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In recent years, the major geological hazard of landslides has greatly impact

normal human life. Deep belief networks (DBN) is a commonly used deep

learning model, and the DBN hyperparameter determination problem is the key

to its application. To improve the accuracy of regional landslide susceptibility

prediction, this paper introduces the particle swarm algorithm (PSO) to

determine the hyperparameters of the DBN; this is applied to regional

landslide susceptibility prediction. Firstly, PSO is used to optimize the

hyperparameters of the DBN and obtain a set of hyperparameters with the

optimal fitness function. A landslide susceptibility prediction model based on

PSO-DBN is then constructed and the K-fold cross-validationmethod is used to

determine its accuracy. The model is applied to landslide susceptibility

prediction in the most impacted area of the Wenchuan earthquake to

analyze the model’s accuracy. Finally, model susceptibility analysis is

performed. The research results show that the final optimal model accuracy

of the PSO-DBN model is 95.52%, which is approximately 28.31% and 15.35%

higher than that of the logistic regression (LR) model and the common DBN

model, respectively. The Kappa coefficient is 0.883, which is higher than that of

the LR model. Compared with the LR model and the common DBN model,

Kappa coefficient is improved by approximately 0.542 and 0.269 respectively;

the area under the curve (AUC) is 0.951, which is improved by approximately

0.201 and 0.080 compared to the LR model and the common DBNmodel. The

susceptibility of the model to the inertia factor is low, the average change in

model accuracy (when the inertia factor changes by 0.1) is approximately 0.1%,

and the overall stability of the model is high. The landslide susceptibility level is

very high. The area includes 219 landslide points, which account for 39.2% of

total landslide points. In the area with a high level of landslide susceptibility are

191 landslide points, accounting for 34.2% of total landslide points. Together,

the two contain approximately 73.4% of the landslide points. This indicates that

the model prediction results agree well with the spatial distribution

characteristics of the landslide.
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1 Introduction

Sichuan Province has some of the most serious geological

hazard in China. Approximately 97% of its land area is in

geologically disaster-prone areas. By the end of 2020, Sichuan

Province had identified more than 36,000 hidden dangers from

various geological hazards, including more than

22,000 landslides, which threatened the lives of 1.5 million

people and the safety of 85 billion yuan worth of property

(People’s Government of Sichuan Province). Therefore, it is

especially important to apply scientific methods to evaluate

the susceptibility of geological hazards in the study area and

to take necessary preventive measures to protect the safety of

human life and property.

The main components of geological disaster assessment

include risk assessment, susceptibility assessment, damage loss

assessment and prevention, and control engineering assessment.

Of these, risk assessment and vulnerability assessment are the basis

of disaster assessment, damage loss assessment is the core of

disaster assessment, and prevention and control engineering

assessment is the application of disaster assessment. There are

two main types of susceptibility assessment methods for geological

hazards. The first is the application of empirical knowledge to

seismic geohazard prediction based on the analysis of the genetic

mechanisms of geohazards (Paronuzzi et al., 2021). The second is

reliance on quantitative techniques to obtain the probability of a

geohazard occurrence based on the theoretical analysis of the

relationship between the geohazard-influencing factors and

geohazards (Osna et al., 2014; Ma and Mei, 2021). The second

method is more objective and obtains the probability of geohazard

occurrences by simulating conditions, such as topography,

geology, and the seismic parameters of areas where geohazards

occur (Wang et al., 2016; Chen et al., 2019; Zhou et al., 2021).

There has also beenmuch research on the principal manifestations

of the dynamic coupling of endogenic and exogenic geological

processes in the form of earthquake geohazards, on conditions in

the form of post-earthquake hazard chains, and on the process of

disaster formation (Fan et al., 2019; Zhang and Wu, 2019). For

example, among the existing multivariate statistical methods for

the spatial quantitative modeling of landslide hazards, the LR

model is one of the most widely used. Its main advantage is that it

allows the use of a binary dependent variable—the occurrence of

landslides in susceptibility mapping (Yilmaz, 2009; Ozdemir and

Altural, 2013; Kavzoglu et al., 2014; Chan et al., 2018; Tian et al.,

2019). In addition, methodological models, such as the frequency

ratio model, multivariate adaptive regression splines, the

generalized summation model, the deterministic factor method,

the weight of evidence, and the entropy method have also been

widely used in the spatial modeling of landslide hazards (Pardeshi

et al., 2013; Xu et al., 2013; Jaafari et al., 2014; Regmi et al., 2014;

