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Owing to farmers’ issues on accessibility and affordability of chemical fertilizers in Nepal,
organic manure has been advocated as a more environmentally sustainable fertilizer input
alternative. Using household survey data from Nepal, we analyze the adoption and
productivity effects of improved organic manure practices. Our empirical strategy
utilizes a recently developed control function approach in the endogenous switching
regression model that allows for substantial heterogeneities accounting for potential self-
selection problem due to observables and unobservables. Findings reinforce the crucial
role of social capital as farm households’ adoption decisions are significantly influenced by
1) having adopter neighbors or friends, 2) residing in proximity to the market, and 3) gaining
easy access to agricultural extension services. Beyond environmental and social
considerations, this study establishes economic motivations for the adoption decision.
The results show that the adoption of improved organic manure practices increased crop
yield by 17 percentage points. These practices did not only result in significantly higher
yields among adopting farms, but counterfactual analyses indicate that non-adopting
farms would have realized much better yield conditions had they implemented the
technology. The study concludes with implications for policies and initiatives to expand
the adoption and impacts of improved organic manure practices in Nepal.
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INTRODUCTION

In both developed and developing economies, new production technologies have been credited for
realizing improvements in crop yields and food security conditions (Duan et al., 2016). Achieving
higher agricultural productivity requires adopting modern technologies and inputs such as improved
seeds and varieties, integrated pests, soil, fertilizer, and water management practices. Among
production inputs, chemical fertilizer is the key to raising agricultural productivity and allows
producers to generate a higher annualized rate of economic returns (Duflo et al., 2011).

In Nepal, overall chemical fertilizer use has been lower than its peer countries, owing to accessibility
and affordability issues (World Bank, 2017). In the face of constant pressure for its agricultural industry
to meet the economy’s increasing food and feed demands, the pressing challenge has been to find a
viable fertilizer alternative to reconcile its low chemical fertilizer use. Improved organic manure
practices such as improved farmyard manure (cattle shed improvement), compost and crop residue,
and vermicompost could be alternatives to increase or maintain crop yield. Studies show that adopting
these practices for certain growing conditions and management systems might close the yield gap with
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farms that only use chemical fertilizers (Seufert et al., 2012). Of the
several manure alternatives, vermicompost has received significant
attention in recent years due to increased awareness of sustainable
organic agriculture and its economic and environmental benefits
(Bajeli et al., 2016).

Vermicomposting involves feeding earthworms with biodegradable
waste to convert them into slow-release organic manure (Yami et al.,
2003; Joshi et al., 2015). Like any other organic fertilizer,
vermicomposting offers a host of environmental benefits. It serves
as a valuable resource to supply plant nutrients and refill the soil’s
organic matter content, thereby maintaining soil fertility, soil organic
carbon content, and crop yield (Vig et al., 2011; Sangeetha et al., 2012;
Bajeli et al., 2016). It helps increase yield by providing better growth and
reducing pest infestation (Joshi et al., 2015); it can be a substitute for
chemical fertilizers (Bhat et al., 2018). In the light of today’s rapid
urbanization and increased rural-urban migration trends, solid waste
management issues have become an important concern in large urban
areas. Incorporating earthworms in the composting process could
somehow solve waste management and reduce environmental loads
(Bhat et al., 2018). Realizing the benefits of vermicomposting, Nepal’s
government launched its vermicompost production program in 2014.
The program was designed to accelerate vermicompost technology
diffusion and enhance vermicompost use (Amgai et al., 2017). Under
the program, a subsidy is granted to any producer who constructed a
vermicomposting bin on their farm. Around 25 organic fertilizer firms
with 100600 Mton annual compost production capacity were
established by 2016.

Despite the method’s apparent benefits and government
support, its adoption rate has been slow. The adoption decision
is usually weighed against two considerations: economic viability
and environmental sustainability (Wang et al., 2018). Certain
studies contend that a shift to organic farming methods usually
involves a gestation phase in the adoption when the crop yield
effect is initially slow and variable in the shorter-term horizon
(Khaliq et al., 2006), and growing methods are usually more labor-
intensive (Wang et al., 2016). However, proponents of organic
agricultural systems contend that economic incentives cannot
solely influence farmers’ adoption behavior as they also consider
external environmental benefits accruing to the organic methods
(Blackstock et al., 2010). Thus, it is imperative to identify and
understand factors that affect the adoption of such a practice and
its impacts on crop productivity to formulate more widespread
adoption and diffusion policies. Only a few studies modeled yield
response to vermicomposting in an experimental trial (for
example, Panta and Yami, 2008). However, to the best of our
knowledge, no study has empirically investigated the adoption of
this practice and its impacts on crop yield using observational data.

This study fills such a research gap by analyzing farm
household survey data from two districts of Nepal. This
research has a two-fold objective: first, identifying principal
determinants of adoption, and second, determining the effect
of a household’s adoption decision on crop yield.1 Our analytical

framework is designed to address several estimation issues. The
adoption status of farmers is endogenous due to self-selection
into a treatment, thus causing selection bias. Selection bias may
arise because farmers who adopt improved practice may share
some common unobserved characteristics, such as management
abilities and knowledge and skills, which correlate with yield. On
the other hand, adopters are more likely to be systematically
different from non-adopters in observed and unobserved
characteristics that could affect crop yield. Failure to account
for selection bias arising from the endogenous treatment
indicator capturing the adoption decision (labeled as
“adoption” in our empirical model) may result in inconsistent
estimation. Therefore, we explicitly consider the problem of non-
random selection into treatment following the control function
approach in the endogenous switching regression model (CF-
ESR) proposed by Murtazashvili and Wooldridge (2016).

