

storm ranged from 5,150 to 8,790 copies m3 and increased to as

high as ~11,000 copies m3 the following days after the storm had

settled (Figure 3D). The concurrent relative viability proxy for

the airborne prokaryotes during the dust storm was ~9 ± 3,

significantly lower than afterwards, ~14 ± 4 (t-test, p = 0.03,

Figure 3E) or from the annual average of ~12 ± 4 (t-test, p = 0.04).

An agglomerative hierarchical clustering (AHC) analysis,

which considers the prokaryotic cell abundance and RNA

transcripts, showed that the marine-origin samples

significantly differ from aerosols of a dominant terrestrial

trajectory (Figure 4A). In the marine-origin aerosols a

significant negative correlation was calculated between Pb/Al

or Cu/Al and the relative potential viability of airborne

prokaryotes, while in the terrestrial-origin aerosols a less clear

trend was observed (Supplementary Figure S1). Fe or Al (proxy

for mineral dust particles) were positively correlated in both

marine (Figures 4B–D; p < 0.05) and terrestrial-origin aerosols,

noting the limited number of observations.

A limited number of aerosol samples were also collected and

analyzed for airborne prokaryotes genetic diversity; one during

the intense dust storm (8 September 2015, Julian day 226) and

the other under background conditions a few days afterwards

(20 September 2015, Julian day 238). The prokaryotic microbial

beta-diversity was overall similar between the “dust” and the

“background” filters (Supplementary Figure S2). Proteobacteria,

Actinobacteria and Firmicutes were the most dominant bacterial

phyla (Supplementary Figure S2A). The most dominant

prokaryote within the phylum Proteobacteria was alpha-

proteobacteria (~80% of ASVs) followed by beta-

proteobacteria (~10%), gamma-proteobacteria (~5%), and

FIGURE 4
(A) An agglomerative hierarchical clustering (AHC) dendrogram showing the dissimilarities (Euclidean distance) between aerosols with marine
(green) and terrestrial (red) origin; (B) Principle component analysis (PCA) of the marine-origin trajectories; (C,D) The relationship between the
relative potentially viable airborne prokaryotes and Al (grey), Fe (dark red), Pb/Al (dark pink) and Cu/Al (white) in marine-origin aerosols [corresponds
to panel (B)].
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delta-proteobacteria (~3%) (Supplementary Figure S2B). Within

the order taxonomic level, in the dust filters bacillales, frankiales,

and Cytophagales were the most abundant; ~10% of ASVs each.

Clostridia and Chromatiales were present in the dust filters but

not in the background, comprising 2%–3% each. In the

background filter bacillales comprised ~20% of the ASVs,

which is double than found in the dust filter. Within the

family taxonomic level, bacillaceae comprised ~23% of all

ASVs in the background filter, while only ~4% in the

background. Rhodobacteraceae comprised ~7% in the

background and ~4% in the dust filters, and the

geodermatophilaceae relative ASV abundance was 5-fold

higher in the dust (~5%) than the background (~1%) filters.

Other differences in microbial beta diversity between filters were

minor and insignificant.

Discussion

Aerosol’s origin and trace-metals affect
airborne prokaryotic viability proxy

The physiological state of prokaryotes is indirectly regulated

by ribosomal RNA transcription (Klumpp and Hwa, 2009),

implying the more SSU rRNA gene copies per cell, the more

active they are. Based on this assumption, our results suggest that

some airborne prokaryotes indeed remain viable during

atmospheric transport (Figures 3A,B), in agreement with

previous reports (Womack et al., 2010; DeLeon-Rodriguez

et al., 2013). A higher relative viability proxy for airborne

prokaryotes was found in marine-origin aerosols, suggesting

that humidity in the air is an important factor contributing to

their ability to survive in the atmosphere (Leck and Bigg, 2005).

Indeed, airborne prokaryotes with marine origin are often

embedded in transparent gel-like polymers which protect

them from desiccation, and provide them with sustaining

nutrients (Aller et al., 2005; Leck and Bigg, 2005; Cunliffe and

Murrell, 2009). In agreement, a recent study reported on high

concentrations of transparent exopolymer particles in aerosol

particles at the tropical Atlantic Ocean (Pinxteren et al., 2022).

