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The increasing trend in drought events under the background of global warming makes it
more important to understand the drought effect on vegetation photosynthesis. While
diverse global gross primary production (GPP) datasets were adopted to investigate the
drought impact on photosynthesis, few studies focused on the discrepancies of drought
response among different GPP datasets, especially for the cumulative drought impact.
Therefore, a total of twenty-six global GPP datasets based on process, machine learning
(ML), and light-use efficiency (LUE) model schemes were obtained to appraise the
cumulative impact of drought stress on photosynthesis from 2001 to 2010. Moreover,
a relatively reliable global pattern of drought’s cumulative effect on vegetation
photosynthesis was acquired from these global GPP products through probability
analysis. The results illustrated that the cumulative impact of drought existed in
52.11% of vegetation cover land with the cumulative time scales dominantly at a short
term (1–4months, 31.81%). Obvious heterogeneity of the drought cumulative effect in
space and different vegetation functional types was observed, as the reliability of the
drought effect decreased with latitude decreasing and a higher sensitivity to drought in
herbaceous vegetation than woody plants. Our findings highlighted the importance of
ways in characterizing moisture conditions across vegetation types among various GPP
models and the necessity of GPP dataset selection in investigating drought effect on
photosynthesis.
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1 INTRODUCTION

Global climate change will cause significant effects on plant photosynthesis (Cramer et al., 2001;
Richardson et al., 2013; Chen et al., 2014), especially with an increasing trend of infrequently severe
drought events under the background of global warming (AghaKouchak et al., 2014; Naumann et al.,
2018). In this way, it is essential to understand the various effects of drought on vegetation status and
further investigate the terrestrial ecosystem carbon cycle (van der Molen et al., 2011; Barman et al.,
2014; Anderegg et al., 2015).

Drought, as a complex and intermittent disturbance among climatic phenomena, can influence
the traits of the terrestrial ecosystem and vegetation status (van der Molen et al., 2011; Reichstein
et al., 2013; Anderegg et al., 2015), such as reducing the expansion of foliage and stomatal
conductance (Passioura, 1991), inducing plant mortality (Huang et al., 2010; Rao et al., 2019),
or even causing biotic disturbance and wildfire (Wendler et al., 2011; Huang et al., 2017). As the
observable changes in plant status induced by drought are hard to be timely detected, it is difficult to
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understand the reactions of the plant to drought (Zhao et al.,
2020). Moreover, except for the current moisture conditions,
early drought events may also control vegetation growth (Peng
et al., 2019; Yuan et al., 2020). In this way, knowing the various
time-scales of plant reactions to the drought effect is critical for
understanding the interactions between climate and plants (Zhao
et al., 2018; Peng et al., 2019; Wen et al., 2019). The drought effect
on plants can be summarized in the cumulative and time-lag
responses primarily (Zhao et al., 2020). Time-lag impacts
illustrate the effect of early drought events at a specific time
on the current plant status, and cumulative impacts are associated
with lagged effects and climatic dynamics during a given period
(Zhao et al., 2020). While there were an increasing number of
studies that surveyed the time-lag impact of drought on the plant,
it was found that it varies across species and ranges (Braswell
et al., 1997; Huang et al., 2018; Peng et al., 2019). Some
cumulative events (e.g., cumulative water deficits) could
intensify drought effects on terrestrial ecosystems (Ivits et al.,
2016). Therefore, it is necessary to assess the cumulative drought
impact on global plant photosynthesis more robustly.

