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Monitoring degradation in arid and semi-arid areas is one of the main concerns

for governments, given the growing degradation trend. Meanwhile, detecting the

areas subjected to degradation requiring management in the shortest time and at

the lowest cost is a necessity, especially in border areas such as Hamoun Wetland,

located between Iran and Afghanistan. Albedo and normalized difference

vegetation index (NDVI) were calculated using remote sensing technology to

monitor the degradation intensity in different periods (August 1999, 2009, 2015,

and 2020). Change vector analysis in brightness and greenness indices for 1999 and

2020 was used to determine the changes in intensity. Linear regression was run

between albedo andNDVI. Finally, degradation intensity (DI) mapwas developed to

monitor degradation intensity. A confusionmatrix was created between the change

vector analysis (CVA) and the albedo–NDVI model to evaluate the accuracy of the

map obtained from this model for 1,476 pixels of different classes. The linear

regression between NDVI and albedo showed a negative correlation between

indices (R = −0.849). The results showed an increase for the regions with null, low,

and medium degradation intensity, while an expansion was observed for the

regions with severe and extreme degradation. The confusion matrix results

indicated the high accuracy (0.705) of the degradation intensity model for the

study area. These changes were about 52.01% from 1999 to 2009, 7.07% from

2009 to 2015, 56.26% from 1999 to 2015, and 55.15% from 2015 to 2020.

Additionally, the average rate of changes in degradation intensity between

1999 and 2020 was 13.11%.

KEYWORDS

monitoring, degradation, albedo, NDVI, Hamoun Wetland

1 Introduction

Vegetation changes are closely related to desertification. Thus, vegetation index is one

of the main factors in recognizing desertification processes. On the other hand, a decrease

in vegetation cover and biomass is correlated with soil degradation, leading to increased

surface albedo (Cordeiro et al., 2015). Changes in vegetation affect the level of surface
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albedo (Myhre andMyhre, 2003), and different vegetation covers

represent different albedo values (Kang and Hong, 2008). Albedo

has the potential to monitor ecosystem performance changes in

arid regions and provides warning of the beginning of

desertification (Zhao et al., 2018). Meanwhile, surface albedo

is one of the most important components causing surface

radiation balance (BdaS et al., 2016). Albedo determines the

energy budget in micrometeorological conditions, including

temperature and aridity of a land (Goudei and Middleton,

2006). Increasing land surface albedo implies degradation of

land quality (Piña et al., 2016), and vegetation can be considered

one of the most important key components in reducing the

effects of erosion and desertification in arid areas. Desertification

development and vegetation cover change are among the factors

causing changes in albedo. Surface albedo is defined as the ratio

of the total radiation from the Earth’s surface to total incoming

solar radiation, which often has a wavelength range of 0.3–3 μm.

It is one of the most important factors controlling the energy

available throughout the day with surface change processes

(Houldcroft et al., 2009). Therefore, it can be said that the

change in vegetation affects the surface albedo and

desertification occurs with the destruction of vegetation, and

the surface albedo increases in the degraded areas (Zhao et al.,

2018). Zongyi et al. (2011) presented the albedo–NDVImodel for

monitoring desertification (Zongyi et al., 2011). They showed

that albedo and NDVI could well reflect the desertification

intensity. Vegetation, the combination of water and heat and

their changes, and desertified areas could be easily detected using

multi-spectral remote sensing information. Remote sensing-

based vegetation indices and land surface albedo are two

preferable indicators for monitoring the degradation process

(Zhao et al., 2018).