Conoscenti et al., 2015; Youssef et al., 2015; Ilia and Tsangaratos,

2016; Xie et al., 2017; Ma and Xu, 2019). However, researchers

have found that traditional mathematical methods were not

sufficient to address the problems caused by the complexity of

topography, geology, and other elements associated with the

occurrence of landslide hazards: more flexible nonlinear

methods were generally needed. At present, machine learning

methods such as artificial neural networks, support vector

machines, random forests, and adaptive neuro-fuzzy inference

systems are used for modeling, leading to further studies on

landslide susceptibility maps (Van Westen et al., 2006). Among

such methods, deep learning is particularly outstanding (Wang

et al., 2020a). Commonly used deep learningmodels include DNN,

convolutional neural networks (CNN), DBN (Li et al., 2021b),

deep residual networks (DRN) (Li, 2022a), and long short-term

memory (LSTM) (Li et al., 2021a; Li, 2022b). Of these, DBN is the

most widely usedmodel. It consists of several restricted Boltzmann

machines (RBMs) and an unsupervised learning framework

trained by a contrastive divergence algorithm. Its essence is to

learn more abstract high-level characteristics containing semantic

information by building machine learning models with many

hidden layers and large amounts of training data, which can

ultimately improve classification or prediction accuracy (Ma

et al., 2016; Wang et al., 2017).

How to improve the quality of a model is always a focus of

attention by researchers, although related studies have been

conducted on improving predictive accuracy (Safran et al.,

2015). Although many techniques have been proposed and

used, there is currently no unified paradigm for landslide

hazard susceptibility research (Chowdhuri et al., 2020). At

present, there are many aspects to the optimization of DBN,

such as the group search-based multi-verse optimization

algorithm, the improved sunflower optimization (IFSO)

algorithm which optimizes DBN by adjusting the weights

(Shen et al., 2020; Kumar et al., 2022), the PSO algorithm,

the improved gray wolf optimization algorithm, and the

information entropy method, which optimizes the learning

rate and the DBN network structure by determining the

number of neurons in the DBN hidden layer (Gai et al.,

2021; Jia et al., 2021; Jin et al., 2022). In addition, the

principal component analysis method improves the training

efficiency of the DBN model by reducing the number of design

variables (Jun et al., 2020), and the regularization method

optimizes the DBN model by reducing the error rate

(Elleuch et al., 2017). Currently, the optimization of the deep

learning model is focused on its structural hyperparameters,

which are determined randomly. The hyperparameters studied

by researchers mainly include the number of hidden layers
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(Choldun et al., 2019), learning rate (Yu et al., 1995),

convolution kernel density (Mohsenzadeh and Sheikhzadeh,

2014), weight attenuation coefficient (Wang et al., 2021), and

the dropout ratio (Park and Kwak, 2016). The vast majority of

them optimize only one or two hyperparameters. However, it is

important to clarify that the deep learning model is a complex

network system, so optimizing only a small number of

hyperparameters is likely to result in local optimization.

FIGURE 1
Overview of the research area. (A) shows the distribution of landslide points in the study area, and (B) shows the distribution of the size of eight
influencing factors in the study area.

TABLE 1 The specific situation of the influencing factors.

Factor Influencing factor Data sources Classification

Topographic and
geomorphic factors

Terrain information
entropy

1:350,000 DEM data —

Geological environment
factors

Distance to faults The vector graph Level 1: >15 km, Level 2: 8–15 km, Level 3: 5–8 km, Level 4:
2–5 km, Level 5: <2 km

Distance to rivers The vector graph Level 1: >10 km, Level 2: 5–10 km, Level 3: 2–5 km, Level 4:
1–2 km, Level 5: <1 km

NDVI Landsat7 ETM SLC-OFF 30 m resolution
data set

—

Lithology 1:500,000 regional geological map Level 1: hard, Level 2: less hard, Level 3: soft, Level 4: weak Level 5:
loose rock

Inducing factors Distance to roads The vector graph Level 1: <1 km, Level 2: 1–2 km, Level 3: 2–5 km, Level 4:
5–10 km, Level 5: >10 km

PGA The U.S. Geological Survey website (https://
www.usgs.gov/)

Level 1: <0.2 g, Level 2: 0.2–0.35 g, Level 3: 0.35–0.5 g, Level 4:
0.5–0.6 g, Level 5: >0.6 g

Average annual rainfall China Meteorological Data Network (http://
data.cma.cn/)

—
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Therefore, optimizing multiple hyperparameters of the deep

learning model at the same time may lead to better results.

After the 2008 earthquake in Wenchuan County, Sichuan

Province, post-earthquake geological hazards occurred

frequently, among which landslide hazards were the most

representative, seriously affecting the sustainable development

of the region. Neural networks are widely used in landslide

susceptibility prediction; the settings of the hyperparameter

batch size, learning rate, and so on have always been key

factors affecting the prediction effect of a neural network.

However, most of the hyperparameters in neural network

models are artificially determined, which makes established

neural network models inevitably subjective, thus affecting the

prediction effect of the model. Therefore, scientifically

determining these parameters is the key to improving the

prediction accuracy of the neural network (Cui et al., 2021).

