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Microorganisms have evolved to inhabit virtually all environments on the planet,

from oceanic hot-seeps to pipelines transporting crude and refined

hydrocarbons. Often microbial colonization of man-made structures results

in the reduction of their service life requiring preemptive or corrective human

intervention. Microbiologically Influenced Corrosion (MIC) is caused by a set of

intricate bioelectrochemical interactions between a diverse group of

microorganisms and metallic surfaces. The complexity of MIC microbiomes

and their mechanisms as well as the logistics constraints of industrial facilities

are factors to consider when choosing suitable analytical methods for MIC

monitoring. These generally reflect only a partial view of the phenomenon and

in consequence, might lead to ineffective mitigation measures. This paper

acknowledges the discrepancies between the fieldwork for MIC monitoring

and the currently available technological advancements. It also highlights the

most pressing issues that operators have in the field in light of the diversity of the

microbial key players present in corrosive microbiomes. Finally, it compiles and

outlines a strategy for the integration of novel molecular approaches aiming for

a practical and accurate assessment of the microbial threat.
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Introduction

The wide metabolic potential and adaptation capabilities of microorganisms enable

them to colonize virtually any man-made habitat at times with detrimental consequences.

As particular microbes interact with building materials and other constituents, structural,

mechanical and even aesthetic properties are often compromised. Microbiologically

Influenced Corrosion (MIC) is considered to be a significant threat to mechanical

integrity in industries such as water distribution, oil and gas production and

processing, and many others (Guo et al., 2018; Jia et al., 2019; Stamps et al., 2020;

Lavanya, 2021; Lou et al., 2021; Zaidi et al., 2021). The global cost of corrosion in 2015 was
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estimated to be ~2.5 trillion dollars and has been continuously

increasing (Koch et al., 2016; Ma et al., 2020). It has been

calculated that approximately 20% of the cost of all failures

caused by corrosion are consequence of microbial activity

(Maxwell et al., 2004; Fatah et al., 2013; Sachan and Singh,

2020; Lavanya, 2021). Still, analysts argue that many MIC-

related failures remain unreported due to limitations in field

diagnostics and thus the cost of their environmental impact

might also be underestimated (Brauer et al., 2015; Guo et al.,

2018; Inaba et al., 2019; Jia et al., 2019; Liu et al., 2019; Little et al.,

2020; Shi et al., 2020; Stamps et al., 2020; Chatterjee et al., 2021;

Kleinbub et al., 2021; Lou et al., 2021; Omar et al., 2021; Zaidi

et al., 2021).

MIC was first described over 100 years ago (Gaines, 1910).

Since then, numerous studies have been dedicated to unraveling

its microbial, biochemical and electrochemical mechanisms

(Skovhus et al., 2017; Emerson, 2018; Jia et al., 2019; Lekbach

et al., 2021). Although there is still plenty to be discovered, it is

clear that microbes are most deleterious to a system or a process

when attached to metallic surfaces while associated into biofilms.

These are dense aggregations of microorganisms embedded in a

self-produced matrix known as Extracellular Polymeric

Substance (EPS) (Gordon et al., 2017; Procópio, 2019; Omar

et al., 2021). As it is the case with sediments, in multispecies

biofilms groups of physiologically diverse microbes tend to

arrange in a stratified manner according to their redox

preferences (Figure 1) (Beech and Sunner, 2004; Tripathi et al.,

2021). In oxygenated environments, aerobic and facultative

microorganisms tend to be found in the outer layers of the

biofilm, whereas strict anaerobes are preferentially located in

the inner layers where oxygen is absent for the most part. The rate

of exchange of gasses and solutes between the biofilm and its

surroundings is, in part, determined by the composition of the

EPS, but mostly by diffusion or advection, depending on the

dynamics of the system (Brauer et al., 2015; Rossy et al., 2019;

Procópio, 2019; Van den Berg et al., 2021). While growing on

metallic surfaces, biofilms can actively produce corrosive

metabolites, consume directly or indirectly reducing

equivalents (e.g., cathodic electrons), and/or passively generate

concentration cells, thereby inducing or accelerating corrosion

FIGURE 1
Representation of a stratified multispecies biofilm at different stages of development on a corroding metal surface. Most relevant microbial
groups are depicted in an idealized redox zonation from the oxidized outer layers to themore anaerobic inner core. Only themost representative half
reactions are shown.
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processes (Franklin et al., 2015; Dou et al., 2020; Muhammad

et al., 2020; Tripathi et al., 2021).

