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Climate warming, a serious environmental problemworldwide, is considered amajor threat
to aquatic ecosystems. A primary feature of climate warming is elevated temperatures
which in shallow aquatic ecosystems might affect competition for light and nutrient
between benthic algae on the sediment surface and planktonic algae in the water. The
outcomes of such competition would not only affect the distribution of primary production,
but also determine the fundamental character of shallow aquatic habitats as clear water or
turbid water systems.We conducted amesocosm study to evaluate the effects of elevated
temperature on competition between planktonic algae and benthic algae for light and
nutrients. We found that elevated temperature increased the concentrations of total
nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) in overlying
water and enhanced the growth of planktonic algae (measured as chlorophyll a, Chl a),
but decreased light intensity and benthic algal biomass (Chl a). Our results indicate that
elevated temperature can increase the growth of planktonic algae and enhance their
competitive advantage over the benthic algae in shallow lakes, thereby contributing to
eutrophication and a decline in water quality. These findings shed further light on the effects
of global warming on aquatic ecosystems.
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INTRODUCTION

Climate warming has become a serious environmental problem worldwide and is considered a major
threat to the natural environment, including aquatic ecosystems (Paerl and Huisman, 2008; Jeppesen
et al., 2010). A major feature of climate warming is elevated temperatures (Paerl et al., 2011).
According to the Sixth Scientific Assessment Report (IPCC, 2018), global average temperatures
increased 1.5°C from 1880 to 2018, and this trend continues. The currents warming rate is projected
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to be 0.25°C per decade until the middle of the 21st century and
0.36°C per decade in the second half of the century (Andreas-
Gobiet et al., 2014). Warming will have profound impacts on
ecological processes in aquatic ecosystems (Amundrud and
Srivastava, 2019) by affecting primary production, water
resource distribution and water quality (Daufresne et al., 2009).

Elevated temperatures can promote the growth of algae in
both benthic and planktonic habitats and affect the physiology of
primary producers (Butterwick et al., 2010; Liu et al., 2015; Li
et al., 2016) because temperature plays a crucial role in metabolic
processes, including photosynthesis, nutrient uptake and the
enzymatic activity of cells (Claquin et al., 2008; Thorel et al.,
2014). However, temperature also influences the chemical and
physical processes of aquatic ecosystems (Takano and Hino,
2000; Ozaki et al., 2010; Liu et al., 2015) with implication for
the dynamics of the aquatic ecosystems. Increased temperature
promotes the release of nitrogen and phosphorus from sediments
(Malmaeus et al., 2005), which may enhance planktonic algal
growth and thus an increase in TSS. Increases of planktonic algae
and total suspended solids (TSS) reduce the light intensity on the
sediment surface (Marcus, 1998; Zhang et al., 2015; Razlutskij
et al., 2021), limiting the growth of benthic algae (Takano and
Hino, 2000; Butterwick et al., 2010). Thus, elevated temperature
might affect the growth of both planktonic and benthic algae in
aquatic systems.

In shallow lakes, benthic algae growing on sediment
surfaces are often limited by light resources as a result of
attenuation caused by planktonic algae in the overlying water
(Vadeboncoeur et al., 2003). In systems where external
nutrient loading has been reduced, internal loading becomes
a limiting factor for the planktonic algae (Zhu et al., 2010),
while benthic algae benefit from nutrients in the sediment. If
abundant, benthic algae may reduce sediment release of
nutrients and thereby further hampering growth of
planktonic algae (Vadeboncoeur et al., 2003; Zhang et al.,
2013; Blottière et al., 2017). Competition between
planktonic algae and benthic algae is one of the key factors
affecting shallow aquatic ecosystem dynamics (Flöder et al.,
2006; Genkai-Kato et al., 2012) and has become an area of great
interest in freshwater ecology (Pastcrnak et al., 2009; Zhang
et al., 2013; Jäger and Diehl, 2016).