Under normality assumption, we estimate the selection
corrected yield function using a two-step control function
procedure. The first stage utilizes the probit model for the
adoption decision. In the second stage, the selection correction
term (generalized residual term) derived from the first stage is
used as a control function. Finally, we build a counterfactual
analysis and compare the expected crop yield under the actual
and counterfactual conditions of adoption and non-adoption.We
evaluate heterogeneous treatment effects of adoption decisions
using estimates from the second step to identify the crop yield
differences between adopters and non-adopters. Our preferred
specification indicates that the adoption of improved practice is
associated with an approximately 17 percent increase in crop
productivity. The improved organic manure practice did not only
result in significantly higher yields among adopting farms, but
counterfactual analyses indicate that non-adopting farms would
have realized much better yield conditions had they implemented
the technology.

This study offers important empirical evidence relevant to
ongoing discussions of the relative strengths of organic
production methods. While the environmental benefits of
manures eradicate such risks as soil deterioration, greenhouse
emissions, and water contamination commonly associated with
chemical fertilizer applications (Makkar et al., 2022), we explain
its economic viability through yield potential. Findings offer
important implications for Nepal’s and other developing
countries’ farmers and policyholders who aspire to realize
higher farm productivity and rural farm incomes that coincide
with environmentally sustainable and sound growing practices.

Country and Industry Context
Agriculture plays a substantial role in Nepal’s economy. It
accounts for a third of the nation’s GDP and two-thirds of its
labor force. The sector’s performance is key to overall economic
growth, poverty alleviation, and improving national productivity
(MoAD, 2018). Notably, Nepal has made considerable progress
toward overall poverty reduction and food security in recent
years, yet uneven dispersion of economic activities and benefits
results in the persistence of poverty and food insecurity
conditions in its rural areas. Around 77% of the national
population still earns less than $2 a day (World Bank, 2015).

1Our measure of crop yield is productivity, which is defined as the total crop
harvested per hectare of cropland. In this article, productivity and yield are used
interchangeably.
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Most Nepalese farmers are smaller holders, with nearly half of
the farm households operating less than 0.5 hectares of land
under an integrated farming arrangement. Farming is still
predominantly for subsistence, and the adoption rate of
advanced farm technology is marginal. The agricultural
sector’s weak performance and slow growth rates (averaging
2.8% per year) have dragged down overall economic growth
(World Bank, 2017), as agriculture is the country’s largest
employer.

Chemical Fertilizer Use
Chemical fertilizer applications in Nepal increased substantially
from 5.64 kg/ha in 2006 to 74.08 kg/ha in 2016. Despite such an
upward trend in average fertilizer use, the country’s chemical
fertilizer use is still much lower than the utilization rates in other
South Asian countries (estimated around 160 kg/ha) (World
Bank, 2017).

Several factors explain the relatively lower levels of chemical
fertilizer use in Nepal. First, the Nepalese chemical fertilizer
industry is still facing significant supply constraints. Market
demand consistently exceeds supply; thus, the appropriate
products are usually unavailable to the farmers. For instance,
according to Kyle et al. (2017), only 25% of Nepalese households
could purchase fertilizer in sufficient quantities. These individuals
must walk quite a long distance and then wait in line to avail of
even small fertilizer amounts. Second, farmers are not well-
informed by technical advisers from the industry and other
institutions about the proper choices for fertilizers appropriate
to their respective farming situations. Third, low-income
smallholder farmers typically face credit constraints as credit
delivery systems in the country’s farm sector are often riddled
with anomalous lending decisions. Specifically, allegations surface
that loans for chemical fertilizers often go to politically connected
people. Fourth, although Nepal’s government has set up price
subsidies for chemical fertilizers designed to alleviate the farmers’
cost burden, market reality dictates that the resulting subsidized
fertilizer price is still much higher than other countries’ prices,
such as those in India. The government’s fertilizer price subsidy
program has been criticized as “regressive.” Strong allegations
contend that only wealthier farmers and those with more land
often benefit most from the government’s price subsidies
(Donovan, 2004). Besides, Nepal’s agro-climatic zones result in
some heterogeneity in patterns of chemical fertilizer use among
farmers. For example, the hilly regions representing more than
half of total cultivated land only account for a fourth of total
fertilizer use.

METHODOLOGY

Data Sources
The data set comes from a face-to-face household survey
conducted from October to December 2015 in Chitwan and
Lalitpur districts in Nepal’s central region. This region grows
rice, maize, wheat, potato, and oilseeds, representing more than
90% of the total grain production and cultivated area (MoAD,
2018). Mixed cropping is the most common type of farming, and

farmers grow two to three crops annually, depending upon
whether the land is irrigated. Rice-wheat-maize or rice-
vegetables-maize is the major cropping pattern in irrigated
land, while the rice-wheat-fallow or rice-fallow-maize is the
primary pattern in the rainfed condition (MoAD, 2018). In
selecting survey households, we used a multi-level stratified
sampling approach. We first identified the Chitwan and
Lalitpur districts as the main improved organic manure
practicing areas, given their high intensity of improved
manure users. Afterward, we purposely selected four village
development committees (VDCs)2 from each district with
guidance from the District Agriculture Extension Officer.

