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Forest degradation reduces biomass density, contributes to greenhouse gas emissions,
and affects biodiversity and natural resources available for local communities. Previous
studies have reported that gross emissions from forest degradation might be higher than
from deforestation, due to the larger area affected by the first process. The quantification of
forest degradation with remote sensing has large uncertainty, mainly because the subtle
and gradual changes in forest are challenging to detect, and sometimes these changes
happen below the canopy cover which the optical sensors cannot see. The objective of this
work is to map the degraded forests and the most relevant biophysical and socio-
economic factors contributing to such degradation in the dry tropics. We mapped the
degraded forests by modeling forest biophysical parameters with multi-temporal optical
data of Landsat-8 and Sentinel-2 and identified the most relevant biophysical and socio-
economic factors that can be associated with forest degradation. We included three
biophysical variables and 11 socio-economic variables including parceled land and land in
ejido property and used multiple linear regression to relate those variables with identified
degraded forests. We identified 62,878 ha of tropical dry forest in a degraded state, cover
49.91% of the forest area. The most relevant biophysical factor was distance to
settlements and the most relevant socio-economic factor was percentage of parceled
land property (private land). Both factors were negatively associated with the mapped
degraded forests. Since parceled land and land in ejido property are strongly and positively
correlated (Pearson’s r = 0.82, p < 0.001), it suggests that ejido property, as a form of land
tenure, plays an important role in preventing forest degradation. This experiment presents
a possible way to measure and understand degradation which may help finding solutions
to slow down forest degradation and promote forest restoration.
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1 INTRODUCTION

Globally, forest cover has been reduced by 7.84 million ha from
2010 to 2020 (Food and Agriculture organization of the United
Nations (FAO), 2020), and in addition, there has been
considerable forest degradation. Different from deforestation
which is permanent forest conversion to establish other types
of land use, forest degradation reduces forest canopy cover and
biomass density while forest remains as forest (Kissinger et al.,
2012). Both deforestation and forest degradation are key
contributors to carbon emissions (Goetz et al., 2015). Carbon
emissions originating from forest degradation account for
47%–75% of the additional carbon emissions caused by
deforestation (Asner et al., 2010; Berenguer et al., 2014). The
large uncertainty is mainly associated with the difficulty of
measuring forest degradation with remote sensing methods
(Gao et al., 2020a). The remote sensing data and methods that
work well for deforestation often have limited spatial resolution
and are not sensitive to forest degradation (DeFries et al., 2002;
Hansen et al., 2010). During the past two decades, methods have
been developed using optical, synthetic aperture radar (SAR), and
LiDAR to map forest degradation at both regional and national
scales. Because driving mechanisms behind degradation, the
process, and the time frame over which it is observed all vary,
it is challenging to apply one single method to map forest
degradation from different driving factors (Mitchell et al., 2017).

Tropical dry forests represent about 42% of all tropical forests
and in Mexico they cover about 11.26% of the land surface
(Challenger and Soberón, 2008). One of the main
characteristics of tropical dry forests are their seasonality, with
5–8 months of dry season, during which most of the trees,
between 50% and 100%, lose their leaves (Challenger and
Soberón, 2008). Despite their importance in biodiversity
conservation and carbon storage, globally, tropical dry forests
have rarely been given the attention for protection and
conservation they deserve (de la Barreda-Bautista et al., 2011).
During the 1930s in Mexico, the establishment of a national
policy of occupying idle lands led to large areas of tropical dry
forests being cleared for agriculture activities and later, during the
national policy of agricultural division in the 1970s, deforestation
accelerated (Gonzalez-Navarro, 1977; Trejo and Dirzo, 2000;
CONABIO, 2020; Trejo and Dirzo, 2020). Although currently
there are four biosphere reserves and four national parks as well
as 36 priority areas for protection and conservation within the
tropical dry forests, it is estimated that 73% of these areas have
been degraded and deforested mainly due to agriculture
expansion, shifting cultivation, and cattle grazing (Trejo and
Dirzo, 2000; Farfán Gutiérrez et al., 2016). Only about 2.8% of
well-conserved tropical dry forests are located in protected areas
(SEMARNAT-CONANP, 2016). Most of the tropical dry forests
have been in the hands of communities and ejido properties
which are forms of land tenure in Mexico. People within the
ejidos and communities are owners of productive lands and
forests and make decisions regarding the use of common
lands (Bonilla-Moheno et al., 2012).

Forest degradation is associated with changes in vegetation
structural attributes such as canopy height, basal area, and biomass

(Chaplin-Kramer et al., 2015; Rappaport et al., 2018). Although
these structural attributes of vegetation vary with physical
conditions such as elevation, topography, and soil type or
nutrients (Lieberman et al., 1996), in areas with anthropogenic
disturbances, they can also indicate different levels of degradation
(Lieberman et al., 1996; Peres et al., 2006). Therefore, by mapping
forest attributes using a combination of forest inventory and
remote sensing data, forest degradation can be mapped and
quantified (Halperin et al., 2016; Clark and Tilman, 2017;
Sharma et al., 2017). In this paper, forest degradation refers to
the visible changes in forests that can be seen by remote sensing
and we characterized degraded forest extent with forest attributes
measured from a field survey.

