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Low-carbon energy transformation increases energy efficiency, and environmental
regulation is necessary for carbon neutrality. Energy efficiency is widely accepted As a
cost-effective method of reducing air pollution and improving the economic performance
of manufacturing industries. In order to make their manufacturing sectors more energy-
efficient, a large number of countries have implemented legislation. It is possible to tailor
these interventions to a specific company or industry by using measures to control and
direct interventions in the marketplace. These policies might be beneficial, but the
experiential study of the impacts of these interferences on energy-saving technology
acceptance has not been conclusive. Many environmental policy measures have an effect
on the level of the asset in energy efficiency machinery. The years 2010–2019 are covered
in this research, which compiles a database of Chinese industries from various sources. As
a result, we have access to a wide range of factors and strategy devices that could
influence the adoption of energy efficiency measures. Regulation, taxes, subsidies, and
exemptions are among the instruments we will examine. These findings support the
development of environmental regulations in China that will further improve energy
efficiency and carbon neutrality.

Keywords: environment regulations, green technology innovation, sustainable development, tobit regressionmodel,
network DEA model

1 INTRODUCTION

Since its inception as a hidden fuel, energy efficiency has been elevated to the first fuel in a
maintainable worldwide energy system, says the International Energy Agency (Chandio et al., 2021;
Hao et al., 2021; Tanveer et al., 2021). Energy efficacy is at the topmost of both international and
national policy and science schedules because it provides significant and growing benefits to all
sectors of the economy (Irfan et al., 2019, 2020; Madurai Elavarasan et al., 2021). There are numerous
economic and social advantages to strategies meant to increase energy efficacy and the more
conventional approaches to decrease utilization, save money, and reduce airborne pollution
(Elavarasan et al., 2021; Irfan and Ahmad 2021; Irfan et al., 2021). In energy supply, a reduction
in imported energy dependence can significantly influence energy security (Rehman et al., 2020; Işık
et al., 2021; Yang et al., 2021). Additionally, the rise in international energy raw material prices,
exacerbated by the decrease in energy consumption, contributes to lower inflationary tensions
(Dagar et al., 2021; Jinru et al., 2021; Fang et al., 2022). In order to summarize: Increased efficiency
and reliability in the sector can positively impact the macroeconomic environment, from increasing
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economic activity to creating more jobs to improving the health
and well-being of employees, all of which directly influence the
economy (Li L. et al., 2021).

The Chinese management has set aspiring goals for energy
competence reduction for 2020 and 2030. (at least 20.0% and
32.50% developments in energy efficacy likened to a baseline,
correspondingly) (Quan et al., 2021; Yu et al., 2022). As the
industrial sector accounts for 25% of final energy preservation
and 15% of worldwide air secretions, meeting these targets will
require contributions from all energy-consuming sectors (Shao
et al., 2021), even though businesses might be enticed to finance
energy-competent technologies because of government
incentives. Research has shown a space amid the publicly ideal
level of an asset in power-saving skills and the quantities invested
in reducing costs and becoming more environmentally friendly
(Dorsey-Palmateer and Niu 2020). The gap in energy efficiency is
known as the efficacy gap. Based on their evaluation of the
experiential fiction on the drivers of energy efficacy in
industrial organizations (Wang and Luo 2022), conclude that
the most crucial reason for organizations to finance energy
efficacy is still unclear. According to the authors, researchers
are unable to agree on the primary drivers of energy efficiency
because of their multidisciplinary approach (Pan and Chen 2021).

Additionally, environmental regulations (ERs) also offer
external inducements for the industry to modify its
manufacturing procedures in accordance with some
restrictions imposed on firms by governments. Scientists have
found some advantages to environmental regulations, but
theyhave also found some drawbacks. Ai et al. (2021) found
that while environmental regulations effectively encourage green
technology innovation in trade, such a revolution will move to
arise in the prices associated with new product development and,
thus, a reduction in the inclination of the industry to innovate.
According to (Liu L. et al., 2021), strict environmental regulations
directly influence the willingness of international stockholders to
enter the local market place in the first place because they raise the
environmental prices of innovation. There is a consensus that the
government should implement appropriate environmental
regulations (ERs) to increase the efficacy of green technology
innovation in the industry, but this is not universally agreed upon
(Qudrat-Ullah and Nevo 2021).

Green innovation efficacy (GIE) is a metric used to assess how
effectively the industry utilizes resources when developing green
technologies. Resources invested vs. benefits received are
commonly referred to as a return on investment. In order for
the industry to better assign funds, gain more profits with a small
number of assets, and lower the costs of innovation while
maintaining or improving productivity, innovation efficiency
must be improved (Xing et al., 2021). Since ERs and GIE have
been linked in previous studies e.g., (Andrei et al., 2021), it is clear
that more research is needed to grasp how ERs and GIE are
interrelated fully. The real-world effects of various ER types and
the variety of ER characteristics make it difficult to generalize
about ERs.

Since the modification and inaugural strategy, China’s budget
has increased and reached significant fall outs. On the other hand,
this rapid expansion was fueled by pollution and energy

consumption that were out of control. China will accelerate
the construction of a resource-saving and environmentally
friendly society, according to the Central Committee’s Fifth
Plenary Session of the 18th CPC, which met in Beijing. In
affirmation of previous decisions, this proposal was a part of
implementing a strategy for sustainable development and
promoting synchronization between humans and nature (Li
et al., 2018; Hu et al., 2022). In order to build a society that is
both resource-efficient and environmentally friendly, solid
environmental regulation is essential. While improving the
environment, energy consumption can be controlled using
analytical and active regulatory tools (Andersson et al., 2020).
However, it remains to be seen whether China’s energy efficiency
will improve due to stricter environmental regulations or as a
result of technological advancements. It is essential to understand
the relationship between technological innovation and
environmental regulation and energy to formulate effective
environmental regulation policies. Previous studies have
examined environmental regulation, technological innovation,
and energy competence separately. Understanding the
interrelation between environmental regulation, technological
innovation, and energy efficacy has proven difficult due to the
scarcity of studies. For this reason, to attain our energy-saving
goals through the advancement of technological innovation and
energy efficacy, we will investigate the association between
environmental regulation, innovation, and effectiveness and
their intersection.