However, the effects of elevated temperature on resource
competition between benthic and planktonic algae in shallow
aquatic ecosystems are yet to be fully understood. Here, we
hypothesized that elevated temperature would benefit
planktonic algae and hamper benthic algae, leading to a
deterioration in water quality. To test this hypothesis, we
designed a mesocosm experiment with elevated temperatures
and compared with controls run at ambient temperature. The
effects of elevated temperature on the competition between
planktonic algae and benthic algae for resources of light and
nutrient were investigated using measurements of light intensity
on the sediment surface, nutrient content in overlying water, and
the development of benthic and planktonic algal biomass over
time. The aim of this study is to evaluate the effect of elevated
temperature on resource competition between benthic and
planktonic algae in shallow aquatic ecosystems. The results

may shed light on the effects of global warming on natural
aquatic ecosystems.

MATERIALS AND METHODS

Experimental Setup
The mesocosm system consisted of eight white polyethylene
plastic tanks (bottom diameter = 46 cm, upper diameter =
57 cm, and height = 72 cm) placed in the agricultural garden
of Anhui Agricultural University, Hefei, China. Sediments were
collected from a pond at the campus and were air dried and
crushed to remove large particles. The treated sediment was then
added to the tanks in order to obtain a 10 cm thick layer (Zhang
et al., 2016).

Rainwater (TN = 0.96 mg/L−1, TP = 0.02 mg/L−1) was
collected and added to each tank to a depth of 70 cm. All
eight mesocosms were allowed to equilibrate for 2 weeks
before the experiment started. Then four treatments were
covered by black plastic paper on the outside wall to create
elevated temperature while the controls were covered by heat
insulation film. Both the black paper and the heat insulation film
are lightproof. So, sunlight did not enter through the sidewall of
either the treatment or the control mesocosms. A Petri dish
(diameter of 6 cm) containing treated sediments was inserted into
the upper sediment layer of each mesocosm, such that the surface
the sediments inside and outside the dishes was at the same level
for benthic algae growth. Rainwater was added to the mesocosms
as required to maintain the water levels during the experiment.
The experiment was then run for 60 days from July 23 to 20
September 2020.

Sampling
The tanks were sampled at approximately 12 noon every
10 days during the experimental period. Water samples
(500 ml) were taken with a clean glass bottle from 10 cm
below the water surface from each mesocosm, and analyzed
for total nitrogen (TN), total phosphorus (TP), total
suspended solids (TSS) and planktonic algal biomass (Chl
a). TN was determined by alkaline potassium persulfate UV
spectrophotometry and TP was determined by ammonium
molybdate UV spectrophotometry (APHA, 1998). 200 ml
water was filtered by GF/C grade filter for Chl a of
planktonic algal biomass and the Chl a on the filter was
determined by UV spectrophotometry after extraction in
90% acetone (Jespersen and Christoffersen, 1987). TSS was
calculated by weighing the residue retained on a GF/C grade
filter after filtering 200 ml water and drying at 108°C for 2 h
(Qu et al., 2019).

Water temperature was measured using a YSI probe from
30 cm below the water surface. Light intensity was measured
using an underwater irradiance meter (ZDS-10W) at 50 cm below
the water surface before sampling the water.

The Petri dishes with their benthic algae were removed slowly
from each mesocosm and the benthic algae were scraped off and
diluted with distilled water to 500 ml, then stored in brown glass
bottles prior to analysis of algal biomass (Chl a) using the same
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method as for planktonic algae. After sampling, the Petri dishes
and the sediments were re-loaded into each mesocosm for further
benthic algae growth.

Statistical Analyses
Independent sample t-tests were used to analyze differences in
water temperature, TSS, light intensity, TN, TP and Chl a of both
planktonic and benthic algal biomass between the elevated
temperature treatment mesocosms and the controls. One-way

ANOVA was performed to detect differences between treatments
on each sampling occasion. SPSS 19.0 was used for data statistics
analysis. All data are presented as mean ± SD and figures were
generated by Origin Pro 9.0.