Because of the seasonality of tropical forests, the detection
of degradation is often complicated by phenological changes
and limited by the scarcity of optical images during the rainy
season. To overcome this problem, we used images from
multiple remote sensing sensors to map forest structure
attributes. The degraded forest can then be mapped by
using forest structure attributes calibrated with field survey
data. Previous research shows that variables such as
normalized difference vegetation index (NDVI) have been
related to forest structural changes such as canopy height
(Caughlin et al., 2021), canopy cover (Feeley et al., 2005)
and biomass (Das and Singh, 2012). Soil-adjusted vegetation
index (SAVI) has also been used in vegetation cover modeling.
In Lawrence and Ripple (1998), SAVI showed a predictive
power of 55% to describe vegetation cover. Additionally, the
disturbance index (DI) was developed to detect stand-
replacing disturbances and proved to be responsive to slow
recovery of vegetation using multi-temporal analysis of
Landsat images in temperate ecosystems (Healey et al.,
2005). This index was developed using tasseled cap
transformations of Landsat bands to capture moisture,
brightness and greenness and has proved useful for
disturbance detection (Healey et al., 2005). In addition,
texture measures such as Grey level co-occurrence matrix
(GLCM) have been implemented to improve the precision
of biomass estimates. For example, in Dube and Mutanga
(2015), the use of textural metrics derived from the
Landsat-8 OLI sensor (30 m) improves the performance of
models estimating aboveground live biomass in tropical
forests, obtaining R2 up to 0.65. The use of texture metrics
has also been associated with the prediction of tropical dry
forest structural attributes such as canopy height, canopy cover
and basal area with R2 > 0.85 using high resolution images of
2.6 m (Gallardo-Cruz et al., 2012).

Although most degradation is driven by local human
activities (e.g., cattle grazing, shifting cultivation, wood
extraction), there are also indirect driving factors involved.
Direct drivers of forest degradation refer to human activities
that directly impact on forest cover and cause losses of carbon
stock, while indirect drivers of degradation are the social,
economic, cultural, technological processes and their
interactions that affect the human activities (Kissinger et al.,
2012). Although many studies have explored the underlying
driving factors associated with tropical forest loss, with
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emphasis on livestock grazing and agricultural expansion
(Curtis et al., 2018), fewer have been directed towards
understanding degradation. Some of the factors related to
deforestation may potentially also play a role in degradation,
through fragmentation of the forest into smaller areas. In
Mexico, several studies have been carried out to explore the
indirect causes of forest degradation. In the Ayuquila River
Basin, where tropical dry forest dominates, a poverty index and
the population size of settlements near the forests were
positively correlated to the occurrence of forest degradation
(Morales-Barquero et al., 2015; Borrego and Skutsch 2019),
although this does not necessarily imply causation. In the
Monarch Butterfly Biosphere Reserve, illegal logging and
social conflicts within and between communities were
identified as the main factors behind forest degradation
(Vidal et al., 2014). At the same time, the use of economic
support policies for communities, as well as projects supporting
alternative income sources, resulted in less illegal logging (Vidal
et al., 2014). In Oaxaca state, biophysical factors such as altitude,
slope, distance to forest, settlements and roads, and social

economic factors such as population pressure, economically
active population, migration, illiteracy, access to health care
services and social marginalization have also been related to
both deforestation and degradation in the tropical dry forest
(Guerra-Martínez et al., 2019), however, a clear distinction was
not made between these two processes.

The objective of this study was to map degraded forest in a
tropical dry forest and identify the most relevant biophysical
and socioeconomic factors that seem to promote or discourage
forest degradation. We focus on the following two specific
objectives: 1) to map degraded forest using forest survey data
and multiple resolution satellite images, and 2) to identify the
most relevant biophysical and socioeconomic factors that are
associated with forest degradation for a better understanding
of its causes. Providing information on the extension of the
degraded forest, and on biophysical and socioeconomic factors
that are most relevant to forest degradation, can potentially
contribute to forest emission reduction and climate change
mitigation, by directing the efforts towards the identified
factors.

FIGURE 1 | The study area location. The yellow and red dots indicate forest survey plots and the black lines represent the boundaries of the municipalities. The area
of tropical dry forests was delimited by visual interpretation of Landsat images of 2018. The map was projected to UTM 13N WGS84.
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2 STUDY AREA

The study area, the Ayuquila River Basin (ARB), is located in
Jalisco State, Mexico. ARB consists of ten municipalities: Autlán
de Navarro, Unión de Tula, Ejutla, El Limón, El Grullo,
Tuxcacuesco, Tonaya, San Gabriel, y Zapotitlán de
Vadillo (Figure 1). It has an area of approximately 4,114 km2

with a rugged topography. The altitude ranges from 260 to
2,500 m above mean sea level. There are two major soil types:
Eutric regosol and Haplic Feozem (Instituto Nacional de
Estadística, Geografía (INEGI), 2014). The distribution of
vegetation varies with the altitude: in the lower range tropical
dry forests dominate, covering about 24% of ARB, while at higher
altitudes, temperate forests including oak, pine, and mountain
cloud forests can be found, covering about 12% of the Basin area
(Morales-Barquero et al., 2015). In the lower lying areas, the
terrain is mostly flat with slopes ranging from 0° to 7.5°, where
both irrigated agriculture and rainfed agriculture are located,
while on steeper slopes pastureland and shifting cultivation can
be found. Tropical dry forests are used mainly for shifting
cultivation and are predominantly in a degraded
condition (Salinas-Melgoza et al., 2017). The ARB is one of
the “early action areas” in Mexico in its program for
Reduction of Emission from Deforestation and forest

Degradation and forest enhancement (REDD+). There are also
programs of “payment for ecosystem services” being applied
in ARB.

3 MATERIALS AND METHODS

As shown in Figure 2, the methods are composed of the following
major steps: 1) spatial data processing. In this step, satellite images of
both Landsat-8 and Sentinel-2 were obtained and based on which,
various spectral indices and texture metrics were calculated; 2) field
data measurement. In this step, the obtained field sampling data
were processed and compared; 3) forest attributes mapping, and 4)
degraded forest mapping and biophysical and socio-economic
variables identification. In these two steps, forest attributes data
were mapped using regression models and degraded forest was
characterized based on maps of forest attributes and field
measurement data. The most relevant biophysical and socio-
economic factors to degraded forest were also identified.