The household survey was conducted in two stages. First, we
did a reconnaissance survey to better understand the use,
production, and crops grown in the survey areas. We also did
in-depth key informant interviews with farmers, extension staff,
and cooperatives officials. This first stage’s information was used
to improve the survey instrument, identify the survey areas, and
refine the sampling framework. We then randomly surveyed
approximately 25–35 farm households from each VDC. The
share of sample size allocated to each VDC was proportional
to the number of adopters. Finally, a sample of 480 farm
households (240 from each district), comprising of 200 non-
adopters and 280 adopters, was chosen for the study. After
employing further data cleaning protocols, the final sample
size was reduced to 444 households. In this study, the primary
variable of interest is a binary indicator of adoption, denoting
whether a farm household produced and/or applied any of three
improved organic manure practices: improved farmyard manure
(FYM), vermicompost, and other composts, in their farms a year
before the survey year. Non-adopters did not use any of the three
improved organic manure practices to produce any of their crops.

The household survey questionnaires were structured and pre-
tested. The survey provides comprehensive information about
household demographic characteristics, farm activities, social
networks, access to information, crop production details (input
use, yield, and revenue), land and livestock ownership, organic
manure use, preparation methods, and market information.

ESTIMATION STRATEGY

A household’s decision to adopt the improved technology and its
impacts on crop yield is modeled in a two-stage framework. The
first stage captures the adoption decision. We model the adoption
decision in a random utility framework under the assumption
that a farmer decides whether to adopt this practice based on
expected utility considerations. A farm household i uses
improved organic manure if the expected utility from the
adoption (Up

i1) is higher than that of the non-adoption case
(Up

i0). In other words, if we account for the expected utility
difference between these two options by a latent continuous
variable Dp

i (Dp
i � Up

i1 − Up
i0), a farmer decides to adopt

improved technology only if Dp
i > 0. However, the actual utility

2VDC were the smallest administrative unit of Nepal during the household survey.
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level of Dp
i is unknown to the researcher, but household

characteristics are observed. Therefore, we can specify the
latent variable as a function of variables, denoted as zi, which
affect the expected utility of adoption as:

Dp
i � ziγ + ωi, Di � 1[Dp

i > 0]i � 1, 2, . . .N (1)
where Di is a binary adoption indicator that takes a value of 1 for
household i who chooses to adopt and 0 otherwise; 1[.] is an
indicator function that is equal to 1 if the statement inside the
bracket is true and 0 otherwise; and ω ~ N(0, σ2ω), and i �
1, 2, . . .N are the number of households.

In the second stage, we model the effect of technology
adoption on crop productivity. Let yi represent farm
productivity, which is a linear function of household
characteristics Xi and the adoption decision, Di. In particular,
yi is assumed to be generated as

yi � X′
iβ + θDi + ϵi (2)

where β represents a vector of parameters to be estimated, θ is the
coefficient associated with a binary indicator of adoption Di, and
τi is random disturbance terms, that is τi ~ N(0, σ2ε ). The most
common way to examine the impact of adopting improved
practice on crop yield would be to estimate Eq. 2 by ordinary
least squares (OLS). The OLS estimates, however, may yield
imprecise estimates since the decision to adopt may be based
on individual self-selection and is potentially endogenous
i.e., cov(Di, ϵi) ≠ 0. Selection bias may occur because farmers
who adopt improved technology share common unobserved
characteristics, such as innate managerial skills, technical
abilities, individual preferences, and social networks, which
could also be correlated with outcomes (Abadie and Cattaneo,
2018). Similarly, adopting farmers may have systematically
distinctive characteristics from non-adopters. Such features
affect the cost of adoption and/or expected return, leading to
heterogenous technology adoption behaviors. Therefore, the
selection Eq. 1 becomes more severe in the presence of
heterogeneous treatment effects when the correlation between
ωi and Di may arise through τi, or the idiosyncratic gains from
adoption (Blundell and Dias, 2009).

Several approaches have been proposed to address this
estimation issue, such as 1) selection models (Heckman and
Robb, 1986; Powell, 1994), 2) instrumental variable models
(Heckman and Vytlacil, 2005; Heckman et al., 2006), and 3)
matching methods (Heckman and Navarro-Lozano, 2004). To
account for the endogeneity problem discussed above, we utilize
the endogenous switching regression (ESR) model developed by
Heckman (1976), where the coefficient on a binary endogenous
treatment is allowed to differ across units in both observed and
unobserved characteristics. The ESR can be estimated with the
two-step method using a control function (CF) or simultaneously
via full information maximum likelihood (FIML-ESR). The
FIML-ESR implemented in Stata by Lokshin and Sajaia (2004)
has increasingly been used in multiple studies to deal with self-
selection in Eq. 1 technology adoption (Asfaw et al., 2012; Manda
et al., 2019; Kassie et al., 2020), 2) cooperative membership (Ma
and Abdulai, 2016), and 3) climate change adaptation (Di Falco

et al., 2011; Di Falco and Veronesi, 2014; Dhakal et al., 2022).
Maximum likelihood (ML) is a widely used technique with some
limitations. The ML produces more efficient estimators and
asymptotically correct standard error estimates under the
appropriate assumption (Wooldridge, 2010). However, ML
estimators tend to be more vulnerable to misspecification
(Greene, 2007, p.421). Under certain circumstances, such as
dealing with a small sample size, the ML estimation can be
computationally complicated and costly to implement, thus
limiting its use (Nguimkeu et al., 2019). For instance,
correlations between the outcomes equation and selection
equation errors might not be strongly identified, resulting in
multiple local maxima or, at times, leading to non-convergence
problems.