To realize the scientific setting of neural network

hyperparameters and eliminate the shortcomings of setting

artificial hyperparameters to further improve the accuracy of

neural network prediction, this paper proposes the PSO

algorithm to solve the hyperparameter optimization problem

in the DBN algorithm. This solution is then applied to landslide

susceptibility prediction. Firstly, the PSO algorithm is introduced

to optimize the hyperparameters of the DBN algorithm.

Secondly, a landslide susceptibility prediction model based on

PSO-DBN is built. Then, the validity of the constructed model is

verified by the example of the most impacted areas of the

Wenchuan earthquake in Sichuan. Finally, the influence of the

inertia factor on the accuracy of the model is analyzed.

2 Materials and methods

2.1 Overview of the research area and data
preparation

On 12 May 2008, a magnitude 8.0 earthquake occurred in

Wenchuan County, Longmen Mountain Region, Sichuan,

causing heavy casualties and economic losses. Post-

earthquake investigations revealed 18,000 potential

geological hazards in Sichuan Province alone that pose a

direct threat to people’s lives and property safety that were

caused by the earthquake. Among them are dozens of

landslides with a scale of more than 10 million m3, and

more than ten landslides that buried hundreds of people

(Gorum et al., 2011).

This paper employs the ten extremely earthquake-

stricken areas in the 2008 Wenchuan earthquake as the

research area. These ten areas are Dujiangyan, Pengzhou,

Mianzhu, Shifang, Anxian, Beichuan, Qingchuan, Pingwu,

Wenchuan, and Maoxian, as displayed in Figure 1. The

location and spatial distribution of the landslide hazard

points in the study area are obtained through remote

sensing interpretation technology. The data we selected are

from 2016. Figure 1A shows that the landslide points in the

study area are relatively densely distributed. ArcGIS software

was then used to divide the study area into grids with pixels of

60 m * 60 m, generating 9,936,770 grids . Thence,

668 landslide points in the study area were obtained by

remote sensing interpretation while 668 non-landslide

points were randomly selected in the study area 10 km

away from the landslide point, giving a total of

1,336 sample points.

In selecting influencing factors, the literature reviewed and

the availability of the data are the main considerations, with all

selected influencing factors playing the same role across different

types of landslide (Pourghasemi et al., 2012). After

comprehensive consideration, this paper uses ArcGIS to

extract eight influencing factors (Figure 1B): the terrain

information entropy (terrain-geomorphology factor), the

distance to faults, the distance to rivers, the normalized

difference vegetation index (NDVI), lithology (geological

environmental factor), the distance from the road, peak

ground acceleration (PGA), and the average annual rainfall

(inducing factor). The details of the impact factors are

depicted in Table 1.

FIGURE 2
Research framework diagram.
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2.2 Methods

2.2.1 Research framework
On the basis of the common DBN model, PSO is introduced

in this paper to optimize the hyperparameters of the DBNmodel;

a landslide susceptibility prediction model based on PSO-DBN is

thus constructed (Figure 2). The specific steps are:

Step 1: Determine the parameters, such as the inertia factor,

the learning factor, population size, and the number of iterations

of the PSO.

Step 2: Determine the basic structure of the conventional

model—that is, determine the number of hidden layers of the

DBN model and the number of neurons in each layer.

Step 3: Determine the hyperparameters of DBN (batch size,

learning rate of neurons in the BP layer, learning rate of neurons

in the RBM layer, epoch of the RBM layer, epoch of the BP layer)

using the PSO (PSO).

Step 4: Obtain 668 landslide points in the study area by

remote sensing interpretation and 668 randomly selected non-

landslide points in the study area 10 km away from the landslide

point, for a total of 1,336 sample points.

Step 5: Extract the entropy of the terrain information

(terrain-geomorphology factor), distance to faults, distance to

rivers, NDVI, lithology (geological environmental factor),

distance to road, PGA, and average annual rainfall (inducing

factor) as eight influencing factors for DBN. A multicollinearity

test was performed on the eight influencing factors and then the

already-processed training set was applied to train the PSO-DBN

model.

Step 6: Using the K-fold cross-validation method, divide the

training set into K equal parts, with the number of landslide

points in each part equal to the number of non-landslide points.

One subset was selected as the validation set without repetition

and the remaining K−1 subsets were merged into the training set.

Accuracy and other evaluation indices were calculated in each

test and the generalization ability of the model was evaluated by

taking the average value of evaluation indices after K tests. We

then compared and analyzed the PSO-DBN model with the LR

model and the common DBN model by calculating the accuracy,

AUC, Kappa coefficient, and the ROC curve.