A significant contribution is made in two ways. Incentives
available in the marketplace environmental regulation and
command and control over the environment are subcategories.
Once we’ve built a connection amid environmental regulation
based on command and market incentives, along with
technological advancements and energy efficiency within the
same framework, we used direct acyclic graph (DAG) methods
to extract three conduct pathways for each of the four variables.
Another approach is to utilize a Tobit regression model to track
the long-term trends in the command control has a significant
impact on the environment regulations, technological
innovation, market incentives for environmental regulation,
and energy efficacy are four regulated variables.

The remaining article is arranged as follows: For the
construction industry and emergency response systems,
Section 2 examines the literature on GIE and its impact on
these industries. Before moving on to Section 4, Section 3
provides an overview of datasets, indicators/variables, and the
data analysis process. Outcomes of the GIE study and regression
are written in Section 5 in great detail. Section 6 explains the
implications of these findings. Conclusions and upcoming study
directions are debated in Section 7 of the paper.

2 LITERATURE REVIEW

As far as assessing energy efficiency, single-factor and total-factor
methods are the most commonly used. Single-factor energy
efficacy has two subcategories: intensity and productivity (see
Figure 1). The ratio of energy input to GDP multiplied by the
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term energy intensity is known as energy productivity (Desvallées
2022). Because of its simplicity, this approach has been used by a
large number of scientists in their investigations into energy
efficacy and the factors that affect it. By applying this method,
the energy intensity trends in the number of major OECD
countries since 1973 were estimated by Zheng et al. (2021).
For their study, they focused on implementing energy efficacy
strategies in the United States, Japan, and Western Europe. The
findings are parallel to (M.Wang and Feng 2020), who used panel
data spanning 2000 to 2009 to examine how different economic
structures, consumption patterns, and technological
advancements impacted energy intensity in other parts of
Eastern Asia. The impact of government spending on energy
intensity was examined by (D. Q. Zhou et al., 2016) using regional
panel information. According to the researchers, in spite of
regional economic discrepancies, the effect remained
significant. Conclusions drawn from these findings include the
significance of analyzing single-factor efficiencies for economic
growth and the extent to which it is energy-dependent (Martelli
et al., 2020). Aside from energy, other important factors such as
labor and capital are overlooked when this method is examined
from the perspective of the entire production process. Since it
doesn’t give a complete picture of energy efficiency, structural
changes may result in lower energy intensity, but the energy
efficiency may not change. A region’s or an industry’s increase in
energy efficiency cannot be estimated using this method because
it is also affected by the energy value (Khalfaoui et al., 2019, 2021;
Sarwar 2019; Sarwar and Alsaggaf 2020; Waheed et al., 2020).

Using (Mehta et al., 2019) energy efficiency concept, which
incorporates facets aside from energy consumption like labor and
investment into the single-factor efficacy, the concept of total-
factor energy efficacy is proposed. This idea came about due to the
problems with traditional single-factor energy efficacy. The entire
feature energy efficacy of member countries of the Asia-Pacific
Economic Cooperation (APEC) countries amid 1991 and 2000
(Su and Urban 2021) found that meeting the energy-saving target
without decreasing GDP could be discussed. To find out why

China’s energy efficacy is so low, (Jebali et al., 2017), calculated
the efficacy of energy from China’s petroleum, char, and sources
of clean, renewable power from 1998 to 2010. Due to a low GIE,
they concluded that this was the main problem. According to this
table, using total-factor energy efficacy improved the exactness of
energy efficacy assessments, but the studies above only measured
earnings, such as GDP, when determining efficiency levels. As
more people become concerned about climate change and
environmental issues like carbon dioxide emissions, scientists
are beginning to consider the negative consequences. A growing
number of academics believe that when evaluating output factors,
it is necessary to consider both predictable earnings and
unpredicted outputs (toxins like carbon dioxide and sulfur
dioxide). As part of their investigation into China’s energy
efficiency, (Ren et al., 2020), measured and then planned the
total factor energy of 29 Chinese shires between 1997 and 2011.
According to (Wu et al., 2021), this study examined the ability to
utilize all of a system’s energy sources and latent of China’s
provincially based industries from 2000 to 2014, focusing on
technological differences and management practices, and scale.
Using data from 2008 to 2012, Adua (2021) discovered that the
vast majority of Chinese cities are inefficient energy consumers.
Almost all academics agree that carbon dioxide emissions are
primarily responsible for the adverse effects of human activity. As
a result of the manufacturing process, pollutants such as Sulphur
dioxide and nitrogen dioxide will be out. Despite the widespread
belief that these gases are the primary contributors to warming
the planet, acid rain, and diminishing the ozone layer, only a few
researchers (Li et al., 2021b) have found their harmful emissions.

In order to examine the relative efficacy of multiple inputs and
outputs, the DEA is the most widely used method for calculating
total-factor energy efficacy. Total-factor energy efficacy is most
commonly calculated using the DEA method. Because the
traditional DEA model results differ depending on whether
the starting point is a constant or variable scale earnings
model. It cannot be used to compare multiple effective units
at once. Instead, it employs the CCR and BCC models, both of

FIGURE 1 | Average green innovation efficiency.
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which have varying scale earnings. In order to improve the model,
researchers constantly tweak it. Sedlmeir et al. (2020) devised a
super-efficiency DEA model to overcome the drawbacks of
traditional DEA models, allowing them to determine the
efficiency difference between efficient units as well as the
effective order in which decision-making units should be
placed. Calculate environmental efficiency in 31 Chinese
provinces between 2000 and 2010. Fan et al. used this model
to analyze the energy competence of carbon dioxide utilization
skills in China (Sun et al., 2020).

Scholars assessing China’s energy competence in specific
industries or at the microscopic area level have paid little
attention to the country’s energy efficiency. (Gondal et al.,
2017) calculated the scale incomes and indemnities of energy
efficacy in different regions of China between 2006 and 2010 and
provided China’s government with strategies and policies to
implement. Researchers in 29 Chinese provinces used the
three-dimensional panel econometric model between 1997 and
2011 to examine cluster and influence factors and total-factor
energy competence. Between 2002 and 2010, city trade in Beijing,
Chongqing, Shanghai, and Tianjin increased emission loads and
geological sources, according to a study by (Kiara 2013).
Environmental total-factor energy efficiency in China’s
industries that use a lot of energy from 2000 to 2013 was
significantly lower in four sub-departments than the national
average (Zhuo and Qamruzzaman 2022). Li et al. (2021c) used
state-owned coal-fired power plants as a case study and calculated
how much energy could be saved and how much CO2 could be
avoided. Similar studies were carried out by (Huang et al., 2022;
Liu et al., 2022; Wen et al., 2022). China’s coal consumption was
examined at the regional and industrial levels using the DEA-
Malmquist index. Based on an industrial utilization perspective,
the DEA-Malmquist model was used in this study. Furthermore,
it explains why China’s coal consumption efficiency has
fluctuated over time from 2006 to 2015.