RESULTS

Water Temperature
On average, water temperature was 1.7°C higher in the elevated
temperature treatments than in the controls (t-test, p = 0.037), at
30.7 ± 0.3°C compared to 29.0 ± 0.2°C (Table 1). A significant
difference in temperature was apparent on every sampling
occasion except for day 10 and day 60 (one-way ANOVA,
treatment effect, p < 0.05).

Total Nitrogen and Total Phosphorus
TN concentrations in the overlying water of the elevated
temperature treatments were higher on average than in the
controls at 6.43 ± 0.96 mg/L to 5.38 ± 0.42 mg/L respectively

TABLE 1 | Water temperature (°C).

Time (d) Control Elevated Temperature Increased p

0 29.3 ± 0.0 29.3 ± 0.0 — —

10 33.8 ± 0.2 35.8 ± 0.1 2.0 ± 0.2 p > 0.05
20 29.1 ± 0.1 30.6 ± 0.2 1.6 ± 0.2 p < 0.05
30 29.7 ± 0.5 30.9 ± 0.4 1.2 ± 0.3 p < 0.05
40 30.0 ± 0.1 31.2 ± 0.4 1.2 ± 0.4 p < 0.05
50 26.3 ± 0.1 28.3 ± 0.4 2.0 ± 0.4 p < 0.05
60 25.3 ± 0.2 27.4 ± 0.3 2.1 ± 0.2 p > 0.05

FIGURE 1 | TN (mean ± SD) and TP (mean ± SD) in different treatments over time. Asterisk indicates significant (p < 0.05) differences between treatments.
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(t-test, p = 0.049), and also significantly higher in the elevated
temperature treatments on day 40, day 50 and day 60 (one-way
ANOVA, treatment effect, p < 0.05, Figure 1).

TP concentrations in overlying water were also higher in the
elevated temperature treatments than in the controls (t-test, p =
0.043) at 0.23 ± 0.06 mg/L and 0.16 ± 0.05 mg/L respectively,
being significantly higher in the elevated temperature treatments
on three out of six sampling occasions (day 30, 40 and 60, one-
way ANOVA, p < 0.05, Figure 1).

Planktonic Algal Biomass
The biomass of planktonic algae (Chl a) was higher on average
in the elevated temperature treatments than in the controls
(t-test, p = 0.041) and on each sampling occasion except for
day 40 and day 60 (one-way ANOVA, treatment effect, p <
0.05; Figure 2).

Total Suspended Solids and Light Intensity
TSS concentrations (Figure 3) were higher on average in the
elevated temperature treatments than in the controls (t-test, p =
0.012) at 19.50 ± 3.44 mg/L to 13.46 ± 2.78 mg/L respectively.
Significantly higher TSS values were recorded in the elevated
temperature treatments on each sampling occasion except for day
10 and day 30 (one-way ANOVA, treatment effect, p < 0.05).

Light intensity (Figure 3) at the sediment surface was lower on
average in the elevated temperature treatments than in the
controls (t-test, p = 0.039) at 9565 ± 4403 lx to 15119 ±
3383 lx respectively. Reduced light intensity was recorded in
the elevated temperature treatments on all sampling occasions
except for day 10 and day 30 (one-way ANOVA, treatment effect,
p < 0.05).

Benthic Algal Biomass
The biomass of benthic algae (Chl a) was lower on average in the
elevated temperature treatments than in the controls (t-test, p =
0.003), and significantly so on every sampling occasion except for

day 10 and day 30 (one-way ANOVA, treatment effect, p < 0.05;
Figure 4).

DISCUSSION

We found that elevated temperature increased the nutrient
concentrations of TN and TP in the overlying water, enhanced
growth of planktonic algae (Chl a), increased TSS concentration,
decreased light intensity at the sediment surface and reduced
benthic algal biomass (Chl a).