In contrast, the two-step method always results in
convergence. The CF approach, combined with instrumental
variables, produces consistent estimation in the presence of
endogenous regressors under standard identification
assumptions (Wooldridge 2015). It considers the non-linear
interaction between an endogenous regressor and the error
terms. Besides, unlike the FIML-ESR, the CF-ESR approach
provides a direct marginal effect of endogenous treatment on
outcomes and consistent estimates in the presence of unobserved
heterogeneity between adopters and non-adopters (Murtazashvili
and Wooldridge, 2016). Considering these issues, we employ the
CF-ESR model proposed by Murtazashvili and Wooldridge
(2016)3.

Consider the following ESR model

yi � (1 −Di)Xiβ0 +DiXiβ1 + (1 −Di)ϵi0 +Diϵi1 (3)
where Di is an endogenous binary indicator for adoption, (the
endogenous switching indicator for individual i), Xi is a vector of
exogenous covariates, with the first element being unity, and ϵi0
and ϵi1 are unobservables. It can be derived by simple substitution
from a counterfactual framework:

yi � (1 −Di)y0
i +Diy

1
i (4)

y0
i � Xiβ0 + ϵi0 (5)

y1
i � Xiβ1 + ϵi1 (6)

where y0
i and y1

i are the counterfactual outcomes, and a binary
variable Di can be correlated with (ϵi0, ϵi1). To estimate the ESR
model, Eq. 4 can be written as

yi � Xiβ0 +DiXiγ + ϵi0 +Diϑi1 (7)
were ϑi1 � ϵi1 − ϵi0 and γ � β1 − β0. Without the presence of
Diϑi1, we could estimate Eq. 7 by standard instrumental
variable estimators. In this case, the standard instrumental
variable estimators will be inconsistent. The problem with
applying the instrumental variable method in the above
equation is that the term Diϑi1 is assumed to be correlated
with explanatory variables X even under a strong
independence assumption because of the endogeneity of Di

3Unlike Murtazashvili and Wooldridge (2016), we assume all covariates (except a
binary treatment status adaptation) in the ESR model to be exogenous.
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(Murtazashvili and Wooldridge, 2016). However, we can identify
Eq. 7 using a CF for Di.

Control Function Approach
The control function approach involves two-step estimation
procedures. The first step involves the estimation of the probit
model of Di on zi as

P(Di � 1|zi) � Φ(z1iπ1 + Xiπ2) (8)
where z1i are instrumental variables so that zi � f(Xi, z1i), π1
and π2 are coefficients.

In order to achieve identification, we should satisfy the exclusion
restriction that requires at least one excluded exogenous variable
(z1i) in the probit model forDi. The excluded exogenous variable(s)
should affect the adoption decision but not directly affect the yield.
In other words, the effect of the instrumental variables on the
outcome should come only through the adoption decision.

This approach also requires evidence of π1 ≠ 0 for the
instrument(s) to be valid, and a rank condition must be imposed
to ensure consistency. In this analysis, three instrument variables are
considered for the exclusion restriction: distance to market, self-
reported adoption status of friends and neighbors, and access to
agricultural extension services. These instruments have been used in
several previous studies, such as distance tomarket (Suri, 2011), self-
reported adoption status of friends and neighbors (Krishnan and
Patnam, 2014; Wossen et al., 2019), and access to extension contact
(Di Falco et al., 2011; Di Falco and Veronesi, 2014; Huang et al.,
2015). These exclusion restriction variables are used as proxies for
the source of information and motivation that explicitly affect the
adoption decision and influence the adoption decision.

In the second step, generalized residuals are obtained as

r̂i � Diλ(ziπ̂) − (1 −Di)λ(−ziπ̂) (9)
where γ, π1 and π2 are coefficients, and other terms are as defined
previously.

Subsequently, our preferred estimating equation would be

yi � Xiβ0 +DiXiγ + ρ0r̂i + ρ1Dir̂i + ϵi (10)
which is estimated by two-stage least squares using instrumental
variables (zi, Dizi, r̂i, Dir̂i) and where β0 γ ρ0, ρ1 are the
parameters. We use the Huber/White sandwich estimator for
the robust heteroskedasticity standard errors and standard errors
clustered at the village level.

In the final step, Eq. 10 is estimated separately when Di � 1
and Di � 0 to get different estimations for adopters (y(1)

i and
non-adopters (y(0)

i ), where Inverse Mills Ratio are λ(ziπ̂) and
λ(−ziπ̂), respectively. In doing so, the estimating equation
would be

y(1)
i � Xiβ1 + (ρ0 + ρ1)r̂i + ϵi (11)
y(0)
i � Xiβ0 + ρ0r̂i + ϵi. (12)

Heterogeneity Analysis
This study investigates the treatment effects of improved
organic manure practice adoption on crop productivity. The
three most used treatment parameters to explore the impact of

adoption in the program evaluation literature are the average
treatment effect (ATE), the average treatment effect on treated
(ATT), and the average treatment effect on untreated (ATU).
The ATE measure would be the average outcome if individuals
were randomly assigned to treatment, and ATT measures the
average effects on individuals specifically assigned to
treatment. ATT then is the appropriate parameter to
identify the impact of adoption on adopting households. If,
however, the interest focuses on the impact of adoption on
households of a certain type as if they were randomly selected,
then ATE is the parameter of interest to recover. The ATE,
ATT, and ATU measures are defined using conventions
introduced by Wooldridge (2015), as follows:

ATE � E(y(1)
i − y(0)

i ). (13)
From Eq 11, 12 ATE can be written as

ATE � Xβ1 + (ρ0 + ρ1)r̂i −Xβ0 + ρ0r̂i � (β1 − β0)X + ρ1r̂i

(14)
The y(1)

i and y(0)
i are not directly observed, but ŷ(1)

i and ŷ(0)
i

can be estimated from the above equation as follows:

ÂTE � N−1∑N

i�1[ŷ
(1)
i − ŷ(0)

i ] (15)
The effect of adoption on the adopting farm household

(i.e., ATT) is given by

ATT � E(y(1)
i − y(0)

i |Di � 1). (16)
The ATT can thus be estimated as

ÂTT � N−1∑
N

i�1
yi(Di � 1)[ŷ(1)

i − ŷ(0)
i ] (17)

On the other hand, the effect of adoption on the non-adopting
households (ATU) is given by

ATU � E(y(1)
i − y(0)

i |Di � 0). (18)
The ATU is estimated as

ÂTU � N−1∑N

i�1yi(Di � 0)[ŷ(1)
i − ŷ(0)

i ] (19)

RESULTS

We first report summary statistics of variables used in our
analysis. We then estimate Eq. 10 for the full sample and Eq.
11 and Eq. 12 for adopting and non-adopting households,
respectively, to examine the extent to which the estimated
effect is heterogeneous across adoption status.

Summary Statistics
Figure 1 presents the distribution of crop yield by adoption
status. As the plots indicate, adopters have higher crop
productivity when the distribution shift to the right than non-
adopters.
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Table 1 presents the summary statistics and statistical
significance tests on equality of means and proportions for
continuous and dummy variables, respectively, among
adopters and non-adopters. This study’s choices of dependent
variables are drawn from approaches employed in the existing
literature on technology adoption and crop yield (Kassie et al.,
2015; Manda et al., 2019; Kassie et al., 2020, for example). This
study’s analytical model includes household characteristics (such
as sex, age, educational attainment, household size, and social
networks), membership in cooperatives and agricultural groups,
access to credit and training, wealth indicators (in terms of land
holdings and livestock ownership), and production input costs
(manure and fertilizers, labor, irrigation and machinery, seeds,
and planting) to control for the observed heterogeneity between
adopters and non-adopters. We hypothesize that household
characteristics and input costs affect farmers’ adoption
decisions and crop productivity levels. In this study’s sample,
around 60% of the households adopt improved practices to
produce crops (Table 1).

The average age of the sample household head is 41 years,
whereas 62% are female-headed. There is no significant
difference in the observed age and gender of the household
head. The average livestock ownership measured in tropical
livestock units (LTU4) is 2.38. Household size and livestock
numbers between adopting and non-adopting households are
not significantly different. The mean cultivated land area
(owned) of sample households is 0.399 ha, and the average
adopters’ cultivated land area is significantly larger than that for
non-adopters. We find statistically significant differences
between adopters and non-adopters for most of the other
explanatory variables. In general, adopters are more likely to
be educated, trained, and cooperative or group members.
Moreover, they have better access to credit, extension
services, and marketing centers. In terms of input costs
(control variables), adopters tend to spend significantly more
on manure and fertilizers, while non-adopters are more likely to
spend more on irrigation and machinery. Adopting households
also register significantly higher crop productivity levels
compared to non-adopting households. The summary
statistics suggest that adopters are largely positively self-
selected, and the impact of improved manure practices on
yield seems to be positive.

Determinants of Adoption
Data columns 1 and 2 in Table 2 present the first stage-probit
estimates and their marginal effects on adopters and non-
adopters. The estimated coefficients help find factors that
significantly influence the farm household’s decision to adopt.
However, the probit model’s estimated coefficients are not
directly interpretable; therefore, marginal effects are evaluated
to quantify the marginal change in the probability of adoption
with a unit change in each response variable.

Results show that most of the covariates hypothesized to
influence adoption decisions register the expected results. Five

sources of heterogeneity largely explain the households’ decision
to adopt. These include demographics (age and sex), sources of
information (access to extension services, improved skill,
knowledge, and training), social and human capital (access to
credit, cooperative/group membership, and educational
attainment), location, and self-reported adoption status of
neighbors/friends. The resulting coefficient estimates identify
three main factors that determine the farm household’s
decision to adopt practices: 1) having adopter neighbors/
friends, 2) residing in proximity to the market, and 3) gaining
easy access to extension services. These variables appear to pave
the way for the wider andmore effective dissemination of relevant
information for the adopting household’s assimilation of the
improved technology. For instance, households residing near
the market would have more information on improved
organic manure practices and are 20% more likely to adopt
the technology. Households also receive information about
improved technologies and inputs from university extension
services and their neighbors/friends, which altogether play a
vital role in influencing decisions on technology adoption. The
findings indicate that having access to extension services and
being in adopters’ neighborhoods can reduce farm households’
constraints on adopting the technology and increase the
likelihood of adoption by 6% and 56%, respectively. This
result is consistent with the findings of other studies on
technology adoption that document how farmers learn about
how innovative technology from their neighbors/friends on social
networks (Conley and Udry, 2010). Empirical evidence indicates
that most information on input use come from neighbors/friends
and extension agents (Asfaw et al., 2012; Krishnan and Patnam,
2014; Wossen et al., 2019). Households may also acquire
knowledge and information about improved manure practices
by participating in cooperatives or agricultural groups. Results
show that membership in cooperatives/groups is positive and
significant, indicating that farm households are around 27%more
likely to adopt improved technology than non-members. This
result conforms with the findings of previous adoption studies

FIGURE 1 | Distribution of crop yield (log) between adopters and non-
adopters.