In general, the response sensitivity of vegetation
photosynthesis (i.e., GPP) to dry conditions at the ecosystem
scale was used to characterize drought effect on vegetation (Ciais
et al., 2005; Sun et al., 2021). With the development of satellite
remote sensing technology (Xiao et al., 2019; Chu et al., 2021; Pan
et al., 2021; Guo et al., 2022), massive remotely sensed images
provided unique opportunities for researching the ecosystem
carbon cycle at multiple scales (e.g., regional, continental, or
global). On this basis, many researchers have established a variety
of models driven by remote sensing data to simulate GPP over the
past few decades (Tan et al., 2012; Anav et al., 2015; Lees et al.,
2018; Xie and Li, 2020b; a). Generally, all these remotely sensed
data-driven GPP models could be divided into three parts based
on different schemes, namely, process, machine learning (ML),
and light-use efficiency (LUE) models. The process-oriented
models always comprehensively considered the effects of
several main biophysical and chemical processes on vegetation
photosynthesis over the terrestrial ecosystem (Ito, 2010; Hayes
et al., 2011; Tian et al., 2011; Zhu et al., 2014; Jiang and Ryu,
2016). In this way, GPP estimations obtained from them were
more mechanistic and rigorous, while the ML models established
complex nonlinear statistical relations between physiologically
relevant input data and GPP, thus needing huge amounts of data
for model training (Tramontana et al., 2016; Zheng et al., 2020).
For LUE models, which simulated GPP through the theory of
radiation conversion efficiency (Monteith, 1972), it is assumed
that GPP had a direct relationship with the combination of
absorbed photosynthetically active radiation and factual LUE
(Xiao et al., 2004; Yuan et al., 2010; Guan et al., 2022) as the
factual LUE was linked with the potential ceiling amount of LUE
and various regulations of environmental factors on it (Hilker
et al., 2008; Guan et al., 2021). Based on these various models and
large amounts of remotely sensed and auxiliary data (e.g.,
meteorological reanalysis product), diverse GPP datasets have
been generated and used to investigate the global climate change
and carbon cycle (Campbell et al., 2017; Curasi et al., 2019).
However, previous studies indicated that the model structures,

model parameters, and input data among different models could
bring uncertainties to final GPP simulations (Zhao et al., 2006;
Xiao et al., 2011; Sanchez et al., 2015; Zhou et al., 2016; Zheng
et al., 2018). In this way, the global pattern of drought effect on
photosynthesis acquired from different GPP products might exist
in unavoidable discrepancies.

As there were more and more global GPP datasets that could
be accessed directly online (Zhang et al., 2017; Huntzinger et al.,
2018; Zheng et al., 2020), they provided a feasible opportunity to
derive a more reliable and robust global pattern of drought
impact on vegetation photosynthesis. Considering these
findings mentioned above, this study aimed to evaluate the
cumulative impact of drought on plant photosynthesis
quantitatively based on multiple global GPP products and a
multiscale time-series global Standardized Precipitation
Evapotranspiration Index (SPEI) dataset. Here, the major
objectives of this work were as follows: 1) to explore the
spatial pattern of cumulative drought impact on global
photosynthesis, 2) to analyze the discrepancies of drought
cumulative effect on photosynthesis across different vegetation
types, and 3) to derive a global reliability pattern of drought
cumulative effect on photosynthesis using the probability statistic
based on numerous global GPP products.

2 DATA AND METHODS

2.1 Datasets
2.1.1 Global GPP Products
In this study, a total of twenty-six global GPP products were
acquired to evaluate the cumulative drought impact on
photosynthesis. These GPP products contain seventeen
process-oriented models (i.e., BESS, BIOME-BGC, CLASS-
CTEM-N+, CLM4, CLM4VIC, DLEM, GTEC, ISAM, JULES,
LPJ-wsl, ORCHIDEE-LSCE, SIB3, SIBCASA, TEM6, TRIPLEX-
GHG, VEGAS2.1, and VISIT), five LUE models (i.e., EC-LUE,
MOD17, OPT-LUE, RC-LUE, and VPM), and four ML models
(i.e., ANN, MARS, MTE, and RF). While these GPP datasets had
different spatial and temporal resolutions, all GPP datasets were
processed into a uniform format (i.e., 0.5° and monthly) based on
the spatial average resampling and accumulated GPP within a
month. In addition, the overlapped years of these GPP datasets
(i.e., 2001–2010) were used as the study period in this work. More
detailed information about these GPP datasets can be found in
Supplementary Material.

2.1.2 Multiscale Global SPEI Data
In this work, monthly SPEI data at multiple time scales
(1–12 months) from 2001 to 2010 were acquired from the
SPEIbase v.2.5 datasets (Beguería et al., 2017) to identify the
duration and intensity of drought. This product contained
monthly SPEI data at 1–48 months’ time-scales from
1901–2015 with a spatial resolution of 0.5°, while SPEI at i
time-scale (i.e., i month SPEI) represented the cumulative
climatic moisture cycling process for the earlier i months. In
this way, SPEI data can be used to characterize different types of
drought (e.g., short, middle, and long period drought) and
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various effects on vegetation status (Begueria et al., 2010; Vicente-
Serrano et al., 2010; Peng et al., 2019). As for this product, the
SPEI value at each grid was computed through the discrepancy
among precipitation and reference evapotranspiration first, and
then the final SPEI value was a standardized parameter related to
the climatic moisture cycling process that obeys a log-logistic
distribution (Vicente-Serrano et al., 2010). In addition, a more
large positive SPEI value indicated surplus water supply after
meeting the coincident moisture requirement, and a smaller
negative value represented a more exigent water deficit
(Begueria et al., 2014). In this way, SPEI was a reasonable
parameter to characterize the degree of drought. Here, the
1–12 month SPEI data for 2001–2010 were adopted to explore
the drought’s cumulative impact on global photosynthesis
according to previous studies (Kang et al., 2018; Peng et al., 2019).