2.1 Green Technology Innovation Efficiency
Significant research is being done into improving GIE for use in
industry (Luo Q. et al., 2019), nology innovation (Wang et al.,
2021). In other words, the GIE is a measure of the industry’s
ability to utilize available innovation resources and resources. To
see if an industry can get the most out of a given level of
investment, it uses this formula (Abdul-Rahaman et al., 2021).

The GIE, on the other hand, needs to be improved in order to
promote long-term industry growth (Hodson et al., 2018). The
performance of the GIE has so far been assessed using a variety of
schemes based on indicators developed by researchers. For
example (Dias et al., 2022), examined the practical green
technology innovation process and developed a system based
on administration, process, technological, and product
innovation indicators. Q. Wang et al. (2019) discussed China’s
green technology innovation environmental factors and projected
a system that included non-expected productions (CO2,
SO2, etc.).

In addition, prior studies intensive on the variables that affect
the GIE score. To study GIE in the high-end industrial industry
(Horbach et al., 2012; Saguy 2022), developed an SFA (Stochastic

Frontier Analysis) model, which they then applied to GIE in the
automotive industry. According to their findings, all of these
variables had a substantial influence on GIE: government
funding, company size; maturity of the market; and industrial
agglomeration. Technology spillover in reverse effects on GIE is
primarily determined by the institutional environment, as (Deng
et al., 2021) noted in their study.

While previous research on GIE has failed to account for the
staggered nature of GTI fully, it becomes clear when reviewing
previous literature on the subject. GTI is typically thought of as a
one-step process. This simplification may lead to inaccuracies in
the estimation of efficiency. Technology innovation resources are
transformed into technological R&D accomplishments through
the multi-stage process known as the Global Technology
Innovation Process (GTI). The company can then reap the
benefits of these technological innovations and R&D
accomplishments in the form of financial gains (Khan et al.,
2021). It necessitates the division of green technology innovation
into various phases in order to assess GIE fairly.

2.2 Green Innovation Efficiency and
Environmental Regulation
Industrial growth and economic growth could be stifled by
environmental pollution, a global problem (Isaksen and Trippl
2017). In order to encourage long-term fiscal growth, nationwide
administrations have devised a number of strategy devices known
as economic development instruments (ERs) (Xie et al., 2019).

The term environmental regulations (ERs) are used to describe
a broad range of legislation to protect the environment. Green
innovation in the United States is also being driven by
environmental regulations, according to (Khalil et al., 2021).
To address industrial pollution, environmental remediation
(ER) is a highly effective method (K. Du et al., 2021).
Environmental regulatory agencies (ERs) can use mandatory
measures like environmental taxes to limit pollutant emissions.
It is expected that businesses will voluntarily reduce their
pollution emissions in order to avoid paying the extra tax
imposed by the environmental contamination. Companies
must pay a tax on the environment for polluting the environment.

In the industrial sector, ERs can also recover or avert GIE (Dias
et al., 2022). On the one hand, manufacturing will typically bear
the bulk of the costs associated with innovation; on the other side,
it will not always reap the benefits of innovation (H. Khan et al.,
2022). This marvel is referred to as the positive externality of
innovation. Governments frequently make efforts to rouse
manufacturing via subsidies and other resources in order to
reduce the adverse effect of positive outwardness on GTI
(Dong et al., 2022). As an alternative argument, the industry
must continuously recover its GIE and make the most of the
profits of innovation in order to decrease the high price of
innovation (Anser et al., 2020).

Only a few studies have been done to confirm the consequence
of ERs on GIE. An investigation into the United Kingdom by
(Luo S. et al., 2019) found that ERs could only improve GIE in the
industry under certain circumstances. There is no clear linear
relationship between ERs and GIE, as (J. Wang 2011; Zhu et al.,
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2021) stated. Although ERs initially inhibit GIE, the intensity of
these ER increases after an inflection point, according to
(Lemieux et al., 2021). As a whole, previous studies have not
yielded a definitive answer, and there appear to be discrepancies
between the findings of different studies.

There are numerous ways to distinguish ERs from other types
of cells. There is no doubt that the industrial Environment is
affected differently by different ERs (García-Pérez-de-Lema et al.,
2021; Zheng et al., 2021). According to the government’s
mandates, three kinds of environmental regulations (ERs) fall
into three categories: volunteer regulation, market-based
environmental regulation, and command and control
environmental regulations (Bayarçelik et al., 2014; Liu Y. et al.,
2021). As a result, rather than combining the effects of different
ER types, it is necessary to examine each one separately to assess
the influence of ERs on GIE accurately.

3 METHODOLOGY AND DATA
DESCRIPTION
3.1 Data Envelopment Analysis Technology
to Measure Efficiency
Unlike traditional economic methods such as ratio analysis or
regression, data envelopment analysis (DEA) is considered a
more active tool for measuring efficiency in business
operations. Efficiency has been defined by a number of
academics in this particular context. In this research, we
consider (Tang et al., 2019) definition of productivity, which
was derived from the research (Curtis and Lee 2019) and is used
to define the measure of efficacy comprised of several inputs.
According to (Xu and Lin 2020), an organization’s efficiency
comprises two gears: technical efficacy and a locative efficacy (or
allocation efficiency). Practical efficacy is defined as the ratio of
the optimal input to the actual input in input-oriented efficiency
measurement. It is defined as the % of the actual output to the
optimal output in output-oriented efficiency measurement.