Pan and Li (2013) selected three different groups, namely,

vegetation, water, and bare soil, based on the spectral mixture

analysis model (Pan and Li, 2013). They assessed the status of

desertification based on the temporal–spectral feature of

vegetation and surface albedo components derived from

Landsat satellite images. Karnieli et al. (2014) examined the

changes in NDVI and albedo indices for four periods using

the change vector analysis (CVA) technique to understand the

spatial–temporal dynamics of the environmental processes

(Karnieli et al., 2014). They used four different Landsat

images and showed the changes for each time step during the

studied period. Cordeiro et al. (2015) estimated the indices

affecting desertification in Natal County using the SEBAL

algorithm, albedo, vegetation cover, and surface temperature

indices with the help of remote sensing technology (Cordeiro

et al., 2015). Lamchin et al. (2016) developed a quantitative

model on a local scale using remote sensing data to evaluate land

cover changes and desertification (Lamchin et al., 2016). They

examined the land surface status for vegetation biomass,

landscape pattern, and micrometeorology using NDVI, the

Topsoil Grain Size Index (TGSI), and the albedo index. Pina

et al. (2016) extracted NDVI, BSI, and the albedo index from

Landsat satellite images using remote sensing (Piña et al., 2016).

They applied the CVA model to define the direction and value of

these indices for determining either degradation or progress of

land surface status in different periods. Additionally, they

determined the desertification rate index based on the

relationship between NDVI and albedo.

Han et al. (2015) calculated theMSAVI, FVC, and TVDI, and

land surface temperature plus surface albedo to evaluate

desertification using Landsat images by applying the

geographic information system (Han et al., 2015). They used

these indices to analyze the spatiotemporal pattern of

desertification in different periods. Querino et al. (2016)

analyzed the spatiotemporal dynamics of the normalized

difference vegetation index (NDVI), leaf area index (LAI),

surface albedo, and temperature in two different vegetation

covers, preserved and deforested areas (Querino et al., 2016).

They showed that the forest conversion implies a decreased

NDVI and LAI and an increased surface albedo plus surface

temperature.

Different methods have been presented to assess and classify

desertification intensity levels in Hamoun International Wetland

(Fozuni, 2007; Mohammad Ghasemi et al., 2008; Parvariasl et al.,

2010; Zolfaghari et al., 2011; Eftekhari et al., 2015). Most of them

have suffered many problems such as high costs, expansive areas,

and lack of access to areas beyond the political boundaries of Iran

due to political and security issues. On the other hand, previous

studies have been based on the NDVI or other vegetation indices.

The relationship between vegetation changes and albedo has

been neglected or sparsely studied with regard to desertification

in this region and other areas in Iran. With an area of about

15,197 km2, Hamoun International Wetland is located in the

southeastern part of Iran, extending as a belt around the Sistan

region with more than 400,000 people. Dried Hamoun Lake

contains large amounts of erodible sediment, conducive to wind

erosion and dust (Choobari et al., 2014). For ecological risk

control of degradation in larger arid and semi-arid areas, using

remote sensing with the extraction of the albedo and vegetation

index is appropriate (Wei et al., 2020). The indices are simple and

easy to obtain, which is conducive for quantitative analysis,

evaluation, and monitoring of degradation rate (Wu et al., 2019).

Thus, it is necessary to use inexpensive and quick methods to

monitor this area’s degradation and land cover changes.

Detecting degradation areas for implementing appropriate

management plans with the minimum cost and within the

shortest time is of priority for governments and communities

involved. To achieve this goal and identify the degradation areas

in different periods, albedo indices and NDVI can be used to

monitor and prepare degradation intensity maps. Because of its

simplicity in detecting damaged areas within the shortest time

with the lowest cost, this model, as a simple and innovative

method, can serve as an alternative to the many methods

presented for identifying desert areas that require extensive
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field operations, especially in large border areas located between

countries and where field access to the areas is not safe. Despite

the importance of Hamoun Wetland, most field studies on the

status of this particular geographical area are difficult and rare

due to its location between Iran and Afghanistan and the conflicts

in Afghanistan (UNEP, 2002; FAO, 2015). Therefore, most

studies have focused on the Iranian part of the wetland, and

parts of the wetland located in Afghanistan have been less

studied. Less has been studied about degraded areas in

Hamoun International Wetland due to recent droughts and

lack of access to a part of the wetland in Afghanistan.

Degradation intensity was evaluated during different periods

based on remote sensing technology in this study.