Moreover, a high percent of airborne prokaryotes in cloud-water/

precipitation remain viable during atmospheric transport (Hill

et al., 2007; Murata and Zhang, 2016; Stopelli et al., 2017).

We observed that in marine aerosols the relative viability

proxy of airborne prokaryotes is affected by certain trace metal

concentrations (Figures 4B–D). The negative effect of Cu/Al and

Pb/Al (Figure 4D) was attributed to the potential toxicity of these

anthropogenic trace metals. The positive relationships between

the relative viability proxy and Fe or Al concentrations in air, as

proxies for mineral dust content (Figure 4C, Supplementary

Figure S1), may be linked to the release of some associated

nutrients or the positive role of the particle’s micro-

environment. This suggest that airborne prokaryotes may

benefit from a particle–associated lifestyle through attachment

to particles, especially under humid (marine) conditions. Indeed,

large aggregates/particles were shown to protect airborne

microbes through shielding from UV, especially over water

which also reduces humidity stress (Dowd and Maier, 2000).

Moreover, it is possible that the particle-associated microbes

utilize micro and macronutrient directly from the particle

surface, thereby can remain active and possibly grow.

Furthermore, respiration of particle-associated airborne

microbes can create a low oxygen micro-zones, as often found

on large marine particles (Klawonn et al., 2015), thus “enable”/

“ease” the survival of anoxic bacteria during atmospheric

transport which is essentially aerial. Indeed, oxygen-sensitive

prokaryotes (facultative or obligate) are routinely found on dust

samples (Katra et al., 2014; Gat et al., 2017). For example,

bacillaceae (order: Bacillales, Phylum: Firmicutes), which

comprised 10%–20% of the ASV’s on an order level

(Supplementary Figure S2A) and 4%–23% in a family

taxonomic level (Supplementary Figure S2C), are considered

facultatively anaerobic. While we do not have a direct/specific

quantification on their viability, it is reasonable to assume that

some of them survive in the atmosphere, especially given that

many of them form endospores (Secaira-Morocho et al., 2020).

Currently, we cannot state which bacterial phylotypes remained

viable during atmospheric transport and were actively growing or

involved in specific cellular pathways. This question could be

investigated by sequencing efforts of the airborne ribosomal 16S

RNA transcripts as well as other specific genes of interest

(Alsante et al., 2021). One such gene could be nifH as

airborne diazotrophs are routinely found in dust samples

(Foster et al., 2009), which, in turn, may fix N2 upon

deposition in seawater (Rahav et al., 2018).

Viability proxy of airborne prokaryotes
during an extreme dust storm event

The dust storm that arrived at the Southeastern

Mediterranean Sea in early September 2015 (starting

7 September 2015) was substantial and relatively prolonged

(Rahav et al., 2016b). Estimated increase in inorganic

nutrients to the surface seawater were ~185 nM NO3+NO2

and ~1.5 nM PO4 (Rahav et al., 2016b), which are up to 50%

higher than the typically reported values in this system during the

summer (Kress et al., 2019). The concurrent in-situ chlorophyll-a

concentration and primary productivity rates increased only

moderately a few days after aerosol deposition (Rahav et al.,

2016b), suggesting the % of viable airborne bacteria, who can

become active upon deposition (Rahav et al., 2018), was relatively

low in this specific and unique event. Our results, based on the

relative viability proxy analysis, overall agrees with this notation

that airborne prokaryotes during the dust storm were “less”

active than in “typical” (clear-sky) days. The low levels of the
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relatively viability proxy during the dust event may be attributed

to anthropogenic inhibitors carried by the dust, mainly metals

and organic pollutants. Thus, transport time, the presence of

pollutants and the chemical reactions on surface particles

during the dust event probably impacted the microbial

viability, yet further research is needed to assess how

physical and chemical microhabitats impacts

microorganism functionality (Alsante et al., 2021).