2.1.3 Global Land Cover Data
In this work, moderate-resolution imaging spectroradiometer
yearly global land cover types dataset Version 6 (MCD12C1
v006) was adopted to compare the cumulative effect on
photosynthesis across vegetation types. The MCD12C1 dataset
(Friedl and Sulla-Menashe., 2015) provided three land cover
classification scheme layers at 0.05° spatial resolution yearly,
and the International Geosphere–Biosphere Program (IGBP)
layer was used in this work. Moreover, the 0.05° resolution
land cover maps were resampled to the 0.5° resolution ones
based on the assumption that the land cover of every 0.5- grid
was the major stamp (i.e., with the maximal area percentage)
among all the 0.05° subpixels. As for demonstrating the
cumulative drought impact on global photosynthesis and
reducing the uncertainties attracted by land cover alterations,
merely the unchanged vegetation cover pixels (i.e., these pixels
that remained the same vegetation type during 2001–2010) were
selected as the study area. In this way, the unchanged vegetation

cover map is based on the IGBP scheme as shown in Figure 1. A
total of eleven vegetation types were selected from the unchanged
vegetation cover map (the total amount of pixels was 77,930,
accounting for 93.04% of all the land surface). All the used
vegetation types, their total numbers of pixels, and area
proportions to the land surface are shown below: deciduous
broadleaf forests (DBFs, 941, 1.12%), deciduous needleleaf
forests (DNFs, 120, 0.14%), evergreen broadleaf forests (EBFs,
4008, 4.79%), evergreen needleleaf forests (ENFs, 1144, 1.37%),
mixed forests (MFs, 2204, 2.63%), closed shrublands (CSHs, 116,
0.14%), open shrublands (OSHs, 6638, 7.93%), savannas (SAVs,
6217, 7.42%), woody savannas (WSAs, 4412, 5.27%), croplands
(CROs, 4717, 5.63%), and grasslands (GRAs, 12592, 15.03%).

2.2 Determining the Cumulative Drought
Impact on Plant Photosynthesis
The cumulative drought effect on photosynthesis was concluded
through correlation analysis in which time scale SPEI (i.e., any
month in 1–12 months) had the maximum significant correlation
with monthly GPP. For example, assuming that the i month SPEI
data (i could be anyone in the range of 1–12) showed the largest
correlation with monthly GPP at a pixel, the cumulative impact of
drought on photosynthesis would be set as i months for this pixel,
which indicated that the earlier i month climatic water balance
was important to affect vegetation photosynthesis. The specific
processes to determine the cumulative effect of drought for each
GPP dataset could be summarized into three steps. At first, time
series monthly GPP product and 1–12 months SPEI in the
timeperiod of 2001–2010 were extracted. Second, the reaction
of monthly GPP to 1–12 months SPEI was characterized through
Pearson’s correlation coefficient, while the significance level
(i.e., p) was set to 0.05 for each pixel. Third, the accumulated
months and intensity of drought cumulative impact on

FIGURE 1 | Spatial distribution of unchanged IGBP land cover types obtained from MCD12C1 Version six during the study period.
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photosynthesis was determined as i month and Rmax-cum (Rmax-

cum with a range of −1 to 1), while the absolute largest significant
Pearson’s correlation coefficient (i.e., |Rmax-cum| when p < 0.05)
happened between monthly GPP and i month SPEI.