On the other hand, a locative efficiency demonstrates an
organization’s ability to utilize its inputs to the greatest extent
possible in light of its prices and technological capabilities. The
production Frontier or cost Frontier is used to determine the
optimal output and input for Decision-Making Units (DMUs)
based on the objectives of Decision-Making Units (DMU). In this
regard, two approaches are recommended in the literature: a
parametric approach and a non-parametric approach. The
Frontier of the parametric approach is assigned an efficient
method. In contrast, the Frontier of the non-parametric
method is not assigned a functional method and instead is
defined by the preceding specification. To develop the DEA
model for measuring the efficiency of a single DMU for the
first time, Lin and Xu (2020) used a non-parametric approach,
which the authors of the paper followed. They devised an input-
oriented DEA model that assumed a constant return to scale as a
starting point. Following studies of the DEA model, on the other
hand, take into account a variety of assumptions. The variable
returns to scale (VRS) concept was projected by (Harrison et al.,
2017), who used mathematical programming in his DEA model

to generate a linear best practice Frontier based solely on
experimental input-output data. This new approach of the
DEA has gained a wider acceptance for measuring the
efficiency of different DMUs across industries or countries
than the previous approach (Zhang et al., 2020).

A relational and non-rational decrease in contribution was
used in two applied DEA variants. In order to calculate hospital
efficacy from both DEA variants, an input-oriented TE model
with inconstant revenues to scale is quantified. A vector of inputs
I = 1, 2, . . . . . .m inputs) is formed by n numbers of firms (j = 1, 2,
n) using y j = y 1, y 2, . . . , y J as outputs. x_j = x_1,x_2, . . . ,x_J;
This is the input bundle used by the jth hospital (where j is a
number). There is a production relation between the set of inputs
and outputs.

P(X) � {(x, y) ∈ R;x can produce y} (1)
where P comprises all possible output and inputs package, the
efficacy of jth DMU with the input-output pack (xo, yo) can be
assessed through the following model:

θp � min θ (2)
Subject to

∑n

j�1λjxij ≤ θxion � 1, 2, . . . , N (2a)
∑n

j�1λjyij ≥ θyiom � 1, 2, . . . ,M (2b)
∑n

j�1 � λjj � 1, 2, . . . , J (2c)

λj ≥ o and j � 1, 2, . . . . , n
The linear programming model described above is used to

reduce all inputs proportionally to a given output level. The
technical efficiency of a facility is measured by a proportionate
reduction in all its inputs based on scaled-down inputs to get to a
certain point (where represents the scalar magnitude). The
efficacy notch of the hospital under assessment can be planned
as the proportion of the negligible input with mention of the built
border to the actual input in the hospital under evaluation after
resolving the optimization problem. The minimal input
requirement includes the proportionally reduced input and
some types of denim related to input as a result of the only
relative decrease (Ngo 2022). To indicate radial efficiency, the
score is denoted by the symbol *. Efficiency equals TE (* = *)
because there is no slack in the system with respect to the input.
On the other hand, radial efficiency is limited in its ability to
provide a comprehensive measure because it only considers the
reduction in inputs proportional to the reduction in output.

Researchers are moving toward the submission of a DEA with
a non-circular variation, which is founded on non-relational
alteration, to increase greater precision and biased power. In
order to circumvent the difficulties associated with the radical
approach, the slack-based measure (SBM) of efficacy
approximation has been projected by (Xiang et al., 2022) in
order to achieve greater biased power and wanted scientific
properties. Achieving the maximum amount of loss linked
with the outputs and inputs used in the manufacturing
process to account for the various features of non-
proportional lessening is at the heart of this method. One way
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to look at it is as a by-product of incompetence caused by equally
the inputs and outputting factors combined. You can find the
derivation of the SBM of competence, along with its measured
properties, in (Ye andWang 2019). The following is a description
of the model, which is the SBM of technical efficiency.

min ρ �
1 − ( 1

m)∑m
i�1s − i/xio

1 + (1s)∑s
r�1s + r/yro

(3)

Here, the output vector Y and input matrix X have slacks
associated with them. The Charnels-Cooper conversion, used in
the (Guo and Yuan 2020) CCR model, can quickly transform the
fractional form of the above SBM model into a simple linear
programming optimization.

3.1.1 Input-Output Indexes
Energy use can be alienated into two broad classes: energy input
and energy output. There are two subcategories within each of
these categories: total and single-factor energy inputs. Each of
these categories can be broken down into desirable and
undesirable outcomes. The GIE, which includes coal input and
output, is the primary focus of this investigation (Khoshnevisan
et al., 2013). There are two types of models: one considers only the
country’s economic output and the other looks at both the
greenhouse gas emissions and the pollution caused by coal
consumption in terms of air emitted. The following is an
illustration of an input-output indicator:

This system is composed of three distinct components. Begin
by looking at the coal standby input index, which measures the
amount of standard coal used per 1,000 metric tones of coal
consumed. The second index measures the output of coal
resources. It is equivalent to one hundred million dollars in
Chinese currency; the capital input index is another index that
is commonly used. In the end, the output metric is the only
metric. According to Yijun Zhang and Song (2021), a fixed asset’s
current value is equal to its original value minus its accumulated
depreciation value, calculated using the 2005 Fixed Investment
Price Index. In other words, 1,000,000 people are equal to 10,000
employees and are expressed as the whole number employed in a
specified year. Another way to look at it is to compare all
employees’ beginning and ending mean values.

System for showing the results of a task. There are two parts to
this system. As a starting point, we can look at the industry’s
revenue in 100-million-yuan units, which is known as the
financial output index. (Pardo-Bosch et al., 2019) use the
2010 ex-factory price index of manufacturing makers to
deflate the impressive statistics from the China Industry
Statistical Yearbook to arrive at the final value. Index of
environmental and climate change impact also among
undesirable outputs (also referred to as the unwanted output).
NOX, SO2, and CO2emissions are added together to calculate
this index, which is expressed in tones per ten thousand tones of
CO2. There are three main factors that led to the selection of these
three outputs, according to (Martínez-Moya et al., 2019). The
three most concerning aspects of air pollution are acid rain, ozone
exhaustion, and global warming. According to popular belief,
these problems are caused by too much CO2, SO2, and NOX

being emitted into the atmosphere. China’s government has
proposed emission reduction targets for the country, which
has been the world’s main transmitter of NOX, SO2, and CO2.