2 Materials and methods

2.1 Study area

With about 15,197 km2, Hamoun International Wetland is

situated in southeast Iran. The area of Hamoun International

Wetland in Iran is 62,095 ha, while it is 66,478 ha in Afghanistan

(Kariminazar et al., 2010) (Figure 1). The area is characterized

by even topography occurring between 30° 5’ _ 31° 28′ N and

60° 15’ _ 61° 50′ E (Kariminazar et al., 2010). Hamoun

International Wetland is one of the most ecologically valuable

areas in Iran (Scott and Smart, 1992). According to the long-term

statistics of the Zabol synoptic station, the mean long-term

rainfall in this region is 61.1 mm, about 44% occurring in

winter. The mean long-term temperature is 26.6°C, and the

mean monthly temperatures of the warmest (July) and coldest

months (January) are 41.4°C and 2.4°C, respectively. Based on

long-term data, the maximum mean wind speed occurs in June,

July, August, and September, while the lowest mean wind speed

happens in December (Zolfaghari et al., 2011).

2.2 Research methodology

In this study, the steps to monitor degradation in the

Hamoun International Wetland were as follows:

Step 1: Satellite images were prepared, and image preparation

processes were performed.

Step 2: NDVI was calculated using reflectance bands and

albedo index based on the SEBAL algorithm.

Step 3: The area’s degradation equation and degradation

intensity map were prepared.

Step 4: Brightness and greenness indices for 16 August

1999 and 17 August 2020 were calculated to determine the

intensity changes using vector analysis.

FIGURE 1
Location of the study area.
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Step 5: The precision of the prepared map was assessed by

controlling the points obtained from step 4, and a confusion

matrix was formed.

In step 1, satellite data related to Landsat 8, OLI sensor, on

17 August 2020, 20 August 2015, and Landsat Thematic Mapper

5 (TM) for 16 August 1999, and 19 August 2009 (Path 157-Row

38 and Path 157-Row 39), with a completely clear sky, were

downloaded from http: earthexplorer.usgs.gov/.

For proper image efficiency and reduction of sensor error

and to increase the image quality before calculating the

required indices, first, the DN value for each band must be

converted into spectral radiance and then to spectral

reflectance (Lamchin et al., 2016). This operation was

carried out according to Landsat 8 manual (Landsat 8,

2015). The flowchart and different steps of determining the

intensity of degradation based on the albedo–NDVI model

and change vector analysis are shown in Figure 2. In this

study, summer season (August) was selected to reduce the

error caused by surface soil moisture. Another reason was the

absence of annual plant species in this season since the soil

surface is dry and contains only permanent species that play a

very important role in soil stability and protection.

2.3 NDVI–albedo model

2.3.1 Calculation of the indices
Normalized difference vegetation index (NDVI) are among

the most important indicators, defined as the ratio of reflectivity

measured in visible red radiation (red band) to near-infrared

reflectance (NIR band). Since NDVI are highly affected by

chlorophyll absorption in evergreen leafy cover and vegetation

density and the contrast between vegetation and soil is highest in

red and near-infrared bands, NDVI were selected (Cai et al.,

2010; Khosravi et al., 2017). This index was estimated according

to Eq. 1.

NDVI � NIR − R( )/ NIR + R( ), (1)

FIGURE 2
Steps in determining the intensity of degradation based on the albedo–NDVI model. N, condition negative; TP, true positive; TN, true negative;
M, magnitude of change; I, intensity of degradation; greenness 1, 2, DN values of greenness from 1999 and 2020; brightness 1, 2, DN values of
brightness from 1999 and 2020.
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where NIR is the near-infrared band and R is the red band.

In this study, for the calculation of the water index, we used

MNDWI (Modified Normalized Difference Water Index) to

distinguish water bodies (Wu et al., 2019). The MNDWI was

calculated using Equation 2.

MNDWI � Green −NIR( )
Green +NIR( ) , (2)

where green is the green band and NIR is the near-infrared band.