2.3 Statistical Analyses
Based on Pearson’s correlation coefficients betweenmonthly GPP
data and multiscale monthly SPEI, the Rmax-cum and accumulated
mouth maps were obtained for each GPP dataset according to the
method mentioned in Section 2.2. Furthermore, in order to
compare the cumulative drought impacts on global
photosynthesis which were acquired through different GPP
datasets, the Rmax-cum were divided into three types, including
a significant positive correlation (i.e., Rmax-cum > 0 when p < 0.05),
significant negative correlation (i.e., Rmax-cum < 0 when p < 0.05),
and no significant correlation (i.e., p ≥ 0.05). Moreover, the
accumulated months could be ranged likewise into three
terms, namely, short term (1 ≤ months ≤4), medium term (5
≤months ≤8), and long term (9 ≤months ≤12). In this way, there
were both three possible results of Rmax-cum (i.e., positive,
negative, and no significant correlation) and accumulated
months (i.e., short, medium, and long term) for different GPP
datasets at each pixel. Based on these results of Rmax-cum acquired
from multiple GPP datasets, the final Rmax-cum outcome for each
pixel was determined through probability statistics wherein one
result had the highest proportion within all these GPP datasets.
Moreover, the reliability (Re) of the final Rmax-cum for each pixel
was determined as follows:

Re � NRmax−cum
NGPP

, (1)

where NRmax-cum represented the total number of final Rmax-cum

from all GPP datasets and NGPP was the total amount of GPP
products. At the same time, the final accumulated month
outcome and its reliability for each pixel were also obtained
using the same processes as the final Rmax-cum.

As for comparing the cumulative drought impact on
photosynthesis across vegetation types, the percentage (Pe) of
different types of Rmax-cum for each vegetation cover was obtained
as follows:

pej � Mj

Mall
, (2)

where j was the types of Rmax-cum (i.e., positive, negative, and no
significant correlation), M was the number of pixels that showed
Rmax-cum, and Mall was the total pixels for each vegetation type.
Similar to the Rmax-cum, the percentage of different types of
accumulated months for each vegetation cover land was also
acquired as follows:

pei � Si
Sall

, (3)

where iwas the types of accumulatedmonths (i.e., short, medium,
and long term), S was the number of pixels showing accumulated
months, and Sall was all the significant pixels for one vegetation
type. In addition, the variation of mean reliability with latitudes
can be obtained as follows:

ReMean �
∑
i
P

i
, (4)

where ReMean was the averaged reliability for each latitude, P was
the reliability of pixels at the same latitude, and i was the number
of pixels with reliability for the same latitude.

3 RESULTS

3.1 Spatial Pattern of Drought Cumulative
Effect on Photosynthesis
The spatial distribution of Rmax-cum which is based on probability
statistics is shown in Figure 2. The results indicated that 52.11%
of vegetation cover lands have shown significant Rmax-cum, and the
positive correlations had a higher proportion (38.30%) than
negative correlations (13.81%). Meanwhile, the positive Rmax-

cum was primarily observed in North America, South America,
South-central Africa, Central Asia, South Asia, Oceania, and
some parts of East Asia. The negative Rmax-cum was mostly
discovered at the medium and high latitudes of the Northern
Hemisphere, such as eastern North America, Northern Asia, and

FIGURE 2 | Spatial distribution of Rmax-cum based on probability statistic. FIGURE 3 | Spatial distribution of accumulated months based on
probability statistic.
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some parts of Eastern Europe. As shown in Figure 3, the spatial
distribution of accumulated months was significantly different at
the global scale, while the accumulated months were mainly
concentrated in the short term (31.81%), followed by medium
term (16.32%) and long term (3.98%). The accumulated months
in the short term were mostly found in North America, South
America, Central Africa, Northern Asia, and Oceania. The
medium-term accumulated months were mainly observed
among Central Asia, Southern Africa, and some parts of East
Asia. Moreover, the long term accumulation mainly occurred in
East and South Asia.

3.2 Cumulative Drought Impact on
Photosynthesis Across Plant Types
As shown in Table 1, the area percentages among Rmax-cum and
accumulated months changed obviously in different plant cover
types. The area percentages of the vegetation cover land revealed
positive Rmax-cum following the order: CSHs (69.17%) > EBFs

(58.28%) > GRAs (43.11%) >OSHs (42.54%) > SAVs (37.30%) >
CROs (36.36%) > DBFs (28.80%) > WSAs (24.48%) > ENFs
(21.85%) > MFs (8.89%) > DNFs (7.76%), as the negative Rmax-

cum with the order: MFs (28.95%) > OSHs (19.77%) > ENFs
(19.58%) >DNFs (18.97%) >DBFs (17.64%) >WSAs (17.48%) >
SAVs (13.64) > CSHs (13.33%) > GRAs (11.26%) > CROs
(7.89%) > EBFs (4.17%). In addition, the accumulated months
were primarily at the short term in most vegetation types, while
DBFs was at the medium term (50.11%).