4TLU = =0.7*(Buffalo + +Cattle)+ 0.1*Goat+0.2*Pig+0.01*Poultry.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 9128606

Dhakal and Escalante Productivity Effects of Improved Organic Manure

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(Ma and Abdulai, 2016;Wossen et al., 2017). Similarly, education,
access to credit, training, and knowledge about improved manure
practices are positively and significantly associated with the
adoption. Our findings thus lend support to previously
validated positive effects of education (Huffman, 2020;
Mukherjee, 2020), access to credit (Croppenstedt et al., 2003;
Barrett et al., 2004; Mukherjee, 2020), and training (Nakano et al.,
2018; Kumar et al., 2020). However, the estimated coefficient of
the female household head dummy is negative and significant,
thus suggesting that women are about 33% less likely to adopt
than their male counterparts. Some studies attribute this trend to
women’s usual lack of access to resources, extension information,
infrastructure, education, and credit services (Satyavathi et al.,
2010; Rola-Rubzen et al., 2020).

Validity of Instruments
Instrumental variables (IVs) are expected to significantly affect
technology adoption. Living in closer proximity to the market,
having frequent contact with extension staff, and having
neighbors or friend adopters increase the probability of
adoption. These instrument variables provide information
about the benefit of using compost and increase the likelihood
of adoption.

The confirmation of the validity of this study’s instruments is
presented in Supplementary Appendix SA1. As noted by Bound
et al. (1995), the “cure can be worse than the disease” when the
excluded instruments are only weakly correlated with the
endogenous variables. Weak IVs can lead to inconsistent and
unreliable estimates. To test the relevancy condition (to identify

TABLE 1 | Descriptive statistics and mean differences in variables between adopters and non-adopters.

Variable name Full sample Adopters Non-adopter Mean difference

(1) (2) (3) (4)

Female household head (1/0) 0.622 0.624 0.618 0.006
(0.023) (0.030) (0.037)

Age of household head (year) 45.144 45.489 44.629 0.860
(0.597) (0.775) (0.939)

Log household size 1.720 1.742 1.686 0.055
(0.019) (0.022) (0.032)

Livestock ownership (TLU) 2.375 2.450 2.263 0.187
(0.083) (0.112) (0.124)

Land area (ha) 0.399 0.449 0.324 0.125***
(0.016) (0.019) (0.026)

Log irrigation and machinery cost (NPR) 8.127 8.005 8.309 -0.304**
(0.053) (0.077) (0.063)

Log manure and fertilizer cost (NPR) 8.805 8.980 8.542 0.438***
(0.044) (0.053) (0.073)

Log labor cost (NPR) 9.186 9.259 9.076 0.183
(0.049) (0.063) (0.079)

Log seed and planting materials cost (NPR) 7.437 7.504 7.337 0.166
(0.055) (0.073) (0.084)

Agricultural training/meeting (1/0) 0.608 0.809 0.474 0.335***
(0.023) (0.030) (0.031)

Knowledge on improved manure practice (1/0) 0.698 0.722 0.663 0.059
(0.022) (0.028) (0.036)

Credit (1/0) 0.667 0.865 0.534 0.331***
(0.022) (0.026) (0.031)

Formal education (1 = yes) 0.671 0.820 0.449 0.370***
(0.022) (0.024) (0.037)

Cooperative/group members (1/0) 0.676 0.764 0.617 0.148***
(0.022) (0.032) (0.030)

Outstanding loan (1/0) 0.437 0.383 0.517 −0.133
(0.024) (0.030) (0.038)

Neighbor/friends adoption (1/0) 0.572 0.789 0.247 0.542***
(0.024) (0.025) (0.032)

Distance to market (km) 2.541 3.030 1.809 1.221***
(0.079) (0.110) (0.083)

Extension contact 2.716 3.353 1.764 1.589***
(0.080) (0.107) (0.076)

Log of crop yield (kg/ha) 8.964 9.017 8.886 0.130***
(0.014) (0.017) (0.022)

Adoption (1/0) 0.599
(0.023)

N 444 266 178

Note: Robust standard errors clustered at the village development committee are in parentheses, TLU, Tropical livestock unit. *Significant at the 10% level; **Significant at the 5% level;
***Significant at the 1% level. NPR stands for Nepalese Rupee, exchange rate: 1 US $ = Nepalese Rupees 107 at the time of survey (https://www.nrb.org.np/).
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weak instruments), we regress the binary adoption variable on a
set of excluded instruments. The result shows that instruments
are jointly significant for explaining the adoption decision (χ2 =
235.43; p < 0.001 for the probit model and F-statistics = 113.08;
p < 0.001 for the linear probability model). More importantly,
Cragg-Donald’s F-test statistics are large enough to reject the
hypothesis that the excluded variables are weak instruments (see
for details, Stock and Yogo, 2005).

Further, in order for the model to be identified, exclusion
restrictions need to be enforced, whereby instruments must be

highly correlated with the endogenous binary adoption decisions
but not directly correlated with crop productivity. In other words,
the IVs’ impact on crop yield should come only through adoption
decisions. However, the exclusion restriction can be violated if
households learn productivity-improving methods from friends
and neighbors. Intuitively, we argue that farm households are less
likely to know about friends’ and neighbors’ unobserved
characteristics. Moreover, the distance variables are random
from the household location after controlling for other
household characteristics.

TABLE 2 | Probit, OLS, and control function approach to estimate crop yield function.