Another important index is surface albedo, defined as the ratio of

the reflected radiation to the incident shortwave radiation. The

surface albedo was calculated using Eq. 3 (Allen et al., 2002).

α � αtoa − αpath−radiance
τsw2

, (3)

where

αpath-radiance is the average portion of the incoming solar

radiation across all bands which is back-scattered to the satellite

before it reaches the earth’s surface, with the values for αpath-

radiance ranging between 0.025 and 0.04 according to the SEBAL

model; its value was set at 0.03 in this study (Allen et al., 2002).

αtoa is the above-atmospheric albedo and is calculated

through Eq. 4 (Allen et al., 2002).

αtoa � ∑ ωλ * ρλ( ), (4)

where

ωλ is the weighted coefficients for non-thermal bands and

ρλ is the spectral reflectivity of each band.

The weighted coefficients for non-thermal bands can be

calculated from Eq. 5 (Allen et al., 2002).

ωλ � ESUNλ∑ESUNλ, (5)

where ESUNλ is the solar exo-atmospheric irradiance for

each band.

τsw is the atmospheric transitivity, which is a part of the

incident radiation transmitted by the atmosphere, and represents

the effects of the atmosphere. Given that this effect exists for both

incoming and outgoing radiation, its square is used to calculate

the surface albedo. For a clear and dry sky, it is calculated using

Eq. 6 (Allen et al., 2002).

τsw � 0.75 + 2*10−5*z, (6)

where Z is elevation above sea level (m).

In step 3, to develop a degradation map, the NDVI and albedo

indices were normalized. For processing normalization data, the

maximum and minimum values of NDVI and albedo in the study

area were found, they were used for data normalization processing

based on Eqs 7 and 8, and then a linear regression was taken between

these two indices (Zongyi et al., 2011; Han et al., 2015).

NDVIN � NDVI −NDVI min

NDVI max −NDVI min
( ) × 100 (7)

AlbedoN � Albedo − Albedo min

Albedo max − Albedo min
( ) × 100 (8)

The slope coefficient of the regression line between NDVI

and albedo indices was calculated to achieve the degradation

intensity equation, and the resulting equation was applied to

determine the degradation intensity. The relationship obtained

from the linear regression between NDVI and albedo is given as

Eq. 9:

Albedo � −0.8491pNDVI + 0.6573. (9)

To evaluate the degradation intensity of the study area, Eq. 10

was used (Zongyi et al., 2011; Lamchin et al., 2016):

DI � apNDVI − Albedo. (10)

In this equation, DI represents the degradation intensity, and

the a value is the slope of the orthogonal lines found in the

NDVI–albedo relationship, or in this study, 0.8491 (1/1.177 Eq.

9). The degradation index based on the Jenks natural breaks

index was classified into five classes (null, low, moderate, severe,

and extreme) using ArcGIS10.8 software (Han et al., 2015; Han

et al., 2015; Piña et al., 2016; Wei et al., 2020).

2.4 Change vector analysis model

The change vector analysis model was applied to multi-

temporal data to compare the differences in intensity of

change in times (Ali Baig et al., 2014). The tasseled cap

greenness and brightness were used for two successive periods

1999 and 2020.

The magnitude of change was calculated by Eq. 11 to evaluate

the intensity of change between 1999 and 2020.

M �
																																																							
Greenness1999 − Greenness2020( )2 + Brightness1999 − Brightness2020( )2√

(11)

The coefficient used for Landsat 8 (OLI) and Landsat 5 (TM)

to evaluate the greenness and brightness of the study area is

shown in Supplementary Tables S1, S2 (Khosravi et al., 2017).

Eventually, 1,476 pixels of different classes were selected

randomly (Table 1), and a confusion matrix was created

between the map prepared by the NDVI–albedo model and

the change vector analysis derived from brightness and

greenness indices to calculate the kappa coefficient accuracy.

