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Groundwater is a precious resource that is vital for human life. Widespread human activities
occur in the Sichuan basin due to befitting climate and geological conditions, inducing a
series of groundwater contamination. In this article, hydrochemical analysis, principal
component analysis (PCA), self-organizing map (SOM), and fuzzy c-means clustering
(FCM) were integrated to reveal the hydrochemical process and assess groundwater
quality in the northern part of the Sichuan Basin based on a collection of 203 groundwater
samples. The groundwater hydrochemical types were dominated by the HCO3-Ca type.
The PCA results show both natural and anthropogenic factors contributed to the
hydrochemical compositions. The combination of the SOM and FCM classifies
neurons into two categories: the first category where NO,~ and NH,* are most similar,
perhaps as anthropogenic sources of pollution, which pose serious threats to human
health; and the second category, where the total dissolved solids, Ca®*, Na*, ClI~, SO,2,
Mg®*, and K* are most similar, explained as the influence of natural factors. The ion source
was determined by water-rock interactions: Na™ mainly comes from the dissolution of
silicate rocks, while Ca®*, Mg®*, and HCO5™~ from the dissolution of calcite and dolomite.
Cation exchange was recognized in the water—rock interactions. The achievements would
provide a significant reference for groundwater protection in the Sichuan Basin.

Keywords: groundwater, principal component analysis, self-organizing map, fuzzy c-means clustering, Sichuan
Basin

INTRODUCTION

Water is the basic and significant resource for human survival and development (Li, 2020). As an
important constituent of water resource, groundwater has the advantages of stable quantity and good
quality and is thus the main source of drinking water worldwide (Xiao et al., 2022). However, with
changes in the global natural environment and the intensification of human activities, water
resources on earth have undergone profound changes. Meanwhile, the contradiction between
water supply and demand has become increasingly prominent, with water shortages and water
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FIGURE 1 | (A) Location of Sichuan Province in China, (B) Location of the study area in Sichuan, (C) Sample points on the study area.

quality deteriorations becoming a global problem. The study of
the hydrochemical evolution not only accurately determines the
quality of the groundwater environment and the degree of
pollution but also provides a scientific basis for the rational
use of water resource and promotes the harmonious
coexistence between human and nature by identifying the
effects of natural and anthropogenic actions on groundwater
quality (Li et al., 2021¢; Xiao et al., 2021a; Xiao et al., 2021b).
A traditional study on the regional groundwater environment
was carried out by multivariate statistical analysis (Pina et al.,
2018; Zhang et al,, 2018; Barzegar et al, 2020). The cluster

analysis that is used to distinguish the categories of
groundwater samples and the principal component analysis
(PCA) are helpful in investigating the processes determining
the hydrochemical compositions of different categories. The
combination of cluster analysis and principal component
analysis was used to reveal the formation mechanism of
groundwater (Tziritis et al, 2017; Zhang et al, 2018).
However, due to the complexity and numerosity of the
regional hydrochemical data, multivariate statistical analysis is
not suitable for verifying such complicated hydrochemical
evolution. Recently, artificial intelligence (AI) has been

Frontiers in Environmental Science | www.frontiersin.org

June 2022 | Volume 10 | Article 907872


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Yao et al.

employed in research on the geo-environment (He et al., 2017; Li
et al., 2021a; Li et al.,, 2021b; Li et al., 2022; Cui et al., 2021; Zhou
et al., 2021). Especially, the Al approach had been successfully
applied in the evaluation and prediction of groundwater quality
recently, namely random forest, extreme gradient boosting,
artificial neural network, etc. The AI approach has the
advantage of analyzing large amounts of hydrochemical data
and has such an accurate prediction of groundwater quality. The
Al and neural networks have been proved to be efficient for
analyzing high dimensional data, such as the self-organizing map
(SOM) and fuzzy c-means clustering. The SOM analysis has been
successfully employed in the assessment of groundwater quality
(Mao et al., 2021; Qu et al.,, 2021; Yu et al,, 2021). Fuzzy c-means
clustering (FCM) incorporates the essence of the fuzzy theory.
Compared with the hard clustering of k-means, the FCM
provides more flexible clustering results (Mohamed et al,
2019a; Lee et al, 2019; Benjumea et al, 2021). The
combination of the SOM and fuzzy c-means clustering is
particularly helpful in dealing with complicated hydrochemical
data (Lee et al.,, 2019). Therefore, the SOM neurons grouped by
the FCM algorithm provide more robust results.