3.1 Field Data Sampling and Forest Survey
Data Collection
The field data were collected from 28 May to 5 June 2019, which
corresponds to the end of the dry season and the beginning of the

FIGURE 2 | Diagram of the general methodology.
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rainy season. Affected by seasonality, tropical dry forests lose
most of their leaves during the dry season, and they respond
rapidly to the onset of the rainy season with fast greening. The
location of the sample plots was decided by visually analyzing
Landsat time series images from 2016 to 2018, together with high
spatial resolution images from Google Earth. Initially, 60
locations in tropical dry forest were selected including both
degraded and conserved forest with 30 points for each type of
forest. Degraded forest locations were defined as areas that
showed visible changes in the image texture while conserved
forest showed no change. Later, these points were adjusted with
expert knowledge regarding accessibility and safety as well as
forest conditions. The final data included 41 sampling plots, with
23 plots of conserved forest and 18 plots of degraded forest.

Each sampling plot covers a circular area of 500 m2, divided
into a central area of 30 m2, in which all trees with a diameter at
breast height (DBH, breast height = 1.30 m) above 2.5 cm were
measured, and a peripheral part in which only those trees with a
DBH above 5 cm were measured. For each sampled tree, its
canopy height, DBH and the number of branches were
registered. Additionally, the percentage of canopy cover of
each plot was measured using a concave spherical ground
densiometer. Afterward, each plot’s mean canopy height was
calculated as the average of the individual tree heights within the
plot, while basal area and the number of branches corresponded
to the sum of the individual measures. In turn, density of trees was
calculated based on the number of trees registered for each plot.
The aboveground biomass (AGB) for each tree was calculated
using an allometric equation (Eq. 1) developed for tropical dry
forest in the coastal area of Biosphere Reserve Chamela-
Cuixmala, Jalisco (Martinez-Yrizar et al., 1992) which is about
60 km away from the study area.

log10 AGB � A + log10BA (1)
In which log10 is the logarithm (base 10), AGB stands for

aboveground biomass in Kg, A is a constant (−0.5352), and BA is
the basal area in cm2 of each sampled tree. Then, the individual
AGB for each tree were summed to obtain the AGB by plot.
Finally, all the forest attributes affected by area (i.e., basal area,
AGB, number of branches, density of trees and density of
branches) were extrapolated to 1 ha. Thus, the TDF attributes
for each plot consisted of canopy cover (%), canopy height (m),
basal area (m2/ha), AGB (Mg/ha), density of branches (№/ha),
and density of trees (№/ha).

3.2 Remote Sensing Data
Remote sensing data come from two sensors, Landsat-8 and
Sentinel-2. Landsat-8 (L8) OLI from collection level-1 was
obtained from NASA Earth Explorer (www.earthexplorer.com)
with acquisition dates ranging from 01May 2019, to 29 July 2019,
covering both dry and rainy seasons, which also corresponding to
the timing of the field sampling data. This level-1 product was
already geometrically corrected and orthorectified with a digital
elevation model to correct for topography effects. It was also
radiometrically calibrated at the top of the atmosphere level and
therefore, we applied the Dark Object Subtraction method

(Chavez 1986) to obtain the image at surface reflectance level.
Sentinel-2 (S2) images with ates ranging from 18 April 2019 to 02
June 2019, at level 2A were also obtained. Level 2A products
consist of geometrically and atmospherically corrected images at
surface reflectance level, thus, no further correction was needed.
The spectral bands of S2 images come with a spatial resolution of
10, 20, and 60 m and we only used the three visible bands and one
near infrared band that have a spatial resolution of 10 m. The
images from April and May were classified as data of the dry
season, while the ones from June and July, as data of the rainy
season. The selected Landsat-8 and Sentinel-2 images were
acquired on different dates because we prioritized those with
less cloud cover. Nevertheless, the difference in the date of
acquisition was less than 2 months. Landsat images in the
acquisition dates were cloud free and we created cloud masks
using QA60 band for Sentinel-2 images. The atmospheric
correction was carried out in QGIS (QGIS development team,
2019) and the cloud masks were obtained from Google Earth
Engine (Gorelick et al., 2017).

3.2.1 Spectral Indices
To map forest attributes and to characterize area of degraded
forest, we calculated spectral indices of the Normalized Difference
Vegetation Index (NDVI), and Soil-adjusted vegetation index
(SAVI) from the near infrared (NIR) and red (RED) bands of
both L8 and S2 images in both dry and rainy seasons (Eqs 2, 3).

NDVI � (NIR − RED)
(NIR + RED), (2)

SAVI � (NIR − RED)
(NIR + RED + L) (1 + L), (3)

where the RED and NIR are band 4 (0.630–0.680 µm) and band 5
(0.845–0.885 µm), respectively, of L8 OLI, and band 4
(0.65–0.68 µm) and band 8 (0.78–0.90 µm), respectively, of S2.
L is a constant for adjusting influences from soil brightness, here
we adopted the value of 0.5 for intermediate vegetation density
(Huete, 1988).

In addition, for each Landsat and Sentinel image, we applied
the Tasseled Cap (TC) transformation which reduces the
dimensionality of the optical sensor’s spectral bands into three
orthogonal indices of brightness, greenness, and wetness,
calculated as weighted sums of the spectral bands. The design
of the TC transformation specifically emphasizes inherent data
structures that capture key physical properties of vegetated
systems that can be compared both within and across scenes
(Crist and Kauth 1986). TC brightness generally captures
variation in overall reflectance; TC greenness captures
variability in green vegetation, and it is a contrast of near
infrared band and the visible bands; and TC wetness responds
to a combination of moisture conditions and vegetation structure,
and it is contrast of short-wave infrared bands with the other
spectral bands (Cohen and Spies, 1992). We calculated these TC
indices for each pixel using the band weightings provided by Baig
et al. (2014) for L8 bands and for the bands of S2 images we used
the weights given by Henrich et al. (2012). Finally, we computed a
disturbance index (DI, Eq. 4), which is a linear combination of the
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components from a Tasseled Cap transformation of brightness,
greenness and wetness (Healey et al., 2005).