Step 7: Select the PSO-DBN model with the highest model

accuracy to predict landslide susceptibility in the research area.

2.2.2 Multicollinearity test
Multicollinearity refers to the linear dependence of two or

more related variables in a dataset. The collinearity between

FIGURE 3
Schematic diagram of the DBN structure.
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evaluation factors can be investigated through the two statistics of

variance inflation factor (VIF) and tolerance (Adeboye et al.,

2014; Perez-Melo and Kibria, 2020). The ideal evaluation factor

can be selected to build a model with higher performance. The

calculation formula of the variance inflation factor and tolerance

is as follows:

Tolerance � 1 − R2
j (1)

VIF � 1
Tolerance

(2)

where R2
j is the determinant of the regression of interpreter j over

all other interpreters.

Previous research has shown that a linear relationship

between parameters minimizes the predictability of the model.

Therefore, to improve the model’s predictability, SPSS software

was used to conduct a multicollinearity test on the above eight

evaluation factors preliminarily selected to further screen the

evaluation factors. Any tolerance less than 0.1 and VIF

value >10 indicates the existence of a multicollinearity

problem (Katrutsa and Strijov, 2017).

2.2.3 DBN
Figure 3 shows the schematic diagram of DBN. The DBN

model is composed of four layers of neurons; the first layer is

the input layer, and its number of neurons is determined by

the characteristic number of the input data. The last layer is

the output layer, and its number of neurons is determined by

the number of categories for classification (Chu and Krzyżak,

2014). The first two layers of the DBN model make up the first

RBM, where the first layer is the explicit layer and the second

is the hidden layer of the RBM. The hidden layer of the first

RBM is the explicit layer of the second RBM and the third

layer of the DBNmodel is the hidden layer of the second RBM,

making up the second RBM. The last layer is the BP layer of

the DBN model (Salakhutdinov and Murray, 2008; Mohamed

et al., 2011; Jang et al., 2017). The neurons between the first

and second layers and the second and third layers are

connected in an undirected and full manner, while the

neurons between the third and fourth layers are connected

in a directed and full manner, with neurons in the third layer

pointing to neurons in the fourth. The two RBMs are

responsible for pretraining the DBN model and the BP

layer is responsible for back-tuning the DBN model (Hua

et al., 2015).

2.2.3.1 Basic construction of the RBM

The RBM consists of two layers, including an explicit layer

and a hidden layer. The connection between these layers is a

bidirectional full connection, while the neurons within the same

layer are not connected. Assuming that there are Nv neurons in

the explicit layer and Nh neurons in the hidden layer, the

FIGURE 4
Particle swarm optimization algorithm flow chart.
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connection weight between the explicit layer neuron vi and the

hidden layer neuron hj is ωij, the bias of vi is bi, and the bias of hj
is cj, we can define the energy function of the RBM as follows

(Chu and Krzyżak, 2014):

E(v, h) � −∑Nv

i�1
bivi −∑Nh

j�1
cjhj −∑Nv

i�1
∑Nh

j�1
ωijvihj (3)

In the RBM, the probability of the hidden layer neuron being

activated is as follows (Mohamed et al., 2009):

P(hj|v) � σ⎛⎝bj +∑Nv

i�1
ωijvi⎞⎠ (4)

Similarly, explicit layer neurons can also be activated by

hidden layer neurons as follows (Mohamed et al., 2009):

P(vi|h) � σ⎛⎝ci +∑Nh

j�1
ωijhj⎞⎠ (5)

where σ is the sigmoid function.

Since there is independence between neurons in the same

layer, the probability density also satisfies independence, which

we can obtain thus (Mohamed et al., 2009):

P(h|v) � ∏Nh

j�1
P(hj|v) (6)

P(v|h) � ∏Nv

i�1
P(vi|h) (7)

2.2.3.2 The training process of the DBN

Step 1: Fully train the first RBM.

Step 2: Fix the weight and bias of the first RBM, and then use

the states of its hidden neurons as the input vectors of the

second RBM.

Step 3: After fully training the second RBM, stack it on top of

the first RBM.

Step 4: Repeat Steps 1 to 3.

Step 5: Set up the BP neural network in the last layer of DBN

and fine-tune the whole DBN model by backward error

propagation.

2.2.4 Determination of the PSO-based DBN
hyperparameters

The selection of DBN hyperparameters is an optimization

process where each point in the search space is a feasible

solution and the objective function can be the loss function of

the DBN model. Therefore, the optimal combination of

hyperparameters for DBN is, in fact, the combination of

hyperparameters that minimizes the value of the loss

function of DBN on the validation set. PSO is a

population-based evolutionary algorithm with concepts

derived from the theory of artificial life and from

evolutionary computation. The process of determining the

DBN hyperparameters based on the PSO algorithm is shown

in Figure 4.