The Sichuan Basin is an area where urbanization and
agriculture are well and extensively developed. Since
groundwater pollution has been reported recently, research in
the local areas had been carried out, especially in the Chengdu
Plain (Mohamed et al., 2019b; Yuan et al,, 2018; Zhang et al,,
2019a; Zhang et al., 2020; Zhang et al., 2021a; Zhang et al., 2021b;
Zhang et al., 2021c). However, the groundwater resource in the
Sichuan Basin had been seldom studied at a regional scale.
Therefore, the aim of this study is to 1) investigate the general
hydrochemical characteristics of the groundwater resource in the
Sichuan Basin, 2) classify the groundwater samples by grouping
the neurons using fuzzy c-means, and 3) constrain the controlling
factors for hydrochemical compositions. Our achievements are
expected to promote a better management policy of the
groundwater resource in the Sichuan Basin.

STUDY AREA

The Sichuan Basin is one of the four major basins in China and is
located in the southwest of China. It includes the central-eastern
part of the Sichuan Province and most of the Chonggqing city,
with a basin area of about 20 x 10* km?. The Sichuan Basin is
surrounded by mountains on all sides, and the general trend of
the internal terrain is higher in the north and west than in the
south and east, with an elevation of about 300-500 m (Jiao et al.,
2022). The Sichuan Basin has a humid subtropical southeast
monsoon climate, with an average annual temperature of
16-18°C and precipitation of ~1,000 mm. Most of the rainfall
is concentrated in June and September. The rivers in the Sichuan
Basin are all a part of the Yangtze River system, with the Jinsha
River entering from the south of the basin and passing through
the Yibin city before being called the Yangtze River.
Tectonically, the Sichuan Basin is located in the eastern
margin of the Tibet Plateau (Liu et al, 2021; Zhang et al,
2019b; Zhang et al., 2019¢). The strata of the Sichuan Basin
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TABLE 1 | Statistical results of hydrochemical parameters (unit: mg/L, except

for pH)

Parameters Mean Std Min Max
pH 7.3764 0.251 6.6 8.4
TDS 523.1929 158.3233 167.157 1411.397
Ca?* 108.6217 35.0988 20.04 314.628
Mg** 26.8646 13.6016 3.648 86.336
K* 2.8759 4.7932 0.4 46
Na* 30.5325 17.1964 8 121
crr 31.1604 27.3908 3.56457 209.9054
S0, 81.6633 67.903 9.64 760
HCO3 364.7163 87.2429 115.9342 585.7728
NO3™ 41.2216 44.0345 0.04 244
NO2~ 0.166 1.0751 0.0015 13.9
NH4* 0.3 1.3125 0.01 18.3
F 0.3271 0.5003 0.01 7.2