DI � Br − (Gr +Wr) (4)
where Br for brightness, Gr for greenness andWr for wetness are
rescaled Tasseled Cap transformations from 0 to 1.

3.2.2 Texture Data
Since texture metrics such as GLCM are important to map
forest attributes and characterize degraded forest, we also
calculated six texture metrics from the NIR and RED bands of
the L8 and S2 images of both dry and rainy seasons with the
method of Gray Level Co-occurrence Matrix (GLCM)
including mean, variance, entropy, dissimilarity,
homogeneity, and contrast (Haralick et al., 1973; Haralick
1979). These metrics were calculated using 64 levels of gray,
an offset = 1 pixel and averaging the values in the four
possible directions (0°, 90°, 180°, and 270°) with a window
size of 3 by 3.

3.2.3 Image Variables Extraction and Selection
We used regression model to map forest attributes and
characterize degraded forest. To extract spectral variables for
each sample plot, first, we created a buffer area with a radius of
12.6 m around the center of each plot to cover the sampling area,
and then we extracted the pixels of the spectral variables that
intersected with this area. We calculated the mean values for the
areas where there were multiple pixels in one buffer area. For the
regression model, we obtained 12 spectral indices resulting from a
combination of the three spectral indices (NDVI, SAVI, and DI),
the two seasons (dry and rainy season), and the two types of
images (L8 and S2). We also obtained 48 texture metrics from a
combination of the six GLCM texture metrics, the two seasons
(dry and rainy season), the two images (L8 and S2) and the two
spectral bands (NIR and R). Additionally, we obtained one slope
variable from a Digital Elevation Model with 15 m spatial
resolution.

3.3 Forest Structural Attributes Modeling
We used multiple linear regression (MLR) by ordinary least
squares (OLS) to find out which image variables can help
predict forest structural attributes as measured in the ground-
level forest survey. The response variables in the regression model
are canopy cover, canopy height, and AGB. The explanatory
variables include the above mentioned 12 spectral indices, 48
texture metrics, and one slope variable. We excluded the
explanatory variables that are highly intercorrelated and
included only variables that have an inter-correlation
coefficient (Pearson) lower than 0.8.

Because we have a reduced number of plots, we limited the
number of explanatory variables in the MLR to three. The MLR
models include from one to three explanatory variables without
interaction (Eqs 5–7) and one model that includes two
explanatory variables and their interaction (Eq. 8).

y � b0 + b1x1, (5)

Model with one explanatory variable. y is the response
variable, x1 is the explanatory variable, b1 is the slope
coefficient, and b0 is the y intercept when x = 0.

y � b0 + b1x1 + b2x2, (6)
Model with two explanatory variables. y is the response

variable, x1, x2 are the explanatory variables, b1 is the slope
coefficient, and b0 is the y intercept when x = 0.

y � b0 + b1x1 + b2x2 + b3x3, (7)
Model with three explanatory variables. y is the response

variable, x1, x2, x3 are the explanatory variables, b1 is the slope
coefficient, and b0 is the y intercept when x = 0.

y � b0 + b1x1 + b2x2 + b3x1x2, (8)
Model with two explanatory variables and their interaction.

where y is the response variable, b0 is the y intercept when x =
0, x1, x2 are explanatory variables and b1, b2, b3 are slope
coefficients for each explanatory variable and for the
interaction of the two explanatory variables, x1x2 (Eq. 8).

]We fitted the regression models to three forest types: 1) all-
forest, that is, including both degraded and conserved forest
samples; 2) degraded forest, and 3) conserved forest. After
eliminating highly correlated explanatory variables, 23
variables were used for all-forest models, and 20 variables
for each of the conserved and degraded forest models. The
model performance was determined by its coefficient of
determination (R2) and the corrected Akaike Information
Criteria (AICc). A better model is characterized by a higher
R2 and a lower AICc. When comparing models with the same
independent variables, the one with higher R2 was chosen as
the best, while comparing models with a different number of
parameters, the one with lower AICc was chosen as the best. If
two or more models showed an AICc difference of less than 2
units, the simplest model (with fewer variables) was chosen as
the best (Burnham and Anderson 2002). We used “leave-one-
out” cross validation to validate the model. This method
generates a set of validation data by randomly leaving out
one sample of the dataset.

3.3.1 Mapping Forest Degradation
A previous analysis using the same field survey data showed
that only three forest structure attributes (canopy cover,
canopy height, and AGB) were significantly different
between degraded and conserved forest, by a Wilcoxon test
(Table 1; Gao et al., 2020b). Thus, only the best models of
these three attributes were used to construct the maps of
degraded forest. We classified TDF into degraded and
conserved forest using thresholds of forest attributes defined
by a logistic regression in the above-mentioned study,
achieving an overall accuracy of 72.22%–80.56% (Gao et al.,
2020b). For AGB, the threshold is 27.5 Mg/ha, for canopy
cover it is 90.9% and for canopy height it is 5.3 m (Gao
et al., 2020b).

As mentioned, there were three models by forest type,
i.e., all-forest, conserved and degraded forest. We first
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classified the attribute maps into binary images, where class
one represented the attribute values below the thresholds
(i.e., degraded forest), and class zero, the attribute values
above the thresholds (i.e., conserved forest). Then, we
summed the three maps and defined the final degraded
forest area as that showing the three attributes in a
degraded condition. After visually inspecting these results,
we considered that the degraded forest model best depicted
the actual forest conditions in the study area, and it was chosen
to map the degraded forest. A forest mask made by visual
interpretation using Landsat-8 images of 2018 was applied to
exclude areas that did not correspond to TDF. We
computed the area of degraded forest and calculated the
ratio of degraded forest to the total area of TDF in each
municipality.