To reduce the impact of ubiquitous yet aggressive

microorganisms and thereby preserve the mechanical integrity

of their assets, field operators must implement MICmanagement

strategies. The backbone of such strategies relies on the constant

assessment of the microbial threat and thus reliable monitoring

tools are required. Although, there is a wide variety of methods

for microbiome characterization available to laboratory

scientists, the conditions in often remote and complex

industrial facilities limit their transfer to the industry. At the

same time, over the years, several statistical models for predicting

MIC have been developed, although with little integration into

industrial practices (Sooknah et al., 2008; Taleb-Berrouane et al.,

2018; Dawuda et al., 2021). This short review aims to highlight

the ever present gap between research and industry, while

providing field researchers and infrastructure operators with a

short summary of available wet-lab techniques, and their pros

and cons. Finally, it delivers a vision of the importance of

performing field studies using multiple data collection

techniques and compiles a roadmap for an applicable, but

comprehensive and adjustable MIC monitoring strategy.

MIC diagnosis in the field

A wide group of microorganisms can initiate and/or

accelerate corrosion processes. The list includes bacteria,

archaea and, occasionally, fungi, and microalgae. While in the

laboratory these organisms can be monitored using a myriad of

specialized methods, in the industry field operators must find

middle ground between costs, reliability and field applicability

(Pannekens et al., 2019; Shi et al., 2020; Stamps et al., 2020; Lou

et al., 2021; Omar et al., 2021). As a reference, a selection of

methods that have been historically used and others that are

receiving growing attention in the field are summarized in

Figure 2.

Traditionally, the assessment of the microbial threat has been

limited to a handful of methodologies mostly dictated by

international standards (NACE-International, 2014, 2016,

FIGURE 2
Overview of alternatives for monitoring microbial corrosion. (A) Methods based on testing physiological features of potentially corrosive
microbes (B); microscopymethods for evaluating biofilm formation and structure, determination of localizedmetal loss, metallography, etc., and (C)
novel methods based on molecular biology for qualitative and quantitative analysis of corrosive microbiomes.
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2018). These literature prompts the (semi-)quantification of a

selection of microbial groups using principally synthetic culture

media, which detect only a minor portion of the populations

introducing biases to the assessment and the management

programs. Typical industrial standards usually categorize

parameters and integrity threats into severity levels aiming to

preserve infrastructure integrity (Ebrahimi, 2015). These

indicators, known as Key Performance Indicators (KPI), are

not existent in MIC technical standards. That is to say, they

do not suggest maximum tolerable concentrations for potentially

corrosive microorganisms in industrial systems. This lack of KPIs

in the field is not incidental, but rather a consequence of the fact

that thus far it has not been possible to establish a direct

correlation between the type and concentration of

microorganisms neither planktonic nor sessile and MIC

kinetics (Seyeux et al., 2014; Rapp, 2018; Telegdi et al., 2018;

Koerdt, 2021). The former is true for any culture- or molecular-

based method used in the field (Eckert and Skovhus, 2018).

Hence, the detection of potentially aggressive microbes in a

system must be regarded as an indication that the probability

of failure is higher than when microbes are absent. Still, given the

need for microbial KPIs in the praxis, companies internally

define their own, most if not all using culture-based methods.

Once defined by a major company, KPI values often replicate

across the industry and are used to assess the efficacy of

mitigation programs (El-Sherik, 2017). Typical empirical KPIs

used by field operators in the Oil and Gas sector can range

between 1 and 10,000 bacteria per milliliter or cm2, being in most

cases 100 bacteria per ml or cm2 the maximum tolerable

concentration for cultivable sulfate reducers (Al-Shamari et al.,

2013). Yet, ideally, the definition of microbial KPIs should be

made in a case-by-case basis, taking into account trends of the

microbiological, physicochemical and operational context, rather

than adopting a generic figure (NACE-International, 2018).

Understanding this is pivotal since although in the laboratory

multiple reports show microorganisms and even single strains as

direct causes of corrosion, in the field MIC is a complex process

and usually acting along with other (sometimes pre-existing)

corrosion mechanisms such as dissolved gasses, under-deposit

corrosion, crevice corrosion, etc. (Li et al., 2018; Ishii and Wakai,

2020).