are characterized by its complete stratigraphic system and large
thickness in the longitudinal direction, as well as multiple layers
and gyres in the process of deposition (Liu et al., 2021). The
Proterozoic and Paleozoic strata are exposed at the edge of the
basin and the magmatic rocks distributed around the Longmen
Mountain and Micang Mountain. A few Paleozoic strata are
exposed at the core of the Huaying Mountain anticline. The
Mesozoic strata are widely distributed throughout the Sichuan
Basin, while the Neogene strata are mainly exposed in the
Chengdu Plain. The basement of the Sichuan Basin is
composed of Precambrian metamorphic strata. The
sedimentary cover of the basin is mainly composed of marine
and terrestrial strata: marine strata of about 4,000-7,000 m
thickness developed in the Middle Triassic; terrestrial
sedimentary strata of about 2,000-6,000 m thickness developed
in the Upper Triassic. Nowadays, the whole basin is covered by a
huge thick Jurassic red layer. The stratigraphy in the area is
mainly Jurassic red rocks deposited in the terrestrial phase
(Zhang et al., 2022), consisting of siltstone, sandy mudstone,
fine-grained sandstone interlayer, and lower gypsum masses, with
a thickness of about 621-923 m. It is mainly developed in the
shallow weathering zone, with fracture developed in the
weathering zone. The aquifer is mainly a loose accumulation
of weathering crust, sandstone, mudstone, or sand mudstone
interlayer, and mudstone interlayer or interlayer with less
developed joints.

The aquifer thickness is not large in the Sichuan Basin (Zhang
et al,, 2020; Zhang et al., 2021a; Zhang et al., 2021b; Zhang et al.,
2021c). The groundwater depth is shallow. Spring flows range
from 0.05 to 5 L/s. The groundwater dynamics such as recharge,
runoff, and discharge are greatly influenced by rainfall and
geomorphological conditions. According to the
hydrogeological data and field investigation, the source of
groundwater recharge in this region is mainly the vertical
recharge infiltration of atmospheric precipitation. At the top of
the mountains or slopes with high altitude, atmospheric
precipitation recharges the fractured aquifer through the
weathered pore or fracture channels. While at the half-slope
and valley bottom, groundwater recharge is mainly from the
infiltration of paddy field and ditch water. Due to the extensive
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FIGURE 2 | Violin plot of hydrochemical parameters (pH, TDS, anions, and cations).

distribution of groundwater in the red-layer-area aquifer, shallow
burial, and controlled by the spatial and temporal changes of
precipitation and the influence of topography and
geomorphology, it often has the characteristics of local
recharge and nearby drainage. The system of groundwater
recharge, runoff, and discharge is usually relatively
independent in the red-layer mountains or hills. The Sichuan
Basin, with good natural conditions and a warm-humid climate,
has developed in agriculture. Industrial and municipal activities
are majorly located in the Chengdu plain.

METHODOLOGY

Sampling and Experiment

In this study, 203 groundwater samples were collected from 168
domestic tube wells and public water-supply wells (depths
<100 m) (Figure 1) in the northern Sichuan basin during

2015-2016. The sampling was carried out by an electric
submersion pump after half an hour of pumping. Each
groundwater sample was bottled after a three-time rinsing by
sampling water. The physicochemical parameters measured in
this study include pH, total dissolved solids (TDSs), total
hardness, anions, and cations. The pH and TDS were
measured in the field by a portable device (WTW Multi
3400i). The concentrations of anions and cations were
analyzed by ion chromatography (IC6100; Wayee, China)
and an atomic absorption spectrophotometer (AA6100;
Techcomp, China) in the Southwest Jiaotong University.
First, the Al and Fe ions below the detection line were
excluded, and the test of charge balance of groundwater
samples was performed using Eq. 1, where each ion was
calculated in milliequivalents per liter, and the limit was
taken as 5%. After the test, the charge balance of the 203
groundwater samples was all within the 5% limit, which
could ensure the accuracy of the calculation results.
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FIGURE 3 | Piper plot of the groundwater samples. The points are divided into two clusters by FCM: the blue points are the first cluster and the red points are the
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Fuzzy c-Means Clustering

Fuzzy c-means clustering (FCM) is a soft clustering algorithm.
Hierarchical clustering (HCA), K-means clustering algorithm
(K-means), and other clustering algorithms belong to hard
clustering algorithms, which are either subordinate to 0 or 1
when clustering. By contrast, the FCM is a soft clustering,
which is subordinate to [0, 1] interval when clustering. When
clustering, one may encounter clusters that do not have
obvious clustering characteristics and may be right or
wrong if hard clustering is done. Soft clustering, on the
other hand, assigns a weight that specifies the degree to
which an object belongs to that cluster, and thus FCM
performs better in terms of clustering effectiveness and
accuracy than hard clustering algorithms. In this study,
fuzzy c-means, a tripartite library for Python software, was
used to carry out the clustering of groundwater samples.