3.3 Global Reliability Pattern of Drought
Cumulative Effect on Photosynthesis
The global reliability pattern of Rmax-cum thought probability
analysis is shown in Figure 4. The Rmax-cum had relatively
high reliability at the global scale (characterized by the
averaged value of 80.37 ± 17.33%). Moreover, the Rmax-cum

showed high reliability in high latitudes and low reliability
around the equatorial regions. The reliability of accumulated

TABLE 1 | Percentages of different Rmax-cum (i.e., positive, negative, and no significant correlation) and accumulated months (i.e., short, medium, and long term) across
vegetation types.

Vegetation Types Percentage (%)

Rmax-cum Accumulated months

Positive (Rcum-max > 0
when p < 0.05)

Negative (Rcum-max < 0
when p < 0.05)

No (p ≥ 0.05) Short (1–4) Medium (5–8) Long (9–12)

ENFs 21.85 19.58 58.57 69.92 24.47 5.91
EBFs 58.28 4.17 37.55 68.80 27.29 3.92
DNFs 7.76 18.97 73.28 70.97 29.03 0
DBFs 28.80 17.64 53.56 48.28 50.11 1.60
MFs 8.89 28.95 62.16 69.42 26.38 4.20
CSHs 69.17 13.33 17.50 72.73 14.14 13.13
OSHs 42.54 19.77 37.69 64.65 27.90 7.45
WSAs 24.48 17.48 58.05 64.61 31.60 3.78
SAVs 37.30 13.64 49.06 64.35 32.81 2.84
GRAs 43.11 11.26 45.62 55.62 31.66 12.72
CROs 36.36 7.89 55.76 50.93 39.72 9.34
ALL 38.30 13.81 47.89 61.05 31.32 7.63

FIGURE 4 | Global reliability pattern of Rmax-cum obtained from
probability statistic.

FIGURE 5 | Global reliability pattern of accumulated months obtained
from probability statistic.
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months displayed a similar global pattern with Rmax-cum

(Figure 5), characterized by the mean value of 74.68 ±
20.79%. Notably, there were obvious discrepancies in the
reliability of Rmax-cum and accumulated months around
Oceania, South Asia, and South Africa, while the Rmax-cum

presented high reliability and the accumulated months showed
low reliability in these areas.

Figure 6 showed the variability trend of reliability in Rmax-cum

and accumulated months across latitudes. The reliability of Rmax-

cum was decreased with the decreasing of latitude, while the
reliability of accumulated months was undulated in the
Southern Hemisphere. As for the reliabilities of both Rmax-cum

and accumulated months, they were various across vegetation
types (Table 2). The averaged reliabilities of Rmax-cum in diverse
plant types followed the order: DNFs (90.02 ± 14.44%) > ENFs
(89.88 ± 14.53%) > MFs (86.22 ± 15.97%) > OSHs (85.41 ±
14.63%) > WSAs (84.17 ± 17.17%) > DBFs (84.01 ± 15.68%) >
SAVs (83.52 ± 16.57%) > GRAs (79.41 ± 16.60%) > CROs
(77.27 ± 16.38%) > CSHs (74.58 ± 17.15%) > EBFs (62.74 ±
14.87%), while the averaged reliability of accumulated months
showed a lower value than Rmax-cum among different species,
characterized by the following order: DNFs (89.36 ± 15.24%) >
ENFs (88.26 ± 16.12%) >MFs (85.28 ± 16.67%) >WSAs (81.88 ±
18.98%) > DBFs (81.39 ± 17.14%) > SAVs (79.34 ± 19.23%) >
GRAs (73.93 ± 19.38%) > OSHs (72.74 ± 24.11%) > CROs
(72.26 ± 18.68%) > EBFs (56.83 ± 15.81%) > CSHs (55.71 ±
16.61%).

4 DISCUSSION

This study evaluated the cumulative drought impact on global
photosynthesis across vegetation types grounded on numerous
GPP products and derived a global reliability pattern of drought
cumulative effect through probability analysis. The results
illustrated that the cumulative effects of drought occurred in
52.11% of the vegetation cover areas (Figure 2) and the
dominant accumulated months were short term (1–4 months,
31.81%). Our study indicated the high spatial heterogeneity of
drought effect at the global scale and the importance of the GPP

dataset in evaluating the cumulative drought impact on
photosynthesis.