Assume that, in a dimensional search space, each particle

forms a cluster, where the position information of each particle

can be expressed as

xk

→ � (xk1, xk2,/, xkM), k � 1, 2,/, n—that is, the position of

the particle in the search space represents this particle. By

substituting the particle’s position information into the

objective function, the particle’s fitness value can be obtained

and the size of the fitness value can then be used to measure the

FIGURE 5
K-fold cross-validation flow chat.
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particle’s superiority or inferiority. To optimize the particles, a

’velocity’ is introduced for each. The velocity is also a

dimensional vector and can be expressed as

vk
→ � (vk1, vk2,/, vkM), k � 1, 2,/, n. Let the optimal position

searched for by the particle (i.e., the optimal position of the

objective function) be pk

→ � (pk1, pk2,/, pkM), k � 1, 2,/, n

and the optimal position searched for by all particles be

p*

→

� (p*
1, p

*
2,/, p*

M). The PSO algorithm then operates on

the first particle thus (Marini and Walczak, 2015):

vkm � ωkvkm + c1r1(pkm − xkm) + c2r2(pp
m − xp

m) (8)
xkm � xkm + vkm (9)

where k � 1, 2,/, n;m � 1, 2,/,M. ωk is the inertia factor with

c1 and c2 (c1, c2 ≥ 0) as the learning factor, r1 and r2 are random

numbers between [0, 1] intervals, vkm ∈ [−vmax, vmax], and vmax is

the constant given.

2.2.5 K-fold cross-validation
K-fold cross-validation is a common method used in

machine learning to improve the accuracy of a model,

overcoming the disadvantage of considerably varying its

accuracy due to the division of the dataset into a training set

and a validation set. The basic principle is that the dataset is

randomly divided into K parts, one of which is used as the

validation set and the other K−1 parts are used as the training set

each time. The specific steps are:

Step 1: Divide the known dataset into K parts.

Step 2: Take one of the K parts as the validation set and the

other K−1 parts as the training set each time without repetition.

Then, calculate the classification accuracy of the model based on

the validation set. The classification accuracy of the model for the

i time can be expressed as:

acci � TPi + TNi

Pi +Ni
(10)

where TPi is the number of cases correctly classified as positive in

the model in i time, TNi is the number of cases correctly

classified as negative in the model in i time, Pi is the number

of positive cases, andNi is the number of negative cases. Step 2 is

repeated K times.

Step 3: Calculate the final classification accuracy of the model

as follows:

TABLE 2 Search range of DBN hyperparameters.

Hyperparameter Explanation Search
range

Batch size Inefficient if it is too small. It may result in a smaller model accuracy at convergence and fail to meet the
requirements of the experiment if it too large.

[16, 64]

Learning rate of BP layer neurons The learning rate refers to the efficiency of neuron learning. When the learning rate is small, the convergence of
the model will be slower and the time cost will increase. When the learning rate is large, the gradient may
oscillate around the minimum and even not converge.

[0.01, 0.3]

Learning rate of neurons in the RBM
layer

[0.01, 0.3]

Number of epochs in the RBM layer When a dataset has passed through the whole neural network and returned a single result, the process is called
an ’epoch’. When the number of epochs is low, it tends to lead to underfitting results. When the number of
epochs is high, it tends to lead to overfitting results

[20, 50]

Number of epochs in BP layer [100, 800]

TABLE 3 Iteration process of PSO-DBN model.

Number of iterations Combination
of hyperparameters

Optimal model accuracy
(validation)

Optimal model accuracy
(training)

1 (38,0.17408,0.15904,24,716) 0.9397 0.9401

2 (32,0.01047,0.12584,22,129) 0.9454 0.9487

3 (47,0.27983,0.15033,33,278) 0.9519 0.9520

4 (43,0.28999,0.29373,34,214) 0.9523 0.9601

5 (47,0.28498,0.14805,33,277) 0.9551 0.9612

6 (47,0.21807,0.18207,42,101) 0.9527 0.9583

7 (58,0.29687,0.21530,42,353) 0.9536 0.9566

8 (51,0.29390,0.23876,31,283) 0.9535 0.9543

9 (42,0.24003,0.16753,48,154) 0.9541 0.9556

10 (63,0.28876,0.29937,49,565) 0.9552 0.9567
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Acc � 1
K
∑K
i�1
acci (11)

In classification, the proportion of samples of each category

in every part is the same as that in the total dataset. K-fold cross-

validation runs the model K times and the average of the metrics

obtained are the final performance of the model. The flow chart

for K-fold cross-validation is shown in Figure 5.

Before using K-fold cross-validation, the K value first needs

to be determined; the following formula is used to determine the

K value in this paper (Jung, 2018).