Principle Components Analysis

The principal component analysis (PCA) is a multivariate statistical
method first introduced by Pearson (1901) and generalized by
Hoteling (1933) for analyzing and simplifying data sets. Water
chemistry data are numerous, and the related indicators are
cumbersome. Hence, the analysis of a single indicator is difficult

for obtaining reliable information. The PCA conducted by the SPSS
software is efficient in analyzing the correlation among different
indicators and combining indicators with certain relationships into
linearly independent composite indicators. It can reduce indicators,
achieve dimensionality reduction, and identify the sources of
contaminants in groundwater (Sudheer Kumar et al, 2017;
Zhang et al., 2016). However, its analysis dimension is single
and cannot reflect the source characteristics and spatial
distribution characteristics of pollutants well. The calculation
steps of the PCA are shown as follows:

1) Normalize the data matrix X, to the matrix Y =
Yy, .. Yo)s
2) Calculate the covariance matrix Z according to Eq. 2:
1 & _ =
z=—— (Yu-Y)(Yy - ¥)) )

k=1

3) Calculate the eigenvalues and eigenvectors of the covariance matrix
Z. The cumulative percentages of the eigenvalues indicate their
contribution to the principal components, and the eigenvectors
present the loadings. The eigenvectors are multiplied with the
original matrix to obtain the principal component scores.

Self-Organizing Map
The self-organizing map (SOM) proposed by Kohonen (1982) is
an unsupervised neural network algorithm and a clustering

Frontiers in Environmental Science | www.frontiersin.org

June 2022 | Volume 10 | Article 907872


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Yao et al.

Groundwater Quality Analysis by Integrated Approach

>

100

80
60 1
40 131.36%

20.79%
20 A T

Proportion of variance (%)

PC1 PC2
PCs

Cc

100
£ 80
8
5
.E 60_
>
S
[}
£ 40
g 25.67%
2, -1 )
£ - 18.71%)5 719412.03%11 28%

= 6.09% 5.91%

PC1

PC2 PC3 PC4 PC5
PCs

PC6 PC7

seven principal components. (D) The biplot of cluster 2.

FIGURE 4 | The results of the PCA. (A) The accumulated variance of the two principal components. (B) The biplot of cluster 1. (C) The accumulated variance of the

1.00 A

0.75 1

0.50

0.25 A

0.00 1

PC2 (20.79%)

-0.25 1

-0.50 A

PC1 (31.36%)

0.8 1
0.6 1
0.4 4

0.2 1

PC2 (16.71%)

0.0 1

-0.2 4

-0.4 1

0.25 0.50 0.75 1.00

PC1 (25.67%)

-0.25  0.00

algorithm that can analyze a large amount of nonlinear data. It
can reduce data latitude and display neuro-structure. It has a
significant advantage in analyzing complex classifications. The
SOM, like PCA, can be used to reduce the dimensionality of the
data and maintain the characteristics of the data to the maximum
extent. Hence, it is suitable for spatial and temporal groundwater
correlation analysis.

In this article, we use the Python tripartite library MiniSom for
the calculation of SOM, and the steps are as follows:

1) Normalize the data matrix X.

2) Set the number of neurons, learning rate, initialization
parameters, etc.

3) Set the number of iterations and start training.

4) Plot the U-matrix and the mapping of each index according to
the training results.