Covariates Adoption (1/0) dy/dxb Log yield (kg/ha)

Probit OLS Control function

(1) (2) (3) (4)

Female household head (1/0) −1.251*** −0.332*** 0.074** 0.081***
(0.402) (0.112) (0.029) (0.029)

Age of household head (year) 0.133* 0.035* 0.000 −0.000
(0.076) (0.020) (0.005) (0.005)

Log household size 0.585 0.155 −0.030 −0.038*
(0.383) (0.106) (0.029) (0.029)

Livestock ownership (TLU) 0.130 0.035 0.002 0.003
(0.109) (0.028) (0.007) (0.007)

Land area (ha) 0.257 0.068 −0.065 −0.076**
(0.560) (0.150) (0.043) (0.041)

Log irrigation and machinery cost (NPR) −0.106 −0.028 0.036** 0.040***
(0.160) (0.043) (0.014) (0.014)

Log manure and fertilizer cost (NPR) −0.296 −0.079 0.062*** 0.060***
(0.222) (0.057) (0.016) (0.016)

Log of labor cost (NPR) 0.177 0.047 −0.023* −0.024
(0.168) (0.043) (0.013) (0.013)

Log seed and planting materials cost (NPR) −0.184 −0.049 −0.002 −0.003
(0.130) (0.034) (0.010) (0.010)

Agricultural training/meeting (1/0) 1.896*** 0.504*** 0.095*** 0.108***
(0.452) (0.107) (0.031) (0.033)

Knowledge on improved manure practice (1/0) 1.466*** 0.389*** 0.064** 0.059***
(0.441) (0.109) (0.029) (0.029)

Credit (1/0) 1.193*** 0.317*** 0.079*** 0.089***
(0.374) (0.104) (0.027) (0.028)

Formal education (1/0) 1.326*** 0.352*** 0.163*** 0.145***
(0.404) (0.116) (0.032) (0.034)

Cooperative/group members (1/0) 1.031** 0.274** 0.028 0.033*
(0.428) (0.107) (0.027) (0.027)

Outstanding loan (1/0) −1.118*** −0.297*** −0.144*** −0.137***
(0.375) (0.105) (0.031) (0.031)

Neighbors/ friends adoption (1/0) 2.107*** 0.560***
(0.397) (0.109)

Frequency of extension contact 0.227** 0.060**
(0.110) (0.029)

Distance to market (km) −0.745*** −0.198***
(0.164) (0.039)

Adoption (1/0) 0.108*** 0.158***
(0.036) (0.050)

Generalized residual (ρ) −0.059***
(0.033)

Constant −2.683 8.110*** 8.104***
(2.770) (0.216) (0.214)

Observations 444 444 444
R2 0.675a 0.635 0.640

Robust SE at the village development committee in parentheses in parentheses. TLU, tropical livestock unit. dy/dx, marginal effect.
*Significant at the 10% level;
**Significant at the 5% level; ***Significant at the 1% level.
aPseudo R2.
bMaginal effect, which is computed at the mean value of the X variables.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 9128608

Dhakal and Escalante Productivity Effects of Improved Organic Manure

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


We also carried out the “falsification test” (Di Falco et al.,
2011) to test the validity of IVs. In this test, the crop yield among
households that did not adopt is regressed (data column 2 of
Supplementary Appendix SA1) on all IVs. The results support
exclusion restriction as none of these IVs are significant.

Impacts of Improved Manure Practice
Adoption on Crop Yield
The OLS estimates of the yield functions, controlling for various
observables and inputs, are in column 3 of Table 2. The parameter
estimates suggest a positive and significant effect of improved
organic manure practice use on crop yield. The OLS results show
households adopting improved technology have 11% higher crop
yield5 than non-adopting households after controlling for observed
characteristics. However, the OLS estimates assume that adoption
is exogenously determined while potentially endogenous due to
sample selection. This approach does not consider the
unobservable, such as innate ability and skills that are likely
correlated with the adoption decisions and crop productivity,
thus leading to inconsistent estimates.

Column 4 in Table 2 presents the results of the CF-ESR
setting. A notable result is the sign and significance of the
coefficient of the generalized residual (ρ). The estimated
generalized residual (ρ̂) is statistically significant at the 1
percent level, which provides compelling evidence of self-
selection in adoption decisions, thus indicating that adoption
is endogenous. In particular, the negative sign of ρ suggests
negative selection bias that farm households with lower-than-
average crop yields are more likely to practice improved organic
farming. It can also be contended that unobservable factors that
raise observed crop yield tend to occur with observables that
lower adoption decisions.

These findings justify the use of the CF-ESR to account for
selection bias to obtain consistent estimates. The two-step control
function approach uses the two-step estimation procedure to
address observed and unobserved heterogeneities between
adopters and non-adopters. Our preferred specification
suggests a positive and significant return to improved manure

practice; adopting the technology leads to a 17% higher return in
crop yield after controlling for confoundings. As such, sample
selection results in an attenuation bias as the crop productivity
impact of adoption is 6% higher when using a two-step control
function approach than when using OLS. In the absence of sample
selection, parameter estimates from OLS and the two-step models
should be the same. The differential productivity impacts of
adoption estimated with two approaches indicate substantial
unobserved heterogeneities between adopters and non-adopters.
Consistent with economic theory, input costs such as irrigation and
machinery, fertilizers, and manures are significantly associated
with increased crop yield per hectare.

The land area’s estimated coefficient is negative and statistically
significant, suggesting that productivity negatively correlates with
cultivated land area. More specifically, the result indicates that a 1%
increase in the cultivated land area decreases rice yield by 3%.6 The
inverse relationship between farm size and crop productivity is
consistent with many existing studies (Huang et al., 2015) that
small-sized farms are more productive.

We also report the estimated coefficients of the crop
productivity equations for adopters and non-adopters
separately (Supplementary Appendix SA2). The results show
a substantial difference in yield equation coefficients between
adopters and non-adopters. The difference in the estimated
coefficients of covariates in the adopters and non-adopters
equations supports heterogeneity across adopting and non-
adopting households.