⎧⎪⎨⎪⎩
K ≈ log(n)
n

K
> 3d

(12)

where n is the number of samples and d is the number of

characteristics.

3 Results

3.1 Data processing

Firstly, the entropy of the terrain information (terrain-

geomorphology factor), distance to faults, distance to rivers,

NDVI, lithology (geological environmental factor), distance to

road, PGA, and average annual rainfall (inducing factor) are

extracted as eight influencing factors for DBN. Then, all data are

normalized to set the values of all the influencing factors between

0 and 1 in order to eliminate the dimensional influence and speed

up the convergence of the algorithm.

Then, the multicollinearity test is carried out on the eight

selected factors. The multicollinearity test results are as follows:

Tolerance (the number in parentheses is the tolerance of the

influence factor): terrain information entropy (0.771), distance to

faults (0.630), distance to rivers (0.850), NDVI (0.885), lithology

(0.709), distance to the roads (0.669), PGA (0.734), average

annual rainfall (0.710).

VIF (the number in parentheses is the VIF of the influence

factor): terrain information entropy (1.297), distance to faults

(1.588), distance to rivers (1.177), NDVI (1.130), lithology

(1.410), distance to the roads (1.496), PGA (1.363), average

annual rainfall (1.409).

The results show that the tolerances of the eight impact

factors are all greater than 0.1 and the VIFs of the eight impact

factors are all less than 10. This can fully explain why there is no

collinearity among the eight influencing factors selected in this

paper.

3.2 Determination of the PSO to DBN
hyperparameters

3.2.1 Hyperparameters to be optimized
Firstly, the hyperparameters to be optimized are determined

before performing DBN hyperparameter optimization. The

choice of hyperparameters is important for the optimization

results. Here, we chose five hyperparameters: batch size λ,

learning rate of neurons in the BP layer α, learning rate of

neurons in the RBM layer β, number of epochs in the RBM

layer μ, and number of epochs in the BP layer υ. These five

hyperparameters are used as the optimization objects of the PSO.

In other words, a five-dimensional hyperparameter optimization

space is created. The position information of each particle in the

space can be expressed as follows:

xk � (λk, αk, βk, μk, υk) (13)

The search ranges for the five hyperparameters in this paper

are shown in Table 2.

3.2.2 Solution of optimal hyperparameters
There are five main parameters to be determined in the

PSO: the inertia factor, the cognitive learning factor, the

population cognitive learning factor, the population size,

and the maximum number of iterations. The specific

settings for these parameters are as follows (the numbers in

parentheses are the values of the PSO arguments): inertia

factor (0.5), self-awareness learning factor (0.2), population

cognitive learning factor (0.5), population size (50), maximum

number of iterations (10).

In this paper, a four-layer DBN (including two hidden layers)

is built, where the output layer contains four neurons: the outputs

of these are the probabilities of the landslide susceptibility levels

of 0, 1, 2 and 3 for the sample points. The eight influencing

factors of 1,336 sample points with known landslide

susceptibility (including 668 non-landslide points) are taken

as input and the landslide susceptibility class is taken as

output. The PSO is applied using the five hyperparameters of

TABLE 4 Logistic regression model training results (30 times).

The index Max Min Mean Standard deviation

AUC 0.825 0.659 0.750 0.030

Kappa coefficient 0.583 0.518 0.341 0.065

Accuracy 0.736 0.601 0.670 0.081

TABLE 5 Training results of common DBN model (30 times).

The index Max Min Mean Standard deviation

AUC 0.899 0.834 0.871 0.023

Kappa coefficient 0.670 0.5782 0.602 0.070

Accuracy 0.852 0.5958 0.801 0.043
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the DBN model mentioned above as the optimization

hyperparameters and the classification accuracy of the DBN

model as the adaptation value of the particles

(hyperparameter group), iterating ten times with 50 particles

and recording the optimal adaptation value obtained from each

iteration. The iterative process, the optimal model accuracy

(validation set and training set), and the corresponding

hyperparameter combinations for each iteration are shown in

Table 3 (note: in the column ‘hyperparameter combinations’, the

items from left to right are the batch size, learning rate of neurons

in the BP layer, learning rate of neurons in the RBM layer, epoch

number of the RBM layer, and epoch number of the BP layer).

Table 3 shows that the optimal model accuracy (validation set

and training set) of the population increases with the number of

iterations; the final optimal adaptation value (validation set)

corresponding to the optimal parameters is λp � 63,

αp � 0.28876, βp � 0.29937, μp � 49and υp � 565. After

determining the optimal hyperparameter combination, the

data are again input into the DBN model determined by the

optimal hyperparameter combination, and then the three-fold

cross-validation (according to Eq. 12, K � 3) is applied to obtain

a model accuracy of 95.52% with a kappa value of 0.8833 after

training.