3.4 Biophysical and Socioeconomic
Variables Associated With Forest
Degradation
After obtaining the degraded forest maps, we compiled several
biophysical and socioeconomic variables that could help explain
the percentage of degraded forest by municipality. We
considered three biophysical variables including distance
from settlements to forest (dist-TDF-settlements), distance
from roads to forest (dist-TDF-roads), and slope. The first
two variables were calculated using human settlements and
road layers obtained from the Mexican National Institute of
Statistics and Geography (Instituto Nacional de Estadística,
Geografía (INEGI), 2016; Instituto Nacional de Estadística,
Geografía (INEGI), 2021). Both dist-TDF-settlements and
dist-TDF-roads were calculated based on the nearest linear
distance from each settlement or road to the boundary of
TDF, and they were averaged by each municipality. Slope
was obtained in degrees from a digital elevation model with a
15-m resolution and also averaged by municipality. Based on
previous studies, we hypothesized that municipalities with forest
closer to roads and settlements and with lower slope should have
a higher percentage of degraded forests, since they were more
accessible (Morales-Barquero et al., 2015; Borrego and Skutsch
2019; Guerra-Martínez et al., 2019).

For socio-economic variables, we considered the land tenure
within each municipality, expressed as the percentage of land that
is under the social ownership (ejido property), according to the

National Agrary Record (Registro Agrario Nacional (RAN),
2022). We also considered the percentage of parceled and
communal-use lands, since ejido property is composed of
both. The spatial distribution of ejido, parceled land and
communal-use areas within municipalities is presented in
Supplementary Figure S1. We also considered a poverty
index (Consejo Nacional de Población (CONAPO), 2020) with
higher values corresponding to greater poverty. The demographic
data of each municipality (Instituto Nacional de Estadística,
Geografía (INEGI), 2020) and production data of both crop
agriculture and cattle ranching were also included. We
computed the agricultural and livestock production in units of
Mg per ha averaged between 2017 and 2019 with the data
extracted from the department of agriculture and rural
development (SIAP, 2022). We also included the data on
firewood consumption at the municipal level in 2008 (Pacheco
et al., 2008). Although this data is not up to date, we believe that
firewood use has not changed significantly in the intervening
period. Based on previous studies, we expected that
municipalities with a higher percentage of land under social
ownership, less poverty, less population, less agriculture, and
cattle production, as well as less firewood consumption, should
correspond to those with less percentage of degraded
forest (Morales-Barquero et al., 2015; Borrego and Skutsch
2019; Guerra-Martínez et al., 2019). The complete biophysical
and socio-economic variables were listed in Supplementary
Table S1.

3.5 Forest Degradation Models
We used multiple linear regression (see Section 3.3) to identify
the most relevant biophysical and socio-economic factors that are
associated with forest degradation at municipality level (see
Section 3.3.1). In these models, the percentage of degraded
forest with respect to the total forest area was the dependent
variable, while the three biophysical and eleven socioeconomic
variables were used as independent variables. To eliminate highly
inter-correlated independent variables, we removed the variables
that had a Pearson correlation coefficient above 0.8. After this
procedure, two biophysical variables (distance to settlements and
slope) and nine socioeconomic variables (percentage of
municipality under parceled land regime, percentage of
municipality under communal-use ownership, poverty index,
fuelwood consumption, temporal agriculture production,
irrigated agriculture production, percentage of forest under

TABLE 1 | Summary of forest structural variables in conserved and degraded forest obtained from field measurements during the dry season.

Forest
structural
variables

Conserved forest (n = 24) Degraded forest (n = 17) Wilcoxon
test

Max Min Mean SD Med Max Min Mean SD Med p-value

Canopy cover (%) 100 83.9 96.2 3.5 97 100 16 69.4 24.7 74.3 4.603e-06
Canopy height (m) 7.7 3.7 5.8 1.1 5.64 7.3 2.6 4.7 1.2 4.74 0.001
Basal area (m2/ha) 21.47 4.95 11.64 4.0 11.9 19.87 2.69 7.37 4.37 5.87 0.0006
AGB (Mg/ha) 62.5 14.4 33.9 11.6 34.6 57.8 7.8 21.5 12.7 17.1 0.0006
Density of branches (>2.5 cm) (№/ha) 2020 480 1,300 438.6 1,300 2,560 540 1,453 539.6 1,400 0.302
Density of trees (№/ha) 1,240 220 738.3 240.5 720 1,420 220 687.1 370.7 580 0.368

Max., Min., Mean, SD, and Med. represent maximum, minimum, mean, standard deviation and median values of the variables. Modified from: Gao et al. (2020b).
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parceled land regime, percentage of forest under communal-use
ownership) were used as explanatory variables.

The vegetation indices, texture metrics calculation and all
statistical procedures and models were carried out in R (R
Core Team, 2021). The satellite images processing was carried
out in QGIS (QGIS development team, 2019).

4 RESULTS

4.1 Forest Attributes Modeling With Remote
Sensing Data
4.1.1 Best Model Selection
The best models for the three forest attributes that were
significantly different between degraded and conserved
forest, that is, canopy cover, canopy height, and AGB were
selected for the models fitted with the all-forest, conserved
forest, and degraded forest datasets (Table 2). The model
goodness-of-fit (R2) was consistently higher in the degraded
forest model, followed by the conserved forest model, and then
by the all-forest model. In the degraded forest model, the R2

was higher than 0.62 for the three forest attributes, which
means that the spectral variables in these models can explain at
least 62% of the variation in the forest attributes.