The China Industry Statistical Yearbook (2010–2019) was used to
gather industry-related data, including data on the industry’s capital
stock, workforce, and sales value. 2010 IPCC guidelines for national
greenhouse gas inventories were printed in 2010 and used to
calculate the CO2 emissions. Following (X. Yu and Li 2020), we
calculate carbon dioxide emissions by multiplying each type of
energy consumption by its carbon emission coefficient and then
totaling up the results to get the full carbon dioxide discharges. The
China Energy Statistical Yearbook (2010–2019) was obtained from
the Chinese government and used to calculate CO2 emissions. The
China Statistical Yearbook on Atmosphere (2010–2019) was used to
calculate SO2 emissions for the past 14 years. c) The China Statistical
Yearbook on Environmental Statistics has published data on NOX
emissions since 2011. This study follows Zeyun Li et al. (2022) and
uses a variety of energy consumption factors and NOX emission
factors to estimate NOX emissions for unobserved data. The original
data are depicted in Table 1 with the descriptive statistics.

3.2 Tobit Regression Analysis
A panel of random effects Tobit’s regression is considered for the
second stage of the analysis. In this step, the efficiency scores of
the DEA gained in the first stage are generated as reliant on
variables with the limited (0, 1) series. The Tobit regression model
employed in this work is well-defined as follows:

ypit � βxit + uit

Where yp
it Signifies the efficacy slash of area in the time period

measured, t; β is a vector of criticisms to be assessed; xit is a vector
of the exogamic, sovereign variable quantity stated in the
calculation (4); uit signifies for the common error term
composed of a time-invariant individual random effect vi.
Which is i.i.d., N(0, σ2ε ) and a time-varying idiosyncratic
random error (εit), which is also i.i.d., N(0, σ2ε ). Hence,
uit � vi + εit. The observed variables are.

yit � {ypit − if − y
p

it
≥ 0

0 otherwise

Themaximum likelihoodmethod is applied to estimate the Tobit
regression. This model is used as a substitute for ordinary least
squares regression. This model gives an effective result if the
dependent variable is a limit or cut value. Numerous writers used
this model by considering the DEA not chasing adequate to the
interval (0, 1). The Tobit regression model fixes the issues with
asymmetry that make the usage of ordinary least squares. However,
academic arguments exist in relation to the functional
appropriateness of this model in carrying out second stage
examination. For example (Xiang et al., 2022), declares that Tobit
regression is not the only method for modelling DEA scores, but in
most cases, it generates valuable results. But (Pardo-Bosch et al.,
2019), argues that as the DEA scores generated through Tobit
contain fractions, it is not a suitable measure. He suggests that
the ordinary least squares estimator is instead a reliable estimator.
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However, this study applies the Tobit model and a linear random-
effects model to test the results’ statistical robustness.

3.3 Variable Selection
3.3.1 Tobit RegressionModel and Variable Description
In order to protect the environment, CERs must be applied by
government sectors or environmental safety firms. CERs, or
climate-related emissions reductions, are a standard tool in Chinese
environmental regulation. According to previous research, the
intensity of CER was previously measured by the number of new
regulations enacted. Despite their best efforts, governments often fail
to put into effect the legislation they pass, according to (Singhai and
Sushil 2021). It was thus decided to use the annual number of
environmental administrative penalty cases as an indicator to
gauge government CER intensity in accordance with Xu and Lin
(2016) recommendation. In the wake of the MER, governments and
environmental agencies are able to use market-based mechanisms to
switch industrial contamination. Before this study, the strength of
MER in the Environment was estimated using contaminant expulsion
charges. Since 2003, China’s pollutant expulsion charges system has
been broadly applied all over the country’s various regions, and the
system’s results have been thoroughly documented in the country’s
official statistical yearbooks. China’s regional pollution expulsion
payments are used as an indicator of the MER to calculate the
MER. Vlontzos et al. (2014) says that by keeping an eye on the
industry’s production practices, the public can help protect the
environment. VER (China’s Environmental Responsibility) was
measured by the number of letters of complaint received by the
government regarding environmental pollution and related issues.
People are more susceptible to changes in public opinion when they
are in their immediate surroundings. Supporters of VER believe that
the number of petitions received from the Ministry of Environmental
science and Environment’s petitions office is a good indicator of the
organization’s strength (China).

As an additional safeguard, the following control variables are
employed: As a percentage of provincial GDP, GDP growth is
measured by GDP (Gross Domestic Product), industrial growth is
measured by IG (Industrial Development Potential), and technology
innovation is measured by TI (Scale of Technological Innovation).

4 RESULTS AND DISCUSSION

4.1 Green Technology Efficiency
Figure 1 presents the average green innovation efficiency of carbon-
intensive industries. China’s industrial GIE was estimated from 2010

to 2019 using the super-efficacy DEA model, and the outcomes are
exposed in Table 2 of this research. It was clear that the GIE had
changed significantly among the sample industries, and the overall
trend was upward, from 1.00 to 1.16. According to (Rasoulinezhad
and Taghizadeh-Hesary 2022) and the results of this study, which are
summarized in Table 3, this was the case. As can be seen from this
development, China’s coal consumption is shifting from a high to a
low level. GIE growth in the coal industry has lagged behind China’s
industrial sector, which has seen rapid increases in energy efficiency.

Because despite China’s significant efforts to promote
discharges reduction and energy preservation over the last
decade to confirm the consolidation of energy technology
innovation and structure of a coal united energy structure, the
Chinese government needs to emphasize char manufacturing.
The total amount of energy consumed could be reduced, while air
pollution and greenhouse gas emissions could be reduced if the
coal industry’s energy efficiency improved. It would also have a
positive impact on the environment.

4.2 Econometric Analysis
4.2.1 Unit Root and Co-integration Test
The stationary test of the data is required in order to guarantee that the
estimated consequences are valid and that pseudo-regression
problems are avoided to the greatest extent possible. The ADF
method is used for the root-cause analysis in this study, and the
fallouts of the test are presented in Table 4. The root-cause analysis
outcomes for GIE, TI, and CER are essential at the 1% confidence
level, indicating that there is no unit root under the condition of the
first alteration, which is the case in this study. However, while the unit
roots of the variables in the first variance are significant at 1% after the
second difference, the null hypothesis is rejected for all of the variables
in this difference. Because all of the models’ orders are fixed, it is
possible to observe that the difference between them is stationary.
Furthermore, the second-order variance exam does not comprise any
unit roots, indicating that it has a high level of stationary.