Heterogeneous Treatment Effects
Table 3 reports the expected productivity under actual and
counterfactual conditions for adopters and non-adopters. The
results show that adoption significantly increases crop
productivity. The average predicted crop productivity of
adopting farm households is about 8,764 kg/ha. In
comparison, it is about 7,482 kg/ha for non-adopting farm
households indicating an average yield advantage (LATE) of
1,282 kg/ha (around 17%). Specifically, farm households that
did not adopt the technology would have increased their crop
yield by 1,448 kg/ha (20% higher yield return) had they adopted
the improved practice. In another counterfactual case, adopters

TABLE 3 | Treatment effects of improved organic manure practice on crop yield.

Sub-samples Decision stage Treatment effects

To adopt No to adopt

(1) (2) (3)

Households that adopted ŷ11 � 8693.601 ŷ10 � 7522.625 ÂTT � 1170.976***
Household did not adopt ŷ01 � 8863.365 ŷ00 � 7420.306 ÂTU � 1448.059***
Heterogenous effects ̂y11 − y01 � −174.764 ŷ10 − ŷ00 � 102.319 ÂTT − ÂTU � 277.083 **
Local average treatment effect (LATE) 8763.664 7481.605 1282.059

ATT represents the effect of the adoption on the households that adapted. ATU represents the effects of improved organic manure practices on households that did not adopt
*Significant at the 10% level;
**Significant at the 5% level;
***Significant at the 1% level.

5As dependent variable is expressed in logarithm the returns are calculated as
100*(e(β) − 1]. 6Since land area is in hectare, we report the elasticity at means as 0.076*0.399*100%.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 9128609

Dhakal and Escalante Productivity Effects of Improved Organic Manure

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


would have produced about 1,171 kg/ha (14% less) if they had not
adopted.

Similarly, yield improvement from adoption would have been
significantly higher (277 kg/ha) for non-adopters than adopters
had both groups adopted the technology; that is, the effect is bigger
for non-adopting households with respect to adopting households.
The positive and significant effects of technology adoption on crop
productivity support the results of previous studies (Moyo et al.,
2007; Kumar et al., 2020). Similarly, significant heterogeneous
treatment effects offer other unobservable factors that make
adopters systematically better producers than non-adopters,
consistent with technology adoption literature (Abdulai and
Huffman, 2014; Wossen et al., 2017). These findings indicate
many opportunities for farmers to realize higher productivity by
simply using these techniques.

Robustness Check
We checked our findings’ validity by comparing the results from
treatment effects models and propensity score matching (PSM).
We also use the treatment effect model using Stata’s canned
routine for the comparison of our findings. The estimated
coefficients and treatment effects (both ATT and ATE) are
consistent with estimated parameters with CF-ESR
(Supplementary Appendix SA3). We used the nearest
neighbor matching (NNM) estimator for the propensity score
matching. The NMM approach takes each adopter and searches
for the non-adopter with the closest propensity score, and all
adopters find a match with non-adopters (Caliendo and
Kopeinig, 2008). The matched comparison group is
understood to be counterfactual. The PSM method’s average
treatment effect is positive and significant, indicating higher
productivity impacts of adoption. However, the ATE under
this approach is slightly lower than that estimated by the CF-
ESR (11% vs. 17%). The results suggest that inability to control for
unobservable results in underestimating ATEs in the PSM. The
PSM balances the observed distribution of covariates between
adopters and non-adopters and accounts for only observed
heterogeneity, while CF-ESR accounts for both observables
and non-observables. These findings align with earlier studies
suggesting the PSM’s shortcomings in technology adoption
literature (Andam et al., 2008; Shahzad and Abdulai, 2020).

CONCLUSION AND POLICY
IMPLICATIONS

This article offers empirical support to the growing literature on
the adoption behavior of farmers in developing economies. Its
focus on improved organic manure practices helps solidify
arguments for the greater relevance of organic production
methods in general. Under this expanded perspective, this
study reinforces the usual environmental, social, and economic
motivations that may influence farmers’ adoption decisions.

As the organic manure alternative weans, farm businesses
from dependence on chemical production inputs, apparent gains

in environmental health and sustainability can strongly influence
farmers’ adoption behavior. Although not directly validated in
this analysis, this underlying motivation is supplemented by
social and economic arguments. In this study, the crucial role
of social capital in adoption decisions is evident. More than just a
validation of farmers’ “free-riding behavior” where earlier
adopters among peer farmers can help induce adoption
decisions, the social dimension of adoption can reflect
information sharing and collective empirical learning modes
that socially cohesive and cooperative rural community
systems in developing countries usually subscribe to.
This contention is easily bolstered by the success of
earlier rural development efforts that capitalized on the
communities’ pervading cultural norms and social networks.
A case in point is the microfinance paradigm that
confirms the sustained effectiveness of the group lending
implemented for many decades now in many rural
communities, especially in South Asia, that has effectively
bolster poverty alleviation goals.

Beyond environmental and social considerations, this study
also establishes economic motivations for adopting such
alternative technology. Improved organic manure practice has
not only resulted in significantly higher yields among adopting
farms, but results of counterfactual analyses show that non-
adopting farms would have realized much better yield
conditions had they implemented the technology.

As Nepal’s government continues to promote improved
organic manure practice as a more affordable, practical
production input, this study lays out encouraging parameters
that prospective adopters may factor into their decisions. The
composite effects of an alternative technology that reaps
environmental, social, and economic benefits can only translate
to a more sustainable farm economy, especially in a country like
Nepal.
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