RESULTS AND DISCUSSION

General Characteristics of Hydrochemistry
The descriptive statistics of 203 data is shown in Table 1, where the
mean, standard deviation, and minimum and maximum values of
the water chemistry indicators are listed. The violin plot (Figure 2) is
used to show the distribution state and probability density of the
data, which combines the kernel density plot and the box line plot.
The interior of the violin plot is a box plot, including the maximum
value, mean, standard deviation, median, upper quartile, and lower

quartile. The exterior of the violin plot is a kernel density plot, where
the larger the area in a certain part, the more the data are distributed.
The pH distribution mostly lies between 7 and 7.8. Except for one
water sample with a TDS greater than 1,000 mg/L, all other water
samples had a TDS of less than 1,000 mg/L. The Na* concentration
ranged from 8.0 to 121.0 mg/L, with a mean value of 30.5 mg/L. The
K" concentration ranged from 0.4 to 46.0 mg/L, with a mean value
of 2.9 mg/L. The Ca** concentration ranged from 20.0 to 314.6 mg/
L with a mean value of 108.62 mg/L. The Mg”" concentration was
distributed between 3.6 and 86.3 mg/L with a mean value of
26.9 mg/L. The CI” concentration had a range of 3.5-209.9 mg/L
with a mean value of 31.2 mg/L. The HCO; concentration was
distributed between 115.9 and 585.8 mg/L with a mean value of
364.7 mg/L. The SO, concentration ranged from 9.6 to 760.0 mg/
L with a mean value of 81.6 mg/L. The F~ concentration was
distributed between 0.0 and 7.2 mg/L, with an average value of
0.3 mg/L. The NO5~ concentration ranged from 0.04 to 244.00 mg/
L, with an average value of 41.22 mg/L, which is twice the limit value
of 20 mg/L for Class III water of the groundwater quality standard
(GB/T 14848-2017). The NO,  concentration was 0.0-13.9 mg/L
with a mean value of 0.12 mg/L. The NH," concentration was
0.01-19.30 mg/L with a mean value of 0.30 mg/L.

Classification for Hydrochemical Type

The partition coefficient (partition coefficient) was selected as an
indicator for determining the optimal number of clusters in FCM
clustering, which has an interval of [0, 1], and the larger the value, the
better the clustering effect. The optimal number of clusters was
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determined as 2 according to Figure 5B. The FCM was calculated ~ (Piper, 1944). The Piper trilinear diagrams reflect the relative
using Python’s three-way library fuzzy c-means to cluster the water ~ content of the major ions in groundwater and the general water
samples into two groups. chemistry characteristics. In this study, the hydrochemical type of

Piper trilinear diagrams were used to determine the types of = groundwater was dominated by the HCO3-Ca type (Figure 3),
groundwater chemistry controlled by major cations and anions ~ which is mainly formed by the interaction between carbonate

Frontiers in Environmental Science | www.frontiersin.org 7 June 2022 | Volume 10 | Article 907872


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Yao et al.

Groundwater Quality Analysis by Integrated Approach

A
10 —
= \
il |
L .
4 | _ -~ Evaporation //
10 T Dominance ,
- Sl S 7
- e, —
—_ @ =
2100y om0 e S
ab ® o ~
£ o ®® / N
@ ﬁ \ )
s, o~
0 S
= ~~_ Dominance ">
T~ T - ~ ~
™~ .. .\
10' - T~ Precipitation™
® Cluster 1 ~ - Dominance
~
® Cluster2 oy /1
0 ~_
10 T .

0.0 0.2 0.4 0.6 0.8 1.0
Na'/(Na'+ca’ ")

FIGURE 7 | Gibbs diagrams demonstrating the mechanisms governing groundwater chemistry. (A) TDS vs. Na*/(Na*+Ca?*), (B) TDS vs. CI/(CI~ + HCOg").