MIC biodiversity as source for biases

The broad microbial diversity associated to MIC represents a

challenge for an accurate field diagnosis. Due to the highly

specialized life style of most such microbes, they are either

poorly detected using conventional detection methods or are

out of scope of routine monitoring altogether. In fact, MIC

monitoring has been simplified in such a way that the

phylogeny and taxonomy of corrosion-associated

microorganisms have been set aside and replaced by grouping

them on the basis of physiological traits (Okoro and Amund,

2015; Loto, 2017; Permeh et al., 2017; Skovhus et al., 2017;

Lekbach et al., 2021; Bennet, 2022). Among these are the

Sulfate-Reducing Bacteria (SRB), the most reported corrosion-

related microbes (Supplementary Table S1), known for the

production of the highly toxic and corrosive hydrogen sulfide.

SRB are part of a wider group known as Sulfate-Reducing

Prokaryotes (SRP), a polyphyletic group that encompasses

microorganisms from the domains of Bacteria and Archaea,

and possesses a relatively conserved set of genes that enable

them to perform the dissimilatory reduction of sulfate (Tian

et al., 2017; Enzien et al., 2021). Despite their commonalities, only

a few representatives from bacterial genera such as Desulfovibrio

and Desulfotomaculum are recovered and semi-quantified in

culture media used in the field, compromising the accuracy of

the assessment (Zhang et al., 2016; Li et al., 2017; Tian et al., 2017;

Al-Sultani et al., 2021; Chatterjee et al., 2021). The second most

reported physiological category in corrosion monitoring are the

Acid Producing Bacteria (APB) (Supplementary Table S1) within

what can be regarded as Acid-Producing Prokaryotes (APP). In

general terms, APP includes microorganisms that have the

potential to excrete organic and inorganic acids using

heterotrophic or lithoautotrophic metabolic pathways (Telegdi

et al., 2018). This grouping is much fuzzier than SRP, since there

is not a straightforward match between physiology and a unique

genetic arsenal to produce acids, rendering molecular biology

methods such as qPCR or sequencing approaches of little value

for their detection. Hence, what in the praxis can be classified as

APP or APB is reduced to the microbes detected using complex

growth media supplemented with fermentable substrates (mostly

sugars), as indicators for the potential of the microbiome to

acidify its environment. Most of these substrates are not common

in such habitats, skewing the APP assessment to a portion of

fermenters, not necessarily to the most abundant, nor the most

active (Williamson et al., 2015; Okoro et al., 2016; Salgar-

Chaparro et al., 2020). The use of transcriptomics or

metabolomics approaches for resolving some physiological

features of the microbiomes have shown promising results in

the laboratory; however, their use in routine monitoring is still

challenging (Beech et al., 2014; Bonifay et al., 2017; Wang et al.,

2021).

Beyond SRP and APP, other populations known to play

important roles in metal corrosion in the field include Sulfur-

Oxidizing Prokaryotes (SOP), Iron-Reducing Prokaryotes

(IRP), Iron-Oxidizing Prokaryotes (IOP), Non-SRP Sulfide-

Producing Prokaryotes (SPP) and Methanogenic Archaea

(MA), among others (Figure 1) (Liu et al., 2019; Kleinbub

et al., 2021; Zaidi et al., 2021). In the praxis, monitoring

many microbial groups is unfeasible and therefore it is

important to establish a handful of microbes that can be

routinely monitored, in a sense, acting as proxy for the

overall microbial threat. Although one can argue that in the

last decades such a role has been fulfilled by cultivable SRB and
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APB (Sowards et al., 2014; Okoro and Amund, 2015; Permeh

et al., 2017; Senthilmurugan et al., 2021), the recent

technological advances have brought to light the need to

rethink both the microorganisms being monitored and the

way they are monitored (Mukherjee et al., 2017; Koerdt,

2021; McDaniel et al., 2021; Pilloni et al., 2022).

Biochemical methods for MICmonitoring including culture-

based techniques have been widespread in the industry for

decades; while, culture-independent methods have emerged

just recently as feasible alternatives (Figure 2, Supplementary

Table S2). Electrochemistry has also been suggested to monitor

MIC in the field (Pavanello et al., 2011; Cristiani and Perboni,

2014). However, the existing technical possibilities are typically

limited to relatively clean water systems which is barely the case

in most situations particularly in oil and gas. Electrochemical

techniques can detect corrosion reactions and might in a general

way provide an indication of the onset of a corrosion process.