4.1.2 Model Validation, Observed vs. Predicted
By “leave-one-out” cross validation (CV), using the model of
degraded forest, the model for AGB had the best CV result (R2

cv
= 0.53), followed by canopy height (R2

cv = 0.46), and then by
canopy cover (R2

cv = 0.36). Using the all-forest model, the
goodness-of-fit from the CV procedure is R2

cv = 0.16 for AGB,

R2
cv = 0.012 for Canopy cover and R2

cv = 0.32 for canopy height.
With the conserved forest model, the canopy height had a
goodness-of-fit of R2

cv = 0.18, canopy cover of R2
cv = 0.17, and

AGB, R2
cv = 0.08. Compared with the degraded forest model,

the all-forest model and the conserved forest model have
reduced their predictive power with a leave-one-out dataset,
with evidently much lower R2

cv values. Furthermore, this
observation gave us an additional reason for selecting the
degraded forest model as the one used in forest degradation
mapping. Using the models presented in Table 2, the forest
attributes were predicted and compared with the observed
attributes (Figure 3). In this figure, one would expect a slope =
1, and R2 = 1 for perfectly fitted models. In addition, among the
constructed models, the ones that showed a better goodness-
of-fit are the degraded forest models.

4.2 Mapping Forest Degradation
We mapped the forest attributes of canopy cover, canopy
height and AGB using the best models of all three model
types (degraded forest model, conserved forest model, and all-
forest model). The maps (Figure 4) indicate that forest area
with value zero has all three attributes in a conserved status;
forest area with value one has one attribute that falls into the
degraded category; areas with value two have two such
attributes, and areas with value three have all three forest
attributes in the degraded category. In the map produced by
the conserved forest model, most of the forest area is in a
conserved state, and there is only 1.86% of forest area in a
degraded category, which is equivalent to 2,348.20 ha. In the
map using all-forest model 15.33% of forest, 19,317.71 ha, is in

TABLE 2 | Best models for all-forest, conserved forest, and degraded forest.

Attributes Var. 1 Var. 2 Var. 3 Intercept Coef. 1 Coef. 2 *Coef.
1 by 2/
Coef. 3

R2 AIC RMSE

All-forest model
Canopy

cover (%)
S2-dry-DI S2-dry-

varianceB8
2.097 0.515 −0.001 −0.004 0.451 −46.11 17.97

Canopy
height (m)

L8-rainy-varianceB4 L8-dry-
varianceB4

0.547 0.034 0.005 −0.001 0.452 −81.89 1.02

AGB (Mg/ha) S2-dry-SAVI S2-dry-DI 2.011 −5.686 1.298 −12.407 0.311 −12.04 12.16
Conserved forest
Canopy

cover (%)
Slope L8-dry-

contrastB5
2.01 −0.001 −0.055 0.002 0.530 −137.48 2.36

Canopy
height (m)

S2-dry-NDVI L8-rainy-
varianceB4

L8-rainy-
contrastB5

0.495 1.604 −0.013 0.008 0.476 −56.89 0.82

AGB (Mg/ha) L8-dry-NDVI L8-rainy-
contrastB5

0.987 2.023 0.176 −0.705 0.375 −21.01 9.06

Degraded forest
Canopy

cover (%)
L8-rainy-
homogeneity-B4

S2-dry-
varianceB8

−2.496 5.360 0.030 −0.038 0.636 −9.703 18.39

Canopy
height (m)

S2-dry-DI L8-dry-entropyB5 0.516 −0.393 0.111 0.276 0.690 −35.15 0.75

AGB (Mg/ha) L8-dry-contrastB4 S2-dry-entropyB8 1.861 −0.696 −0.870 1.074 0.626 −7.09 5.75

The column (*) Coef. 1 by 2/Coef. 3 indicate the slope coefficient for the interaction of two spectral variables, or the coefficient for the third variable for models with three variables. All models
have two variables except canopy height in the conserved forest model. The name of the spectral variables is organized in the sequence of image (L8 or S2), season (dry or rainy), spectral
index or texture with the spectral band based on which it is calculated.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9128738

Jiménez-Rodríguez et al. Forest Degradation and Contributing Factors

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


a degraded category, and in the map produced from the
degraded forest model, degraded forest dominates with
49.91% of the area, covering 62,878 ha. Considering the

history of the intensive use of the tropical dry forest for
shifting cultivation, cattle grazing, and fuelwood collection
in the study area, we adopt the result of the degraded forest

FIGURE 3 | Predicted vs. observed forest attributes with the best models of different datasets. The gray areas show the confidence intervals. (A): all-forest dataset;
(B): conserved forest dataset; (C): degraded forest dataset.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9128739

Jiménez-Rodríguez et al. Forest Degradation and Contributing Factors

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 4 |Maps indicating the sum of the number of structural attributes (canopy cover, canopy height and AGB) below the degraded threshold and produced by
(A) the Conserved Forest model, (B) All-Forest model, and (C) Degraded Forest model, respectively.

TABLE 3 | Best model for degraded forest expressed as the percentage of degraded forests in each municipality.

Attributes Var. 1 Var. 2 Intercept Coef. 1 Coef. 2 Interaction
Coef

R2 AIC RMSE

Degraded TDF (%) dist-TDF-settlements (m) Parceled land-percent (%) 1.976 −0.001 −0.005 1.42e-05 0.959 −44.74 2.22

The model includes two independent variables and its interaction.
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model to study the associated biophysical and socio-economic
factors.

4.3 The Biophysical and Socio-Economic
Variables That Are Associated With Forest
Degradation
The best model to describe the percentage of degraded forest over
the total area of forest by its biophysical and socio-economic
variables is summarized in Table 3.

The percentage of degraded forest in each municipality is best
explained by distance to settlements (dist-TDF-settlements) and
percentage of forest in parceled land, with negative coefficients for
both variables, but a positive coefficient for its interaction
(Table 3). These two variables can explain 95.8% of the
variance in the percentage of degraded forest. According to
this model, the municipalities where the forests are closer to
the settlements have higher percentages of degraded forest, while
municipalities with a higher percentage under parceled land
ownership have a lower percentage of degraded forest.
However, its interaction has a positive coefficient, meaning
that municipalities where the forest is farthest from
settlements and with a higher land tenure under parceled land,
tend to have a higher percentage of degraded forest.