In this study, the global reliability pattern of drought
cumulative effect on photosynthesis was acquired through
numerous GPP products, and both Rmax-cum and accumulated
months exhibited spatially heterogenous distributions (Figure 4
and Figure 5). Moreover, the reliability of cumulative effect in
time scales was more undulated, especially in the southern
hemisphere (Figure 6). These findings revealed that the water
supply and availability could play a key role in GPP simulation.
Generally, a total of twenty-six global GPP datasets generated
from different model schemes (i.e., based on LUE, ML, and
process) were used as indicators to represent the
photosynthesis of vegetation. Among various models, these
process-oriented models always considered many physiological
or biogeochemical processes of photosynthesis mechanistically
(Jiang and Ryu, 2016; Wagle et al., 2016; Xie et al., 2021), thus
making the GPP estimation more rigorous. While these LUE
models were developed through the theory of radiation
conversion efficiency (Monteith, 1972; Yuan et al., 2014), the
ML models estimated GPP based on the statistical relationship
established between input data and outcome (Jiang and Ryu,
2016; Wolanin et al., 2019; Xie et al., 2022). In this way, different
theoretical foundations among diverse models would bring
unavoidable uncertainties in characterizing global
photosynthesis (Zheng et al., 2020; Wang S. et al., 2021; Wang
Z. et al., 2021). In addition, multiple GPP models have used
various strategies to describe the water stress of vegetation. For
example, the EC-LUE model used the rate between
evapotranspiration and net radiation to consider the moisture
regulations on LUE (Yuan et al., 2010), while the VPM model
adopted a scaled Land Surface Water Index to characterize the
moisture limitation for photosynthesis (Zhang et al., 2017).
Moreover, the water limiting processes could be more complex
in process-oriented models (Jiang and Ryu, 2016; Slevin et al.,
2017). These different ways of regulating the moisture status of
plants might also lead to a diverse response of photosynthesis to
drought among different GPP datasets.

The cumulative drought impact on photosynthesis and its
reliability showed obvious discrepancies among vegetation types

FIGURE 6 | Variability trend of reliability in Rmax-cum and accumulated months acquired from probability statistics across latitudes.
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(Table 1 and Table 2). The results showed that there were higher
proportions of significant Rmax-cum pixels in CSHs, OSHs, and
GRAs than those in DNFs, MFs, ENFs, and WSAs, confirming
the importance of water supply and availability for grasslands and
shrubs (Wu et al., 2015; Peng et al., 2019; Fan et al., 2020), while
this might be attributed to the different structural and functional
characteristics of rhizomes between herbs and woody plants
(Chimento and Amaducci, 2015; Hudek et al., 2017; Lobmann
et al., 2020), such as root diameter (Hudek et al., 2017), root depth
(Seghieri, 1995), and stem specific gravity (McCoy-Sulentic et al.,
2017). Herbaceous vegetations usually have abundant fine and
shallow roots in the topsoil layer, making them respond more
sensitively to drought due to the limitation in water availability
through more deep layers of soil (Dodd et al., 1998; Wu et al.,
2018; Lobmann et al., 2020). However, woody plants always have
taproot structures with thick roots, and deeper roots facilitate the
absorption of groundwater which causes them to be more
resistant to drought (Dodd et al., 1998; Midwood et al., 1998;
Bleby et al., 2010; Wang et al., 2020). Moreover, the roots of
woody plants are further in evolution than herbaceous plants and
are characterized by secondary growth (Ma et al., 2018; Wang
et al., 2020), helping them withstand stress caused by drought.
Different water storage modes may also result in diverse
responses to drought across vegetations (Tian et al., 2018)
because woody vegetations hold most plant water in their
woody tissues and have more complex hydraulic strategies,
while the moisture storage of herbs primarily depends on the
amount of foliage (Sternberg and Shoshany, 2001; Morris et al.,
2016).

5 CONCLUSION

In this work, a total of twenty-six global GPP products based on
process, LUE, and ML models were obtained to evaluate and
derive a global reliability pattern of drought’s cumulative effect on
photosynthesis. The results illustrated that the cumulative
drought impact was observed in 52.11% of vegetation cover
land primarily in the short term (31.81%). Obvious
discrepancies of drought cumulative effect were observed in
different plant functional types, while herbaceous vegetations
were more sensitive to drought than woody plants. This could
be attributed to the difference in root functional traits among
vegetation functional types. Because the reliability pattern of
drought depended on multiple GPP datasets, the results also
showed marked heterogeneity in terms of space and vegetation
type, while lower reliability was found in the tropics. Our findings
highlighted the importance of water characterization strategies
under different vegetation functional types in GPP models and
the necessity of GPP dataset selection in assessing drought effect
on vegetation.
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