3 Results

3.1 Variation of albedo index

Evaluation and classification by the natural breaks method

using ArcGIS10.8 revealed that the albedo index for August 1999,

2009, 2015, and 2020 was variable (Supplementary Figures S1,
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S2). The albedo index in the four periods showed the range of

0.06–0.63 in August 1999, 0.14–0.7 in August 2009, 0.11–0.81 in

August 2015, and 0.13–0.45 in August 2020. The maximum

albedo increased from 1999 to 2015, but in 2020, it decreased due

to floods in parts of the wetland (Table 2). Additionally, the

average albedo index in the region was variable from

1999 to 2020.

The results also showed that the highest albedo value

occurred in the northern, northwestern, and western parts of

the wetland (Saburi and Puzak Hamoun), indicating vegetation

decline and destruction of Hamoun International Wetland

during the years. The results of the classification of albedo

classes in the study area using the Jenks natural breaks

method are presented in Table 2.

3.2 Variation of NDVI

The NDVI estimations for August 1999, 2009, 2015, and

2020 are shown in Supplementary Figures S3, S4 for a

comparative study of the changing trend.

According to NDVI classification using ArcGIS10.8, the

range was between −0.75 and +0.60 in August 1999 and

between −0.25 and +0.67 in August 2009. It was

between −0.26 and +0.63 in August 2015 (Table 2).

The higher minimum in 1999 was due to the upper water

level in Hamoun Wetland, and during the years, the water level

has decreased, and the minimum range has also decreased.

The linear regression between NDVI and albedo is shown in

Figure 3. The regression between the NDVI and albedo showed a

high correlation between these two indices, with the coefficient of

determination R2 = 0.72 and the negative correlation coefficient

R = −0.849.

3.3 Degradation intensity map (August
1999)

Evaluation of degradation intensity based on the

albedo–NDVI model in the study area in August 1999 showed

28.72% of the study area was classified in the severe degradation

class and 31.79% was in the extreme one (Figure 4,

Supplementary Table S3). Based on the degradation intensity

map results, severe and extreme degradation intensities were

observed in parts of the wetland that has been already dried

up. This year, 10.22% of the study area was covered with water

(Figure 5A).

3.4 Degradation intensity map (August
2009)

Evaluation of degradation intensity based on the

albedo–NDVI model in the study area in August 2009 showed

that 7.89% was classified as severe degradation intensity and

35.59% was in the extreme class (Figure 4, Supplementary Table

S3). Based on the degradation intensity map, severe and extreme

degradation intensities were observed in some parts of the

wetland and the central and agricultural land in the study

area (Figure 5B).

TABLE 1 Percentage of pixels selected in each class.

Class Extreme Sever Moderate Low Null

No. of pixel 337 455 333 261 90

Percent 22.8 30.8 22.6 17.7 6.1

TABLE 2 Results from the study of albedo and NDVI.

NDVI Albedo index Year

Average High Low Average High Low

0.021 0.60 −0.75 0.38 0.63 0.06 1999

0.14 0.67 −0.25 0.41 0.70 0.14 2009

0.10 0.63 −0.26 0.48 0.81 0.11 2015

0.13 0.63 −0.26 0.28 0.45 0.13 2020

FIGURE 3
Linear regression between NDVI and albedo.
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3.5 Degradation intensity map (August
2015)

Evaluation of degradation intensity based on the

albedo–NDVI model in the study area in August 2015 showed

30.62% of the area in the severe degradation intensity and 18.60%

in the extreme class. Approximately all wetland area was dry and

without water (Figure 4, Supplementary Table S3). Additionally,

severe and extreme degradation intensities were observed in the

north and west of the studied region, which indicated the wetland

area (Figure 5C).

3.6 Degradation intensity map (August
2020)

Evaluation of degradation intensity based on the

albedo–NDVI model in the study area in August 2020 showed

33.88% of the area in the severe degradation intensity and 20.57%

in the extreme class (Figure 4, Supplementary Table S3).

Moreover, severe and extreme degradation intensities were

observed in the north and west of the studied region. Due to

the flooding of the wetland in 2020, the extreme degradation class

decreased (Figure 5D). The description of degradation intensity

classes is shown in Table 3.