Figure 5 shows the spatialized factors associated with forest
degradation, as well as the remaining forest area. This figure shows
that themunicipalities with the highest percentage of degraded forest
are located in the center of the ARB, while the ones with the largest
remaining tropical dry forest areas can be found in the southern part

of the ARB. Additionally, the municipalities with the lowest
remaining forest cover are El Limón and El Grullo, which are
also the smallest municipalities in the ARB.

5 DISCUSSION

5.1 Mapping Forest Attributes Using
Remote Sensing and Field Inventory Data
Three different types of models were fitted according to the forest
degradation status, i.e., degraded, conserved and both (i.e., all-
forest). However, since each one was constructed with different
subsets of the same data, they differ in the variables included, as
well as in their goodness-of-fit (R2). The higher R2 value shown by
the degraded forest model might be related to the fact that there is
more variation that can be modeled by the image metrics, in
comparison with the conserved forest. For example, previous
studies have reported that models of old-growth forest attributes
often show lower R2 values than models of secondary forests,
which can be considered as forming a gradient of degraded forests
(Eckert, 2012; Gallardo-Cruz et al., 2012; Solórzano et al., 2017).
Additionally, several of these studies created their secondary
forest datasets according to a successional stage gradient,
which ensures that the dataset is heterogeneous and covers a
wide variety of structural attribute values. On the contrary, in the
studies focused on old-growth forests, there is no evident gradient
that can maximize heterogeneity and admittedly, structural
heterogeneity in old-growth forests is far less than that of
secondary forests with different ages of abandonment.

FIGURE 5 | The mapped degraded forest and the two biophysical and socio-economic factors relevant to explain the percentage of degraded forest by
municipality.
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Although at a first glance, the all-forest dataset could represent a
“middle point”model, it showed most of the forest as non-degraded
(value = 2; Figure 3), which we considered did not accurately
represent the forest condition in the ARB. Furthermore, because the
degraded forest models showed higher R2 and RCV

2 values we
considered it a better model to identify degraded forest in the
study area. We suspect that the all-forest models showed lower
goodness-of-fit, in comparison to the degraded forest ones, because
the forest attribute—image variables relationship showed a non-
linear pattern in that dataset. Thus, we chose the degraded forest
model to map the degradation in the ARB. Finally, we could have
classified forest degradation according to each forest attribute
(i.e., AGB, canopy cover and mean height); however, we used a
conservative approach to define degraded forest, that is, degraded
forest was defined as forest with lower values on all three forest
structural variables.

In our work, the DI derived from the Sentinel-2 images, in
combinationwith the Landsat-8 entropymetric had a good response
in detecting canopy height (R2 = 0.69). Both metrics are possibly
complementary, but the DI indicates a good response of degradation
associated with decreasing height. Previously DI has been derived
from coarser spatial resolution images such as Landsat and MODIS
and used for disturbance detection from agriculture and fires (Masek
et al., 2008; Hilker et al., 2009). In this work, Sentinel-2 derived DI
contributed to the model fitting possibly because of its higher spatial
resolution. The use of a combination of images from different
seasons could improve the identification of vegetation
characteristics represented by vegetation structural variables. In
the rainy season, the image variables are mostly associated with
canopy cover characteristics; thus, we expected higher predictive
power from this set of variables. However, the dry season images
turned out to be better explanatory variables for the canopy height
and AGB parameters of the degraded forest dataset. A possible
explanation could be that during the dry season, tropical dry forests
lose most of their foliage, and thus, the images capture reflectances
from branches, trunks and dry leaves or soil (Ferreira and Huete,
2004).

There was a large presence of textural metrics in our models.
These metrics have been shown to explain the variation of structural
attributes in tropical dry forest (Gallardo-Cruz et al., 2012; Barbosa
et al., 2014; Solórzano et al., 2017). Our models showed that the
textural metrics of variance, contrast, entropy, and homogeneity
explained variations in most of the vegetation attributes. Texture
metrics have been shown to be associated with vegetation
homogeneity or heterogeneity characteristics, i.e., in continuous
uniform areas of conserved forest, the contrast between pixel
tones is usually lower. While in disturbed areas, the images will
capture not only canopy characteristics, but also fragments of trunks,
branches and soil that are exposed by vegetation disturbances, which
usually increases the values of textures measuring heterogeneity.

5.2 Mapping Forest Degradation
We estimated that 49.9% of the tropical dry forest in the study
area is degraded, using the criterion of canopy cover less than
90.9%, AGB less than 27.5 Mg/ha and canopy height lower than
5.3 m. Most of these areas were located at the boundaries with
other land use, such as agriculture, where they coincide with the

fragmented forests. At the edges of these fragments, the forests are
usually composed of trees of lower height, smaller basal area and
lower biomass due to an “edge effect” from the mortality of
large trees caused by land clearing for agricultural activity
(Almeida et al., 2019). This effect may also come from the
alteration in the microclimate and therefore, those trees that
do not tolerate the stress of high temperatures and lower
humidity may gradually die (Laurance et al., 2007). In
addition, an activity frequently seen in the field, especially in
degraded forests, is the presence of cattle that graze freely within
the forest, which worsens the situation of the forest’s border areas.
One of the important effects of grazing in forests is the high
mortality of young trees, which reduces tree recruitment and
hinders forest recovery and carbon storage, especially of those
species that have the greatest potential to accumulate
carbon (Chaturvedi et al., 2012). Therefore, constant livestock
activity could be one of the fundamental causes of forest
degradation in this region. In Section 5.4, we will further
elaborate on the effects of cattle grazing as socio-economic
factors for forest degradation.