The water temperature of the black covered mesocosms was
1.2–2.1°C (1.7°C on average) higher than in the controls.
According to the Sixth Scientific Assessment Report (IPCC,
2018), global average temperatures increased 1.5°C from 1880
to 2018. This rate of increase has been observed in lakes world-
wide (O’Reilly et al., 2015); and in some lakes, summer
temperatures has increased 1.5°C in the last decades alone
(Hetherington et al., 2015, Oneida Lake, NY, United States).
Globally, the water temperature of rivers is expected to increase
0.8–1.6°C more in between 2071 and 2100 than between 1971 and
2000 (van Vliet et al., 2013). Thus, the treatment applied in our
study resulted in heating comparable to real-world examples.

The increased nutrients (both TN and TP) in the overlying
water of the elevated temperature treatments probably points to
increased release from the sediments (Liu et al., 2017). A water
temperature increase of 3–4°C, is sufficient to double the release
rate of P (Nicholls, 1999). Further inputs of nutrients may be
associated with rain events and atmospheric deposition (Liu et al.,
2015). However, in this experiment, both the controls and the
treatments mesocosms were maintained in the same garden of
Anhui Agricultural University, so the N and P deposition from
the atmosphere should be the same in both the different
treatments. However, we cannot discount the possibility that
some atmospheric N was added to the water N fixation by algae,
as we did not monitor these algae separately in this study.

FIGURE 2 | Chl a of planktonic algae (mean ± SD) in different treatments over time. Asterisk indicates significant (p < 0.05) differences between treatments.
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FIGURE 3 | TSS (mean ± SD) and light intensity (mean ± SD) in the different treatments over time. Asterisk indicates significant (p < 0.05) differences between
treatments.

FIGURE 4 | Chl a of benthic algae (mean ± SD) in different treatments over time. Asterisk indicates significant (p < 0.05) differences between treatments.
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That elevated temperature can enhance the growth of
planktonic algae is well-established (e.g., Pedersen and Borum,
1996). Blottière et al. (2017) found a 15% increase in planktonic
algae for every 1°C increase in average annual temperature. In
addition, elevated temperature can enhance the release of
nutrients from the sediment (Jensen and Andersen, 1992), which
may lead to an increase in the growth of planktonic algae and thus
increase in TSS. Further, increases of planktonic algae and TSS can
reduce water clarity and thereby limit benthic algae growth due to
increased light limitation. Our results are consistent with this
literature. We found a reduction in light intensity at the sediment
surfaces of the elevated temperature treatments, and a lower benthic
algae biomass compared with the controls, indicating increased
competitive advantage of planktonic algae over benthic algae. Such
a decline or even disappearance of benthic algae will further enhance
the release of nutrients from the sediment into overlying water,
creating a positive feedback loop promoting planktonic algae growth
(Spears et al., 2008; Zhang et al., 2013). Thus, the elevated
temperature leads to the transfer of nutrients from benthic to
planktonic habitats (Nicholls, 1999; Genkai-Kato et al., 2012;
Zhang et al., 2015).

It is important to acknowledge that the effects of elevated
temperature on the dynamics of benthic and planktonic algae in
natural aquatic ecosystems will be more complex than in our
mesocosm system, which excluded fish, benthic animals and
submerged macrophytes, all of which may have important
roles in the competitive interplay between benthic and
planktonic algae (Zhang et al., 2014; Zhang et al., 2017;
Razlutskij et al., 2021; Mei et al., 2021). Furthermore, water
flow and wave action typical for natural lake ecosystems were
not accounted for in our experiments. However, there are calm,
fishless or fish poor aquatic ecosystems, where conditions are
similar to those simulated here.

The implications are that in similar natural systems, expected
increase in temperature resulting from climate change will be
conducive to the growth of planktonic algae and enhance their

competitive advantage over benthic algae, leading to increased
potential for eutrophication and deteriorating water quality.
However, further studies at larger scale conditions and
different trophic state and trophic structure are needed before
general conclusions can be drawn about the effect of climate
change on the benthic-pelagic coupling.

In conclusion, in our experimental system simulating shallow
lake ecosystems, elevated temperature increased the growth of
planktonic algae and enhanced their competitive advantage over
the benthic algae, thereby contributing to eutrophication and a
decline in water quality.
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