3.3 Performance comparison between the
PSO-DBN model and other model

After establishing the PSO-DBN model, this paper, in order

to more intuitively show the superiority of the PSO-DBN model,

compares the accuracy, robustness, and stability of the PSO-DBN

model with the common DBN model using performance

evaluation indicators such as ROC curves and AUC values.

Within the hyperparameter search range in Section 3.1,

30 different sets of hyperparameters are randomly selected to

train the common DBN model under these hyperparameter sets.

The ROC curves, AUC values, and other metrics of the common

DBN model train under 30 different sets of the obtained

hyperparameters. The performance of the PSO-DBN model is

FIGURE 6
Comparison of performance indexes between logistic regression model, general DBN model and PSO-DBN model

FIGURE 7
ROC curves of the three models.
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then judged by comparing these model performance evaluation

metrics.

Using three-fold cross-validation, the AUC, Kappa

coefficient, and the mean and standard deviation of the

accuracy of the validation set of the LR model and the

common DBN model corresponding to the 30 sets of

obtained hyperparameters are displayed in Tables 4, 5. In

30 training sessions, the average values of AUC, Kappa

coefficients, and accuracy of the LR model are 0.750, 0.341,

and 0.670, respectively. The average values of AUC, Kappa

coefficients, and accuracy of the common DBN model were

0.871, 0.602, and 0.801, respectively. The AUC, Kappa

coefficient, and accuracy obtained by the LR model and the

common DBNmodel training are lower than the results obtained

by the PSO-DBN model training (AUC is 0.951, Kappa

coefficient is 0.883, accuracy is 95.52%). The standard

deviations of the AUC, Kappa coefficient, and accuracy

obtained by the LR model after training are 0.030, 0.065, and

0.081, respectively. The standard deviations of the AUC, Kappa

coefficient, and accuracy obtained by the common DBN model

after training are 0.023, 0.070, and 0.043, respectively, indicating

that the logistic regression model and the common DBN model

have poor stability. When comparing the performance indicators

obtained by the LR model (mean), the common DBN model

(mean), and the PSO-DBN model training (as shown in Figures

6, 7), it was found that the PSO-DBN model performs better in

terms of the AUC and the Kappa coefficient. The accuracy is also

higher than the LR model and the common DBN model. At the

same time, the ROC curve of the PSO-DBN model is more

inclined to the upper-left corner than the ROC curve of the LR

FIGURE 8
Landslide susceptibility map.

TABLE 6 Statistics on landslide susceptibility prediction results.

Index Low Moderate High Very high

Landslide occurrence probability 0.00–0.27 0.27–0.63 0.63–0.87 0.87–0.99

Number of grids 4,485,279 1,795,684 2,132,370 1,523,437

Percentage of area 45.14% 18.07% 21.46% 15.33%

Number of landslide points 68 90 191 219

Proportion of landslide points 12.2% 16.1% 34.2% 39.2%
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model and the common DBN model, and the AUC is larger. The

above results demonstrate that the model performance of the

PSO-DBN model is better than that of the LR model and the

common DBN model.

3.4 Landslide hazards susceptibility
scenario and analysis

Using a test set of 9,936,770 sample points as input, the

already trained PSO-DBN model is applied to predict the

landslide susceptibility in the study area. This paper divides

landslide susceptibility maps into four categories: low,

moderate, high, and very high. The predicted results are

plotted as a landslide susceptibility map (Figure 8).

As seen in Figure 8, in terms of landslide susceptibility, the

distribution trend of the region with high landslide susceptibility

is roughly the same as that of the fault zone, while the

susceptibility of the region far from the non-fault zone is

relatively low. At the same time, statistical methods are

applied to the landslide susceptibility characteristics of the

research area; the results are shown in Table 6.

As seen in Table 6, the highest number of units are in the

landslide susceptibility class–low and the lowest number of units are

in the landslide susceptibility class–very high. The areas with

landslide susceptibility classes–low, –moderate, –high, and –very

high respectively account for 45.14%, 18.07%, 21.46% and 15.33% of

the total area of the research region. The area with the landslide

susceptibility class–very high contains 219 landslide points,

accounting for 39.2% of the total number of landslide points,

and the area with the landslide susceptibility class–high contains

191 landslide points, accounting for 34.2% of the total number of

landslide points. The proportion of landslide points occupied by

each grade area obtained above is consistent with the research results

of Yang et al. (2015). At the same time, it was found that the higher

the landslide susceptibility, the smaller the proportion of the area

occupies. This was confirmed by Wang et al. (2020b).