However, to date electrochemistry cannot distinguish MIC from

abiotic corrosion (Little et al., 2020). In consequence, they need

to be accompanied by biological data to distinguish whether the

process has a biological origin (Little andWagner, 2002), making

them not informative enough for most field industrial conditions.

A literature search from the last 12 years found

52 manuscripts which focused exclusively on the

characterization of the MIC microbiome in industrial samples

(Supplementary Table S1). In 39 of the manuscripts (75%)

molecular biology approaches were used often in combination

with other techniques, whereas in only 5 papers culture media

were used as the sole detection method. This points out the

current level of penetration of state-of-the-art technology in

published cases. In addition, in 96% of the surveyed cases,

SRP were the main focus of analysis (Supplementary Table

S1), being culture media the most prevalent analytical tool for

their detection (29 reports), followed by molecular biology

methods (22). On the other hand, despite being considered

highly significant in MIC, acid producers and methanogens

are mentioned only in 38% of the manuscripts, showing that

even among scientists, there is a tendency to overlook microbes

other than SRP while studying corrosion. Other groups such as

General Heterotrophic Bacteria (GHB) are covered in 15% of the

publications; while others with highly corrosive metabolic

potential, i.e., SOP, IRP, IOP, Thiosulfate-Reducing

Prokaryotes (TRP), and Manganese-Oxidizing Bacteria (MOB)

are analyzed in less than 10% of the reviewed papers. In terms of

sample type, strikingly over 67% of the manuscripts used the

aqueous phase over solids or surface swabs, exhibiting a bias

towards the planktonic component of the microbiomes

(Supplementary Table S1). The remaining 33% of the reports

did evaluate solid samples, though with a scarce 11% of them

concentrated explicitly on the characterization of biofilms.

Unfortunately, this reflects the practices in the field where

most efforts lean towards the analysis of free-living bacteria

(Stevenson et al., 2011; Enzien et al., 2021), even though it is

well known that MIC is mostly a consequence of biofilm

formation (Figure 1) (Loto, 2017; Verderosa et al., 2019;

Lekbach et al., 2021).

Assembling a roadmap for MIC field
monitoring

Monitoring variables that require specific technology and

training is challenging in most industrial settings (Skovhus et al.,

2017). This is particularly true for infrastructure prone to MIC

such as hydrocarbon-producing and -processing facilities, which

are commonly located in remote regions. Adding another layer of

complexity are essential aspects such as the representativeness of

the sample, the collection and preservation methods, the

techniques used for microbiome characterization, and the

correlation with other relevant variables (e.g., history of MIC

failures and the physicochemistry of the work matrix) (Albahri

et al., 2021; Chatterjee et al., 2021; Jack, 2021). The introduction

of biases at any stage of the process can lead to the over- or

underestimation of MIC (Papavinasam, 2014; Rodrigues and

Akid, 2014; Liduino et al., 2019; Salgar-Chaparro et al., 2020). To

avoid this, a strategy for MIC management containing the three

major elements can be implemented: 1) the construction of an

informative baseline of microbiological information at several

stages of the production process, 2) the design and

implementation of MIC monitoring routines and 3) eventually

the application of mitigation plans. Figure 3 summarizes some

key aspects that in this regard are commonly suggested by both

industry standards and scientific literature.

As technology becomes ever more available, an ideal baseline

characterization of the biological threat should contain a

qualitative and a quantitative assessment of the planktonic and

sessile populations using New Generation Sequencing techniques

and quantitative PCR, respectively. The former refers to the use of

tools such as shotgun metagenomics, metatranscriptomics or 16S

rRNA-basedmetagenomics, also referred to asmetataxonomics, to

qualitatively analyze microbial community compositions

(Marchesi and Ravel, 2015; Pal et al., 2019; Krohn et al., 2021;

McDaniel et al., 2021). Since unlike microbial cultures such

molecular biology methods do not rely on microbial growth

but rather on the detection of microbial components or

products, they can reflect more accurately the composition of

field microbiomes (Larsen et al., 2013; Eckert and Skovhus, 2018).