Moreover, given the acidic conditions in the atmosphere

and clouds (Pye et al., 2020), trace-metals leachability and

thus potential toxicity may increase (Koçak et al., 2007). It is

therefore not surprising that the relative viability proxy for

airborne prokaryotes and potentially toxic trace metals display

a negative relationship (Figure 4D). Marine trajectory

aerosols, with potentially higher pH (seawater are typically

basic, pH = ~8.15), will likely result in lower trace-metals

leachability and thus lower toxicity to airborne prokaryotes,

resulting in their higher relative viability (Figure 3B).

In addition to bacillaceae (see above), frankiales and

Cytophagales were the most dominant bacterial groups in the

dust samples (Supplementary Figure S2). Frankiales (Phylum:

Actinobacteria) has high G-C content in their DNA, enabling

them to survive (and likely also to remain active) in a wide range

of niches, including the atmosphere (Kellogg and Griffin, 2006).

Another abundant prokaryote in air is cytophagaceae (order:

Cytophagales, phylum: Bacteroidota). Members of this bacterial

order are well-known remineralizers of organic matter, and are

widely dispersed in top-soils, freshwater and surface seawater

(Sun et al., 2018; Rubin-Blum et al., 2022). While we cannot say

the percent of viable cells within these bacterial phylotypes, in

light of their cellular characteristics it is reasonable to

hypothesize they are also the dominant groups among the

viable cells.

Techniques to assess airborne microbial
viability—The plot thickens

The relatively few aero-microbiology studies over the ocean

are mostly based on genetic diversity (Mayol et al., 2017;

Mescioglu et al., 2019a), culture or spore-counting techniques

(Griffin et al., 2001; Womack et al., 2010; Fernandez et al., 2019),

microscopic approaches (DeLeon-Rodriguez et al., 2013),

measuring specific metabolic/catabolic microbial processes

such as bacterial productivity, N2 fixation and amino-acid

synthesis (Rahav et al., 2018; Ruiz-Jimenez et al., 2021), and/

or by looking at airborne cell’s RNA expression (DeLeon-

Rodriguez et al., 2013; Ruiz-Jimenez et al., 2021 and this

study). Each approach has its pros and cons (reviewed in

Alsante et al., 2021), but neither of them directly quantifies

how many airborne microbes remain viable during their

atmospheric transport and which taxa are more likely to

survive. Here, we used rRNA transcripts quantification as a

proxy for a relative consideration of this scientific challenge

throughout a representative year in a coastal marine area

subjected to high aerosol deposition (Herut et al., 2016).

While we cannot directly calculate the actual % viability of

the airborne prokaryotic cells, our result provides the first

relative change in the potential viability of airborne

prokaryotes during an extreme dust storm event and the days

afterwards presenting background conditions, and thus a relative

estimate of the potential viability at the Southeastern

Mediterranean Sea. We warrant that complimentary

approaches such as “live-dead” staining of airborne

prokaryotes (e.g., based on membrane integrity or other

redox-based vitality approaches), and/or collection of airborne

cells into sterile seawater containing RNA-later preservation

solution, are required to better quantify % viable cells.

Moreover, comparing sequences of 16S rRNA gene (DNA

level) and transcript (RNA level) may provide valuable

information on the prokaryotes identity and which phylotypes

remained viable during atmospheric transport. Understanding

the factors that influence airborne bacterial abundance and

viability in the atmosphere is an important missing

component for further insight into microbial biogeography,

connectivity/spreading and diversity (Hervas et al., 2009;

Fröhlich-Nowoisky et al., 2016). Such information can also

benefit the parameterization of model simulations of

bacterial emissions and dispersal (Burrows et al., 2013).

Moreover, climate change and desertification projections

suggest an increase in dust loads and storm events boosting

transoceanic/marine transport, and therefore increasing the

ecological significance of airborne prokaryotic

microorganisms. We note that much further studies are

needed to understand the factors and mechanisms impacting

bio-aerosols viability.
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