B
10° —
- N\
- - - l
4 | -7 - Evaporation //
10 P s Dominance ,
ol v/
- TS - F
—_ e ~Siomg”
S 10° 4 © 8 e S~
%D o / N
= \ )
8 10?4 Rack T e
= ~~_ Dominance ">
b s _— s ol b <
- ~
1 S~ Precipitation™
10° 5 >~ _ Dominance
® Cluster 1 ~ \
® Cluster 2 T . /1
10° : . . . =
0.0 0.2 0.4 0.6 0.8 1.0
Cl /(Cl +HCO;)

rocks and groundwater. The two types of FCM results are plotted
in the Piper diagram, as shown in Figure 3. The first type of blue
dots shows that the water chemistry type is mainly HCO;-Ca, and
the main anions and cations are HCO;~ and Ca®*, with some
Mg** and SO4*", which are presumed to be mainly from
limestone and dolomite. The second type of green dots shows
that the water chemistry type is also dominated by the HCO5-Ca
type, with some Mg>*, SO,*7, Cl”, and Na*. Compared with the
first category, Cl™ concentration increases, and the rocks from the
water-rock interaction in the second category of water samples
are mainly limestone and dolomite.

Principal Component Analysis Results

The results of the two categories obtained from the FCM clustering were
analyzed separately by the principal component analysis (Figure 4), and
based on eigenvalues greater than 1, two principal components were
selected for the first category of water samples (Figure 4A), contributing
51.29% of the variance cumulatively, and seven principal components
were selected for the second category of water samples (Figure 4B),
contributing 90.4% of the variance cumulatively.

In the biplot (Figure 4B) of the first category of water samples,
the contribution to the first principal component is dominated by
HCO;", and the second principal component has the largest
contribution of pH value. The first principal component is
related to the dissolution of carbonate rocks. HCO; reveals
such a water-rock interaction, and the change of HCO; in
groundwater causes the change of the pH value. Also, the
influence of human activities can lead to changes in the pH of
groundwater (Li et al,, 2019). In the biplot of the second type of
water samples (Figure 4D), the first principal component is
dominated by NO, and NH,", which are defined as
anthropogenic factors. Human activities caused an increase in
the nitrogen content of groundwater, which led to the
deterioration of groundwater quality. In particular, NO,™ is toxic
and poses a serious threat to human health. Six of the seven major
ions, Ca®*, Na*, CI", SO,*~, HCO3 ", and Mg>*, contribute more to
the second principal component and have a high correlation with
TDS, which can be defined as a natural factor, that is, related to

rock-forming minerals and water-rock interactions. The results of
the above two types of water samples show that the factors affecting
the water quality are both anthropogenic and natural factors.

Self-Organizing Map and Fuzzy c-Means

Clustering Results

The selection of neurons in the SOM was suggested to be 5 \/n (n
is the number of samples). The 203 samples were finally
determined to be 72 neurons, and the optimal number of rows
and columns was determined to be 6 and 8, respectively. A
learning rate of 0.01 was set and iterated 10,000 times, and the
error variation is shown in Figure 5A. The SOM results obtained
using MiniSom include the U-matrix plot and the mapping plot
of each ion (Figure 6). The U-matrix indicates the distance
between each neuron: the darker the red, the farther the
distance and the darker the blue, the closer the distance. In
the U-matrix plot, the neurons are divided into two categories
according to the results of the FCM: the upper one is the first
category and the lower one is the second category.

In the mapping diagram of each ion, NO,™ is most similar to
NH," in the first category, indicating a high correlation and having
the same source, perhaps originating from human pollution
sources. Nitrate in groundwater may come from excessive
fertilizer application, domestic sewage, livestock manure, and
industrial effluent, especially the presence of nitrite, which is a
serious threat to human health. The highest similarity of the TDS,
Ca’*, Na*, CI', SO4*", Mg’", and K" was found in the second
category, indicating a high correlation of these ions. In addition to
F~ and HCO; in the second category, their correlation with these
seven indicators was low. The second category can be explained by
natural factors, and the second category is mainly divided into
seven ions that contribute most of the TDS. The natural source of
these ions is due to the water-rock interactions.