3.7 Degradation intensity changes from
1999 to 2020

The rate changes in degradation intensity classes around the

studied period 1999–2020 showed that 3.72% of the area without

degradation and 2.88% of the area with low degradation intensity

have decreased. Also, the area of severe degradation class has

increased by 6.36 percent, and the area of extreme degradation

class has decreased by 8.44%. Due to the flooding of the wetland

in 2020, the highest degradation intensity in the study area

occurred from 2015 to 2020. In the four studied periods, the

regions without degradation, with low degradation, and with

medium degradation decreased, but those with severe and

extreme intensity increased. The average of changes in all

classes was about +5.81% for 1999–2009, +3.43% for

2009–2015, +9.24% for 1999–2015, −13.11% for

1999–2020, −18.92% for 2009–2020, and −22.35% for

2015–2020 (Table 4).

3.8 The intensity of changes from 1999 to
2020

The results of the evaluation of the intensity changes based

on the change vector analyses showed that 56.16% of the area had

extreme changes, and the highest level of changes occurred in the

wetland area (Figure 6). Table 5 shows the intensity change

classification from 1999 to 2020.

3.9 Degradation intensity map accuracy

The confusion matrix between the degradation intensity map

obtained from the albedo–NDVI model and the degradation

based on the linear coefficient of variation derived from

brightness and greenness indices was used to evaluate the

accuracy of the degradation intensity map classification. The

FIGURE 4
Degradation intensity percent for study periods.
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FIGURE 5
Degradation intensity map of studied periods. (A) August 1999, (B) August 2009, (C) August 2015, and (D) August 2020.

Frontiers in Environmental Science frontiersin.org08

Zolfaghari et al. 10.3389/fenvs.2022.902687

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.902687


confusion matrix for 1,476 pixels showed that the kappa

coefficient was 0.705 (Table 6).

4 Discussion

In this research, we studied the degradation intensity of a

region using a remote sensing technique based on spectral

reflectance from the earth’s surface.

A linear regression analysis between NDVI and the albedo

index showed a negative and strong relationship (r = −0.849),

consistent with the results presented by Pan and Li (2013),

Karnieli et al. (2014), and Piña et al. (2016). Increased NDVI

is accompanied by a decline in albedo, where areas with high

albedo indicate vegetation degradation and bare soil. In the study

area, due to frequent droughts, drying of Lake Hamoun, and high

evaporation intensity, vegetation is one of the points of

desertification, consistent with the study of Zolfaghari et al.

TABLE 3 Description of different degradation intensities in the study area.

Class Field image Google Earth image Description

1—Null: non-
degradation

It is located generally in the south and east of the
study area. The dominant vegetation in this class is
Tamarix aphylla and Alhagi camelorum. These areas
are supplied by the flooding of the Helmand River
(Zolfaghari et al., 2019)

2—Low These areas mainly refer to moderate class of
degradation. The dominant vegetation in this class is
Desmostachya bipinnata (Zolfaghari et al., 2019)

3—Moderate Abandoned lands and destroyed agricultural land are
in this class, and its vegetation is sparse Tamarix trees
(Zolfaghari et al., 2019)

4—Severe This category refers to zones with hard clay lands
with very low Tamarix and halophyte vegetation.
Severe degradation intensity was observed in the
northern and western parts of the studied region
located in Saburi Hamoun. This grade of degradation
includes playa fans with fine sediment (Zolfaghari
et al., 2019)

5—Extreme This class corresponds to the dense sand dunes,
eroded marl terrace, and low vein combined with
claypan and basin hole. It is located generally in a
large part of Saburi and Puzak Hamoun in Iran and
Afghanistan; the area is dry, and the soil is bare due to
the prevailing drought conditions in the wetland.
Except for a few spots of scattered vegetation, the
triple hamouns are affected by wind erosion
(Zolfaghari et al., 2019)
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(2013). The degradation intensity map of the study area in