Previous studies suggested that most of the tropical dry forest
in the study area is in a degraded state (Salinas-Melgoza et al.,
2017), which partially agrees with our findings. However, studies
also showed that the AGB of the tropical dry forests also
corresponds to topography variables by combining
anthropogenic and biophysical factors (Salinas-Melgoza et al.,
2018). Therefore, a limitation in our work is that natural forests
with low AGB, canopy cover, or canopy height were probably
classified as degraded forests. Therefore, we need to consider the
elevation and slope thresholds to refine our degraded forest map,
implying a much larger dataset acquisition. Limited by time and
monetary cost, we opt to leave this for future work. Nevertheless,
verification of our degraded forest maps will still be needed to
assess the precision of the adopted approach.

5.3 Socio-Economic and Biophysical
Factors Associated With Forest
Degradation
The most relevant socio-economic and biophysical variables to
explain the percentage of degraded forest by municipality were
distance to settlements and percentage of land under parceled
land property. Together they explained more than 95% of the
variance in degraded forest by municipality (%). Previous studies
have reported similar findings. For example, Morales-Barquero
et al. (2015) reported that in the same study area, the factors most
related to forest degradation were marginalization, forest area/
population ratio, use of forest as a source of posts, livestock
management and slope. Additionally, Corona-Núñez et al., 2021
found that distance to agricultural areas, settlements and dirt
roads, as well as elevation, are among the factors related to
tropical dry forest biomass reduction in the Mexican Pacific
Coast. In turn, Vaca et al. (2019) found that accessibility
related factors, slope, and land tenure were among the
principal factors explaining deforested areas in Southeast Mexico.

In our study, the variables of distance to settlements, cattle
production and distance to roads were strongly correlated (r >=

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 91287312

Jiménez-Rodríguez et al. Forest Degradation and Contributing Factors

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


0.82), thus, the last two variables were removed from the analysis.
Therefore, we cannot conclude, for example, that cattle
production was not an important factor to explain the
percentage of degraded forest by municipality, but rather that
any one of these three variables might act as explanatory variables
with similar predictive power. In fact, according to the field
observations, cattle production might play an important role
in forest degradation, as well as the distance to roads, as an
indicator of accessibility. In the case of the percentage of parceled
land, the only highly correlated variable was the percentage of
ejido property (r = 0.82), which contains both parceled land and
communal-use land. In this case, we consider that the percentage
of ejido property is a variable with similar predicting power as the
percentage of parceled land and might be a better indicator to
explain the percentage of degraded forest (Supplementary
Figure S2).

5.4 Limitations and Future Work
We focused on testing the explanatory power of biophysical and
socio-economic factors only for the percentage of degraded forest.
However, these factors could be valuable to explain other
unmeasured variables such as percentage of remaining forest
cover which is associated with deforestation in the study area.
This study focused on forest degradation, however, in order to get
a complete picture of forest transformation and the use of forest
resources in the region, the area of transformed forest to
agricultural or pastureland should also be accounted for. For
example, it is interesting that Figure 4 shows that Tuxcacuesco is
the municipality with the highest percentage of degraded forest
and also, the one with the largest extent of remaining forest.
Finally, the same factors that are relevant for forest degradation
could also be related to deforestation in the region.

Admittedly, other biophysical and socio-economic factors
could be important to help explain the percentage of degraded
forests, for example, the number of livestock, the percentage of
inhabitants dedicated to cattle ranching or agricultural activities,
the use of forest for activities such as constructing fences, cattle
grazing, or medicinal plants. All these activities contribute to
forest degradation; however, the data was either not updated or
not available at municipal level.

Due to logistics and accessibility constraints, we did not cover
all important forest sampling sites during field surveys, which
might affect the modeling result of forest status. On the other
hand, the modeling of forest attributes could be limited by the
spatial resolution of satellite images. We used images with spatial
resolution of up to 10 m, but degradation could occur in smaller
areas. To have more precise information on the level of
degradation and forest status, it is important to consider
images with higher spatial resolutions.

In addition, the forest structural information can be better
captured by L- or P-band SAR, airborne LiDAR or GEDI data
(Dupuis et al., 2020). With these last considerations, it would be
possible to include information on canopy height or branch density
in the models. The incorporation of auxiliary variables such as soil
erosion, soil moisture, management history, among others, can be
used to characterize degraded forest. This, together with higher
resolution satellite images, can better characterize forest conditions.

Uncertainty analysis in biomass estimation with remote
sensing is often hampered by the difficulty in obtaining
reference data. Major error components often include the
sampling error, measurement error for diameter, and
regression error for tree biomass from different allometric
equations (Phillips et al., 2000). When remote sensing data is
used, the error sources can extend to data processing techniques
and input parameters in modeling algorithms (Lu et al., 2012).
Compared with the case study in Lu et al. (2012) which estimated
biomass using Landsat TM and Lidar with the dominant
uncertainty sources in sample plot data and optical sensor
saturation problem, our study integrated the strengths of
multi-sensor data and texture metrics and therefore increased
the confidence in forest biomass estimates.

6 CONCLUSION

We presented an approach to map degraded forests in the
Ayuquila River Basin, Jalisco, Mexico. Our results showed that
49.91% of the remaining forest in the study site was degraded,
covering 62,878 ha. We used a regression model to map forest
structural attributes, including AGB, canopy cover, and canopy
height, with spectral indices and texture metrics derived from
Landsat-8 and Sentinel-2 images. We then identified degraded
forests as those areas that fall under a discrimination threshold
between the degraded and conserved forests. We found that
texture variables were essential in modeling forest attributes,
especially the metrics measured in the dry season when
tropical dry forests lose their leaves. As for the underlying
biophysical and socioeconomic factors associated with forest
degradation, we found that distance from settlements and
parceled land ownership explained the most variation in the
degraded forest by municipalities. Both factors showed a positive
trend with degraded forest. Future studies should evaluate the
precision of our degraded forest map and test which
socioeconomic and biophysical factors explain forest
degradation at a much finer scale. Finally, due to the large
proportion of degraded forests in the study area, we suggest
that future policy interventions are directed towards more
sustainable use of the forests to promote forest conservation.
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