TABLE 1 | Descriptive statistics of input-output from 2010 to 2019.

Variables Mean Std. dev Medium Minimum Maximum

Coal consumption (I) 4480.01 6668.25 1308.26 463.21 21883.67
Capital stock (I) 13653.45 15815.91 8560.40 1839.17 63729.55
Labor (I) 313.91 176.98 270.64 49.45 625.25
Gross industrial products 37828.52 24392.36 31598.97 8940.99 85940.30
CO2 emissions 6007.12 11398.78 1046.44 321.01 40918.76
SO2 emissions 101.62 143.70 32.36 8.06 536.18
NOX emissions 80.62 148.88 13.80 3.92 527.45

TABLE 2 | Descriptive statistics and variable selection.

Indicators Min Max Mean SD

EE 0.71 1.05 0.91 0.11
CER 57969.45 146011.95 105122.96 21851.07
MER 608587.35 2308950.00 1562896.65 575335.11
VER 1713.60 7389.90 3538.38 1417.65
GDP 105294.11 861792.02 402291.54 251111.60
IG 0.13 0.29 0.22 0.05
TI 683.55 14095.43 4775.03 4225.70
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Performing a co-integration test on each variable is required in
order to regulate whether or not a co-integration association exists
among them. This is based on the results of the root-cause analysis,
which indicates that the order of variable quantity in the replica has

integration in the second order; therefore, the co-integration test is
required. The Johansen and EG-ADF tests are used in this study to
conduct the co-integration test, and both of these tests have been
validated. EG-ADF testing yielded the following results, which are
presented in the following table: Table 5 shows the results of the
survey. This results in anADFnumber for the remaining order being
statistically meaningful at the 1% confidence level. This indicates the
presence of statistically influential co-integration relationships
between the variables in the data.

Suppose one is used as the lag order. In that case, the co-
integration rank calculation can be performed after a lag order for
the variable has been determined (Kordej-De Villa and Slijepcevic
2019), which is consistent with the information criterion. Table 6
presents the findings of the investigation inmore detail. When the
maximum rank is two, each variable in the model has two co
integration relations. There are two co integration relations for
each variable if the maximum rank of 2 is exceeded, as indicated
by the trace statistic, less than the 5% threshold. To sum it up,
data tested for co-integration and found to be significant can
mean that the variables have a strong relationship.

4.2.2 Regression Result
There was a dependent variable for the construction industry, an
independent variable for each of the three types of ERs, and
control variables for the level of fiscal growth, manufacturing
growth, and technical and industrial innovation were selected.
Between 2000 and 2017, the GIE in the construction industry was
examined in relation to three different types of ERs using the
Tobit regression model. Table 7 shows the results of the
regression analysis which was used in this study. Because all
models had LR2 values that were statistically significant with a
95% confidence level, the mockups passed the general worth test
(Yuan et al., 2017; Zhang et al., 2021).

CER and GIE have a negative but non-significant linear
relationship, as evidenced by the current-period regression
model. CER’s current-period effects on GIE construction are
not statistically significant, as evidenced by the negative and

TABLE 3 | Results of the GIE in China’s industries.

Industries 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Coal Mining and Dressing 0.41 0.41 0.45 0.35 0.38 1.10 0.43 0.42 0.45 0.40 0.48
Petroleum and Natural Gas Extraction 1.91 1.67 1.44 1.34 1.25 1.18 1.26 1.24 1.04 1.04 1.34
Ferrous Metals Mining and Dressing 0.75 0.90 0.90 0.86 0.87 0.90 0.88 0.90 0.91 0.92 0.88
Non-ferrous Metals Mining and Dressing 0.63 0.70 0.77 0.82 0.88 0.95 0.90 0.91 0.91 0.86 0.83
Non-metal Minerals Mining and Dressing 0.88 0.97 1.12 1.05 1.12 0.80 0.74 0.81 0.90 0.91 0.93
Manufacture of paper and paper products 0.50 0.56 0.61 0.68 0.75 0.76 0.79 0.76 0.80 0.76 0.70
Processing of petroleum, coking, processing of nuclear fuel 2.27 1.87 1.85 1.64 1.63 1.53 1.45 1.35 1.27 1.26 1.61
Manufacture of raw chemical materials and chemical products 0.68 0.75 0.77 0.90 0.93 0.99 0.99 1.01 0.99 0.92 0.89
Manufacture of medicines 0.79 0.85 0.89 1.08 1.11 1.65 1.32 0.90 0.90 0.95 1.04
Manufacture of chemical fibers 1.06 3.19 2.23 1.57 1.35 1.19 1.34 1.43 1.60 1.68 1.66
Manufacture of non-metallic mineral products 0.49 0.57 0.62 0.66 0.70 0.72 0.73 0.76 0.79 0.77 0.68
Smelting and pressing of ferrous metals 0.78 0.83 0.82 0.96 0.98 1.02 1.09 1.07 1.08 1.08 0.97
Smelting and pressing of non-ferrous metals 0.93 1.02 1.05 1.14 1.16 1.25 1.26 1.40 1.35 1.37 1.19
Production and supply of power for electricity and heat 2.00 1.77 3.15 1.84 2.04 1.80 1.61 1.54 2.35 2.27 2.04
Rubber Products 0.92 0.93 0.94 0.88 0.90 0.99 0.84 0.85 0.84 0.83 0.89
Plastic Products 0.94 0.96 0.97 0.95 0.98 0.92 0.91 0.92 0.91 0.90 0.94
Transportation Equipment 1.01 1.00 1.05 1.01 1.05 0.99 0.95 0.95 0.96 0.94 0.99
Mean 1.00 1.12 1.16 1.04 1.06 1.10 1.03 1.01 1.06 1.05 1.06

TABLE 4 | Unit root test result.

ADF p-value

GIE −1.35*** 0.0021
ΔGIE −2.815*** 0.0003
Δ2GIE −3.54*** 0.0012
MER −0.585*** 0.0009
ΔMER −1.305*** 0.0051
Δ2MER −2.436*** 0.0001
CER −1.525** 0.0205
ΔCER −2.545*** 0.0005
Δ2CER −3.235*** 0.0007
VER −0.15*** 0.0002
ΔVER −1.355* 0.0535
Δ2VER −2.015*** 0.0016
GDP −2.335 0.5023
ΔGDP −1.115 0.0009
Δ2GDP −2.22 0.0004
IG −1.12 0.0003
ΔIG −1.205** 0.0305
Δ2IG −2.14*** 0.0007
TI −4.78** 0.0057
ΔTI −2.02*** 0.0016
Δ2TI −3.575*** 0.0054

* = 10% significance level.