1999 revealed that the classes with the highest degradation

intensity were observed in parts of the wetland that dried up,

and there was no extreme class in the study area. In total, 28.72%

of the area was classified into the severe degradation class and

31.79% into the extreme class. Evaluation of the degradation

intensity map obtained from the albedo–NDVI for 2015 showed

that 76.66% of the study area had an extreme, severe, and

moderate degradation intensity class. A total of 49.22% of the

area had an extreme and severe class, consistent with the results

reported by Zolfaghari et al. (2011). As expected, the severe and

extreme degradation classes in the proposed maps correspond to

the areas with the minimum NDVI and the maximum albedo.

Evaluation of the degradation intensity maps in 1999 and

2009 showed that 60.51% and 43.48% of the study area had

severe and extreme degradation classes. One of the main reasons

for the very high percentage of destruction in 1999 is the dryness

of a large part of Saburi Hamoun in Afghanistan, as shown in

Figure 5A. The rate of changes in degradation intensity classes

showed that the highest intensity of changes occurred between

2015 and 2020 with 22.35% because a large part of Saburi and

Puzak Hamoun in Iran and Afghanistan is dry, and the soil is

bare due to the prevailing drought conditions in the wetland.

Except for a few spots of scattered vegetation, the triple hamouns

are affected by wind erosion. It is consistent with the studies of

Rashki et al. (2015). Additionally, the rate of changes in

degradation intensity classes between 2009 and 2020 was

18.92% and between 2009 and 2015 was 3.43%. It was 13.11%

between 1999 and 2020, 9.24% between 1999 and 2015, and

5.81% between 1999 and 2009. The results showed that 22.32% of

null areas, 17.28% of areas with low degradation, and 50.62% of

areas with extreme degradation were reduced from 1999 to 2020.

Meanwhile, 16.14% and 38.21% were added to areas with

moderate and severe degradation classes, respectively.

Additionally, the map of degradation intensity classes showed

that the highest degradation intensity is related to the northern,

northwestern, and western parts of Hamoun International

Wetland, corresponding to areas of the three hamouns that

are dry and where the dust rises into the air (Rashki et al.,

2015). Therefore, it can be said that albedo is one of the main

parameters for inland studies whose effects on the environment

should be discussed. Additionally, the maps prepared for albedo

distribution (Supplementary Figures S1, S2) and NDVI

classification (Supplementary Figures S3, S4) indicated that

the lowest NDVI and the highest albedo value occurred in the

northern and western parts of the study area, coinciding with the

most intense degradation class. NDVI is among the indices

sensitive to viable and healthy vegetation. The vegetation

distribution map showed that over 65% of the study area was

characterized by an NDVI of less than 0.15, representing bare

soil. The results reported by Zolfaghari et al. (2011) of a part of

the Sistan region revealed that vegetation indices were among the

indices for determining desertification (Zolfaghari et al., 2011).

Additionally, based on the surface albedo distribution map, 43%

of the region had an albedo value larger than 0.45. To evaluate the

relationship between these two indices, we selected 600 points

randomly where the regression correlation between the NDVI

and albedo index showed a negative and robust correlation

coefficient with a value of r = 0.849. These were compatible

with the studies by Zongyi et al. (2011), Pan and Li (2013),

Cordeiro et al. (2015), and Querino et al. (2016). Investigation of

the degradation intensity map of the albedo index and NDVI

indicated that 79.88, 57.69, 76.66, and 74.79% of the study area

were found to belong to very intense, intense, and moderate

degradation classes for 1999, 2009, 2015, and 2020, respectively.

Over 49% of the region is characterized by very intense and

intense degradation classes for 1999, 2015, and 2020, confirming

the results reported by Zolfaghari et al. (2011). Additionally,

according to Supplementary Figures S1, S2, and S4, intense and

very intense degradation classes corresponded with areas with

TABLE 4 Percentage of changes in degradation intensity classes in the study periods (1999–2020).