Interpretation for lon Source
The Gibbs diagram was used to analyze the evolutionary trends of
surface water and groundwater (Gibbs, 1970). Based on the Gibbs
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diagram (Figure 7), it was basically determined that the groundwater
chemistry is dominated by the water—rock interaction in this study.

The correlation plots of the seven ions are a powerful tool in
the analysis of the water-rock interactions. In this article, we
identify the main minerals of the water-rock interaction by
plotting correlation diagrams, which have been verified with
the results of the Piper diagram, PCA, and SOM. In
Figure 8A, if the dissolved minerals are dominated by halite,
the scatter should be distributed according to the y = x straight
line. But, most of the scatters are located below the y = x straight
line, and the content of Na" is larger than that of Cl', indicating
that the weathering dissolution of the silicate minerals is the main
source of Na", and although it is involved, it is relatively small.
Similarly, in Figure 8B, if the dissolved minerals are dominated
by gypsum, the scatter should also be distributed according to y =
x. However, most of the scatter is distributed below the y = x
straight line, and the content of Ca®" is greater than that of SO,*",

indicating that the dissolution of carbonate rocks is predominant.
Combined with Figure 8C, the scatter points are located in the
middle of y = x and y = 2x, indicating that the main source of
carbonate rock dissolution is calcite.

Gaillardet et al. (1999) plotted the log-off scatter plots of Mg**/
Na*, HCO; /Na*, and Ca**/Na" for determining which of the silicate,
evaporite, and carbonate rocks is the source of the water chemistry.
The distribution of the scatter points in Figure 8F along y = x
demonstrates the presence of significant cation exchange during the
water-rock interaction. The sample plotting of Figures 8G, H both
indicate the cation exchange process. The concentrations of Na*, Cl,
SO4*, Ca**, and HCO;" in the second category of water samples are
significantly larger than those in the first category. The second category
of water samples in Figure 8G is scattered and not linear, and thus the
cation exchange effect is weaker than that in the first category.

The saturation indices of calcite, dolomite, gypsum, and halite
were calculated by PHREEQC. And the correlation between the
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saturation indices and TDS was plotted (Figures 9A,B). In the plots,
halite and gypsum were not saturated in both types of water samples,
and only calcite and dolomite were distributed near the zero scale
line and reached saturation, revealing the dissolution of calcite and
dolomite. This is consistent with the results of Piper’s trilinear plot.

In summary, the water-rock interaction is the main factor
determining the ion source in the study area. Ion correlation and
saturation indices indicate that the water—rock interaction is dominated
by the dissolution of calcite and dolomite with cation exchange.

CONCLUSION

In this article, the hydrogeochemical analysis of 203 groundwater
samples from the northern part of the Sichuan Basin was carried
out using the PCA, SOM, and FCM, and the main conclusions are
summarized as follows:

1) The results of the first five principal components in the PCA
indicate that there are both natural and anthropogenic
influences on groundwater. For natural factors, it is
expressed by TDS synthesis; for anthropogenic factors, it is
expressed by NO, and NH,".

The combination of the SOM and FCM classifies neurons
into two categories: the first category in which NO,™ and
NH, " are the most similar, perhaps as anthropogenic sources
of pollution, which pose serious threats to human health. In
the second category, the TDS, Ca**, Na*, CI, SO,% Mg**,
and K* are the most similar, explained as the influence of
natural factors, well consistent with the results derived from
the PCA.

The hydrochemical types in the northern Sichuan Basin are
dominated by the HCO;-Ca types. The groundwater
evolution in the northern Sichuan Basin is mainly the
water-rock interaction, Na" mainly comes from the

2)

3)

dissolution of silicate rocks, and Ca®>*, Mg**, and
HCO;™ from the dissolution of calcite and dolomite.
There is an obvious cation exchange during the
water-rock interaction.

Future research is proposed to concentrate on the
management of NO;~ contamination of groundwater in the
Sichuan Basin. The measurements of source control and
pollution remediation should be carried out to resolve the
groundwater pollution.

4)
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