TABLE 5 | EG-ADF test result.

Tests e

Statistic 3.77
1% threshold 2.79
5% threshold 2.05
10% threshold 1.68
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positive coefficients of the first and second terms. There is a
mathematically significant 90% correlation between MER and
GIE in the present period; The initial term’s coefficient is
negative, while the subsequent term’s coefficient is positive;
these coefficients are statistically significant at 95% assurance.
Non-linearity amid GIE and MER in the present period is
depicted as a U-shape in the association between the two
variables.

The rectilinear association between the present GIE and VER
was negative and statistically significant, according to a 95 %
assurance interval (CFI). The first term’s coefficient is positive,
while the second term’s coefficient is negative, but these
differences are not significant statistically. A direct association
exists between the present GIE and VER in energy-intensive
industries. According to a regression model used for the lagged
phase, the CER of the lagged stage and the GIE of the intensive
energy industries have an optimistic but non-statistically
significant linear correlation (Cheng et al., 2021). When the
coefficient of the non-linear relationship’s primary term is
negative, the coefficient of the quadratic term is positive, and
the coefficient of the quadratic term is negative, the coefficient is
statistically significant. Furthermore, the regression model
demonstrates a statistically important inconsistent association
between the energy-intensive industries commerce GIE and the
lag phase CER.

At the 99 %assurance level, there is no mathematically
important association amid MER in the GIE and the lag phase
in the energy-intensive industries. Still, there is a negative
correlation between MER and GIE. The primary term of the
coefficient of a non-linear relationship is positive, but there is no
statistically significant connection between MER and GIE. The
inverted U-shaped relationship between the mean lag phase error
rate and the construction industry GIE is found to be a significant
non-linear relationship (Brent and Ward 2018). Although the
VER and the GIE for the energy-intensive industries show a
negative linear relationship, this relationship is not statistically
significant. Despite the fact that a non-linear relationship’s
primary term has a positive coefficient and the quadratic
polynomial term has a negative one, neither is statistically
significant, suggesting that the lag phase’s VER has little
impact on the construction industry’s GIE.

4.3 Robustness Check
This study employs a reversion model to examine the heftiness of
the approximation outcomes in order to assess their heftiness in
the Tobit model approximation. Fallouts are said to be robust if

TABLE 6 | Johansen test result.

Co-integration
rank
(Max)

0 1 2 3 4 5 6 7

Eigenvalue – 0.938 0.896 0.847 0.661 0.3607 0.34276 0.16158
Trace Statistics 145.172 100.437 64.1703* 34.041 16.694 9.5351 2.8197 –

5% Threshold 124.24 94.15 68.52 47.21 29.68 15.41 3.76 –

* = 10% significance level.

TABLE 7 | Results of regression analysis.

Variable (1) (2) (3)

Constant 7.259*** 4.2607*** 3.4061***
(2.457) (1.232) (1.303)

MER 0.080***
(0.581)

MER_Lag1 0.030***
(0.259)

CER 0.174**
(0.343)

CER_Lag1 0.130*
(0.637)

VER 0.636***
(2.576)

VER 0.611***
(2.044)

GDP −1.184*** −1.663*** −0.166***
(2.163) (3.164) (0.329)

IG −3.924*** −3.838*** −3.469***
(2.555) (2.723) (2.611)

TI 0.338*** 0.271*** 0.415***
(0.405) (0.717) (0.134)

LR χ2 17.948 24.507 17.024
Log-likelihood 12.368 15.649 13.262

* = 10% significance level.

TABLE 8 | Robustness test.

Variable Lag_0 Lag_1

(1) (2) (3) (4)

CER −0.0063 3.672* 0.1145 −2.0650**
(0.06) (1.724) (1.343) (4.196)

MER 0.315** 3.458** −0.1745 3.7052***
(1.992) (1.697) (0.837) (4.092)

VER −0.2341** 1.566* −0.0295 2.824
−2.54 (1.015) (0.362) (1.477)

GDP −1.150*** −2.2468*** −0.2141 0.9794**
−3.37 −3.24 −0.45 2

IG −5.8266*** −5.9354*** −6.6206*** −9.8934***
−3.84 −2.70 −3.68 −7.63

STI 1.2160*** 1.6336*** 0.5046 0.0327
3.68 3.9 1.56 0.11

C 8.0751*** 25.028 2.3129 −56.2718
4.79 0.95 1.14 −3.15

LR χ2 −2.3017 −2.3202 −2.4040 −2.7939
Log-likelihood −31.7456 −25.9753 −28.2927 −19.8137

* = 10% significance level.
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they still have statistical significance for the test’s core variables. If
the most important variables are statistically insignificant, the
results will not be taken seriously. Rather than using the Tobit
model, we used the GLM model and the gathering robust
standard error technique to estimate the standard deviation.
Table 8 displays the test results. It may be understood that the
GLMmodel’s analysis results are robust, as both the core variable
coefficient and significance are unaffected following the
regression.

5 DISCUSSION

This study found a significant U-shape association between the
construction industry’s green technology innovation efficiency
(GIE) and the environment’s control and lag phase regulation.
Given the time it takes for government administrative rights to
take effect, CER exhibits a significant temporal lag, which is
understandable (Abbas et al., 2021). According to the graph
below, the impact of CER on GIE in China’s construction
industry has reached a clearly defined inflection point. CER
implementation intensity appears to have an effect on GIE,
which first declines and then rises as the intensity of CER
implementation is gradually increased. Because of this, the
Chinese government should continue to encourage the
adoption of the CER, better environmental laws and
regulations, and increased administrative penalties for
environmental offenses.