Water Extreme Severe Medium Low Null Intensity class
year

10.22 31.79 28.72 19.37 8.43 1.47 1999

4.41 35.59 7.89 14.21 14.02 23.88 2009

0.98 18.60 30.62 27.44 17.68 4.68 2015

23.32 20.57 33.88 20.34 1.45 0.43 2020

−5.8 +3.8 −20.83 −5.16 +5.59 +22.41 Rate of changes between 1999 and 2009

−9.24 −13.19 +1.9 +8.07 +9.25 +3.21 Rate of changes between 1999 and 2015

+13.11 −11.22 +5.16 +0.97 −6.98 −1.04 Rate of changes between 1999 and 2020

−3.43 −16.99 +22.73 +13.23 +3.66 −19.2 Rate of changes between 2009 and 2015

+18.91 −15.02 +25.99 +6.13 −12.57 −23.45 Rate of changes between 2009 and 2020

+22.34 +1.97 +3.26 −7.1 −16.23 −4.25 Rate of changes between 2015 and 2020

+5.98 -8.44 +6.36 +2.69 −2.88 −3.72 Average
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the minimum NDVI and maximum albedo values. In this study,

it was found that the value of surface albedo in each area is

influenced by the characteristics of that area. The map of

degradation intensity classes indicated that the highest

degradation intensity occurred in the northern, northwestern,

and western parts of the Hamoun International Wetland. Thus,

albedo is one of the important parameters in land use-related

studies that should be discussed further due to its environmental

impacts.

FIGURE 6
Intensity map of changes from 1999 to 2020.

TABLE 5 Intensity change classification from 1999 to 2020.

Percentage Area (ha) Intensity of change Row

22.34 27,639.36 Low change 1

14.13 17,475.3 Moderate change 2

7.37 9,120.06 High change 3

56.16 69,462.36 Extreme change 4

TABLE 6 Results of the confusion matrix.

N = 1,476 Predicted NO Predicted YES

Actual NO TN = 81 FP = 325

Actual YES FN = 28 TP = 1,042

According to Pina et al. (2016), a coefficient between 0.7 and 0.85 indicates high

compliance (Piña et al., 2016). So, we can say that the classification of desertification

intensity based on the albedo–NDVI model in the study area has acceptable compliance

with the degradation intensity changes that occurred in the same period.

Frontiers in Environmental Science frontiersin.org11

Zolfaghari et al. 10.3389/fenvs.2022.902687

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.902687


5 Conclusion

Results of the different periods showed that the areas without

degradation and with low intensity of degradation decreased and

were added to those with severe class from 1999 to 2020.

However, the area of extreme class fluctuated and did not

follow a general trend due to fluctuations in water and the

level of dewatering of the wetland. When the surface of the

wetland dries up, the surface of the land is free of moisture and

vegetation and classified as extreme degradation class because the

rate of albedo increases and the NDVI decreases. Additionally,

when the wetland is flooded, the degradation area is highly

reduced. Unlike expectations, the land area without any

degradation increased in 2009 due to the temporarily created

vegetation.

In summary, the results obtained are as follows:

1. The highest intensity of degradation occurred outside Iran

between Hamoun Puzak and Saburi inside Afghanistan

during the study period, consistent with the highest albedo

and the lowest NDVI in these areas.

2. The highest intensity of changes in Saburi, Puzak, andHelmand

hamouns occurred during the study period due to the presence

of water or drought in Hamoun International Wetland.

3. The intensity of the changes based on the change vector

analysis between 1999 and 2020 also showed that the most

severe changes occurred in the range of the triple hamouns.

4. Degradation intensity maps (with Kappa coefficients ranging

from 0.7 to 0.85) prepared using the albedo–NDVImodel, are

highly accurate compared to the maps derived from the

change vector analysis models.

5. Monitoring of degraded areas with lack of access to the field

can be done with this technique with high accuracy.

6. The development and use of this model may be a new step

toward identifying and monitoring degradation in remote

areas and determining dust sources in areas prone to wind

erosion.
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