3.5 Model sensitivity analysis

ωk is the inertia factor. Reflecting the succession of particles to the

current velocity, the larger the value of the inertia factor, the stronger

the global search ability of the PSO algorithm and the weaker the

local search ability (Wang et al., 2018; Cai et al., 2019; Zhang et al.,

2022). When the PSO algorithm optimizes for different problems, it

cannot guarantee that the results converge to the global optimal

solution every time; it is easy to fall into the local optimal solution,

coupled with the inherently unstable computational results of the

DBN model. It is therefore important to explore the influence of the

inertia factor on the model. Keeping other parameters constant, we

let ten values be taken from 0.1 to 1 in steps of 0.1, recorded the

iterative process of the PSO-DBN model under each parameter, and

then plotted the iteration curve with the number of iterations as the

horizontal coordinate and the average model accuracy of 50 particles

as the vertical coordinate. The final result is shown in Figure 9.

In Figure 9, it was found that the larger the inertia factor, the

higher the model accuracy of the PSO-DBN model; however, the

change is not larger. It tends to be stable after the ninth iteration

and the difference is very small. Therefore, the training effect of

the model is less sensitive to the inertia factor and the stability of

the model is higher.

FIGURE 9
Iteration curves of the PSO-DBN model with different inertia factors.
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4 Discussion

The accuracy of the landslide predictionmodel is affected by the

model itself and the input data. At present, data-driven supervised

learning of landslide susceptibility is widely used. For the data-driven

supervised learning method, most of the models have a “black box”

nature and most of the hyperparameters of the model are artificially

determined, which has many disadvantages. In this paper, PSO is

used to optimize the hyperparameters of the DBN, and the optimal

combination of the hyperparameters is found within a certain range

for each evaluation index of the model, thus avoiding the above

drawbacks to a certain extent. Although the hyperparameters of the

DBN model were determined, Da and Xiurun improved PSO by

using simulated annealing (SA) technology to establish a neural

network based on SAPSO, thus improving the global search

capability of traditional PSO (Da and Xiurun, 2005). In this

paper, PSO is adopted to determine the DBN hyperparameters.

Although it can, to a certain extent, avoid the disadvantages of

artificially determining hyperparameters, it lacks the comparison of

multiple methods (Shen et al., 2020; Kumar et al., 2022), which is

worthy of further discussion.

This paper analyzes the accuracy of landslide susceptibility

prediction based on PSO-DBN. The prediction results of the PSO-

DBN model are obviously satisfactory. Table 6 shows that 87.8% of

known landslide points are divided into the region with moderate

landslide susceptibility by the PSO-DBN model. This model can

accurately reflect the spatial distribution characteristics of landslide

hazards. In terms of the selection of non-landslide points, it adopts

random sampling in the region outside a certain buffer zone of positive

samples, which ignores the spatial autocorrelation and regional

heterogeneity of landslide hazards, and has high uncertainty. There

is no unified selection standard for buffer distance. Therefore, the

selection method of non-landslide points is worth further discussion.

5 Conclusion

In this paper, on the basis of the commonDBNmodel, PSO is

introduced to optimize its hyperparameters, and a prediction

model for landslide susceptibility analysis based on the PSO-

DBN model is constructed. The following conclusions can be

obtained by comparing it with the common DBN model.

(1) In terms of performance evaluation indices, the accuracy, Kappa

coefficient, and AUC of the model finally determined by the

PSO-DBNmodel are 95.52%, 0.883 and 0.921 respectively, which

are better than those of the LR and the common DBN models.

This indicates that the PSO-DBN model is superior to the LR

model and the common DBN model in terms of model

performance, robustness, and stability.

(2) The best performing hyperparametric combinations are batch

size (63), learning rate of neurons in the BP layer (0.28876),

learning rate of neurons in the RBM layer (0.29937), number of

epochs in the RBM layer (49), and number of epochs in the BP

layer (565). At the same time, it can be seen that the convergence

speed of the PSO-DBN model is rapid and that the optimal

accuracy of the validation set reachesmore than 95% in the third

iteration. The sensitivity of the PSO-DBN model to the inertia

factor is low and the average variation in the model’s accuracy

(when the inertia factor changes by 0.1) is approximately 0.1%.

This shows that the model has high stability.

(3) The present study selects eight influencing factors: terrain

information entropy, distance to rivers, distance to faults,

lithology, NDVI, distance to roads, PGA, and average annual

rainfall. A prediction model for landslide susceptibility analysis

based on the PSO-DBN model is constructed and the landslide

susceptibility is classified as very high, high, moderate, and low

using the natural breakpoint method; a landslide susceptibility

map is then produced. The number of landslide points in the areas

with low, moderate, high, and very high landslide susceptibility

classes accounted for 12.2%, 16.1%, 34.2%, and 39.2% of the total

number of landslide points respectively. Approximately 87.8% of

known landslide points were classified by the PSO-DBN model

into regionswithmoderate landslide susceptibility or above, which

indicates that the model prediction results agree well with the

spatial distribution of landslides.
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