The construction industry’s global trade in environmental
goods has a significant inverted U-shape association with
market-based environmental regulations (MERs) in the lag
phase (GIE). Market-based environmental regulations (MER)
are more significant in the lag phase than now because of the
market’s openness and dynamic nature. In the construction
industry, it could be seen that MER are the most common
ERs and have the most significant influence on the GIE of the
industry at this time. The GIE of the energy-intensive sectors first
increases and then decreases as a result of an increase in the
intensity of MER implementation. According to Y. Zhou et al.
(2013), reasonable implementation strength of MER improves
the GIE in the energy-intensive industries. The market has a
moderate incentive. The construction industry GIE can be
enhanced by increasing the MER intensity (Hou et al., 2019).
The construction industry is expected to actively pursue green
technology innovation in order to evade high ecological safety
prices while ensuring that it remains competitive (Tan and Lin
2020). High-strength MER, on the other hand, may force the
energy-intensive industries to rise the costs of ecological
contamination switch and investment contribution, which
might result in the asset being diverted from other features of
the manufacturing and have a bad influence on its overall
operations, according to the MER report (Z. Cheng et al., 2020).

In the current period, there is a mathematically substantial
negative correlation between GDP in the construction industry
and voluntary environmental regulations (VER) (GIE). There are
a number of environmental protection initiatives included in the
VER program, which is carried out by a variety of stakeholders

such as local residents, construction companies, and non-
governmental organizations. GTI efficiency in the construction
industry, on the other hand, is negatively impacted by VER,
contrary to previous research. The higher the VER, the more
expensive the energy-intensive industries (W. Du et al., 2020; Liu
et al., 2018). According to previous research, it is clear that
excessive VER strength in the construction industry is likely to
stifle the advancements of GTI.

A summary of this study’s findings can be summarized: The
Chinese construction industry’s GIE is affected by environmental
regulations to varying degrees. However, it is possible to
encourage a more environmentally friendly development of
this industry by combining various environmental regulations
(Luo Q. et al., 2019). Undoubtedly, the Multilateral
Environmental Agreement (MER) has the most significant
influence on the three kinds of environmental regulations. In
order to promote green construction, it is essential to recover
MER presentation by encouraging the broader operation of
discharges transactions and enhancing the use of market
mechanisms to address outwardness issues in the construction
industry as a result of this. According to this report, the
government should tool MER and CER in their entirety to
strengthen green technological innovation in the energy-
intensive industries.

6 CONCLUSION

It was determined that the phases of green technology
development and research (GTRD) and commercialization
(GTC) in the construction industry are distinct from one
another in terms of their timing. A network SBM model has
assessed the effectiveness of green technology innovation in the
Chinese energy-intensive sector. For the final step, a Tobit
regression model was applied to investigate the influence of
three distinct types of environmental regulations (ERs) on the
efficiency of green technology innovation (GIE). The following
are the most significant findings of the study:

There is a misalignment between research and
commercialization in the energy-intensive industries of green
technology innovation. Since 2001, with the exception of 2000,
the efficiency of green technology study and growth has
consistently outperformed the efficiency of commercialization
in the construction industry. Taking new technologies and
turning them into a profit center is something that the
construction industry is adept at. There is a lot of duplication
in green technology’s research and growth stage, which means
that a lot of money is spent on research that does not result in any
breakthroughs. Greater R&D efficiency in green technology can
be achieved by increasing the number of R&D accomplishments
delivered with the resources allocated to green technology during
the R&D stage.

The efficacy of green technology innovation can vary
depending on the regulation. Implementing all three kinds of
environmental regulations simultaneously has the potential to
improve the GIE score significantly. In the first place,
environmental regulations that are easy to understand and
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implement have a U-designed association with the GIE, with a
significant time delay between the two events. In other words, the
rule’s command-and-control approach to environmental
regulations wills almost certainly reduce GIE. When the
inflection point is crossed, environmental regulations systems
for command and control can have a helpful influence on GIE
systems. Considering that environmental regulations based on
command and control will not be implemented directly, it is
essential to be patient. However, they will not have an immediate
impact until they have been in place for a period of time. Second,
the connection between market place environmental regulations
and GIE is shaped like are versed U. Market place environmental
regulation can be beneficial to GIE in the beginning, but after the
inflection point, market environmental regulations will become a
hindrance to GIE’s development and growth. Even though
voluntary environmental regulations are linked to GIE, this is
only true for the time being. One of the primary reasons is that
current volunteer environmental regulation is not flawless and,
therefore, cannot have an optimistic impact on improving green
technology innovation in the short term. As a result, the general
public must be educated on the importance of environmental
regulation and the necessity of voluntary regulations.
Environmental regulations, on the whole, have been found to
have no significant impact on GIE in general. Environmental
regulations should be combined as a means of increasing GIE’s
effectiveness.

There are two ways in which this research subsidizes the body
of information about the efficacy of green technology invention:
first, it increases the amount of information available about green
technology innovation competence; second, it increases the
amount of information available about green technology
innovation efficiency. As a first and foremost result of the
investigation, a new and more effective method of evaluating
the efficacy of green technology innovation in energy-intensive
industries has been proposed. Until recently, the innovation
process for green technology was regarded as a black box with
no way to see inside. Therefore, we were able to divide the process
into two stages (green technology study and growth) and
commercialize the results of these researches so that we could
better understand the impact of green technology study and
growth on manufacturing firms in the energy-intensive
industries. In addition, this adds to the body of previous
theoretical research on the effectiveness of green technology
innovation, which has been conducted.

Moreover, it provides governments with specific guidance on
developing more active environmental regulations. As

demonstrated in this study, various environmental regulations
have dissimilar impacts on the effectiveness of green technology
innovation. They also have an effect on the development of green
technology at different stages throughout history. Because of this,
when developing environmental regulations for energy-intensive
industries, governments should take into consideration the
varying effects and time lags that may be present.

The scope of this investigation has also been limited in
some ways. As a result, because the market mechanism is
limited, the study begins by examining how environmental
regulations affect GIE and then moves on to other topics. The
government is increasingly being called upon to play a role in
encouraging industry to improve its ability to innovate
efficiently. Despite this, it is important to recognize that
the market place machinery is not without significance. In
the upcoming study, it will be necessary to examine the
pouring mechanisms of GIE in the context of the double
role played by government strategies and marketplace
mechanisms. To carry out this research, the Chinese
energy-intensive industries will be used as a case study to
demonstrate how environmental regulations can improve
GIE in other countries throughout the world. Even though
the findings of this study can be applied in other frameworks,
the operation process must take into consideration the
conditions of other countries. Regarding these topics, there
is still a lot to discover.
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