In the praxis, metataxonomics is most convenient to industrial

applications, due to its lower complexity and costs. However, in

order to reduce biases while using it the PCR primers for 16S rRNA

amplification must be carefully picked. A widely accepted and

cost-efficient option for surveying total prokaryotes (Bacteria and

Archaea) in a single sequencing run implies the use of universal

PCR primers such as those recommended by the Earth

Microbiome Project (Gittel et al., 2014; Apprill et al., 2015;

Parada et al., 2016; Caporaso et al., 2018; Wasimuddin et al.,
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FIGURE 3
Suggested roadmap for field MIC monitoring.
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2020; Skipper et al., 2022). The steady reduction in sequencing

costs and constant improvement in sequencing chemistries

facilitate the outsourcing of the technology, being the data

processing the highest constrain for their implementation

(Supplementary Table S2). Recently, the portability and

evolving read accuracy of nanopore technology presents itself as

a compelling alternative for industrial applications (Feng et al.,

2015; Grottoli et al., 2020). To facilitate data interpretation and

integration with historical and monitoring records, the relative

abundances of bacterial and archaeal taxa obtained after

sequencing can be organized into clusters based on their

predicted metabolic activity relevant to corrosion e.g., sulfate

reducers, methanogens, iron reducers/oxidizers, etc. In terms of

absolute quantification by qPCR, the use of the same nucleic acids

extraction protocols and 16S primer pairs used for sequencing is

recommended for consistency and bias reduction. A more robust

characterization can include the use of functional marker genes for

additional quantification of discrete physiological groups such as

sulfate reducers (apsA, dsrA genes) and methanogenic archaea

(mcrA) (Ben-Dov et al., 2007; Schippers and Blazejak, 2011;

McKay et al., 2017; Senthilmurugan et al., 2021). The

integration of relative and absolute abundances of the different

taxonomic levels and physiological groups allows to identify and

pinpoint the most relevant populations targeted for mitigation

plans as well as for routine monitoring. The use of RNA-based

methods such as metatranscriptomics and RT-qPCR have also

shown to be useful for discriminating the active portions of the

microbiomes during MIC monitoring, although implying more

meticulous sample handling and processing (Carvalhais et al.,

2012; Thomsen and Oehler, 2018; Shakya et al., 2019). These

are particularly advantageous where population dynamics are

being examined, for example measuring the efficacy of biocide

treatment. Additional omics technologies, such as metabolomics

or metaproteomics, might also be used to complement baseline

generation or when a deeper understanding is desired or needed,

e.g., during failure analysis, clogging, or product contamination.

(Brauer et al., 2015; Beale et al., 2016; Bonifay et al., 2017; Gutleben

et al., 2018; Little et al., 2020; Procopio, 2020; Kumar et al., 2021;

McDaniel et al., 2021; Harik et al., 2022; Malik et al., 2022). This

baseline generation can be implemented as a cycle, where the

metagenomic characterization is iterated for instance every

6 months to 2 years, according to the dynamics of each system.

The latter in order to monitor whether major changes in the

microbiomes have emerged. If so, adjustments in the monitoring

and mitigation plans can be implemented accordingly.

Once the microbiomes have been profiled, a less generic MIC

monitoring strategy can be tailored for each particular system

(Figure 2, Supplementary Table S3). For instance, the detection of

microbial agents in sampling sites showing hardly to non-

cultivable microorganisms such as sulfate reducing or

methanogenic archaea should involve the use of universal and

locus-specific qPCR or RT-qPCR (Figure 3). However, whenever

inconvenient due to logistics, budget, location, etc., optimized

conventional methods such as modified culture media can be

an alternative. The modifications may include the use of (biocide-

free) produced water for media preparation, the replacement of

complex organic nitrogen sources for ammonium salts and the

addition of alternative or a mixture of carbon sources, among

others (Ghazy et al., 2011; Zamora, 2012). Although still

introducing biases, the use of rationally modified culture media

can to some extent widen the spectrum of detected microbes. On

the other hand, although the baseline characterization may reveal

that a considerable portion of the microbiomes cannot be

considered corrosive, these can include organisms with biofilm

formation capability (Dou et al., 2021). Hence a sporadic screening

for total prokaryotes or general heterotrophs is recommended,

particularly when biocide treatments are being applied (Figure 3).

As mentioned above, it is essential to monitor both the planktonic

and the sessile portions of the microbiomes. Although less

accessible, the latter can be obtained from deposits, solids from

internal cleaning or surface swabs from corrosion coupons or

probes when handled properly and aseptically (Franklin et al.,

2015; Jia et al., 2019; Marciales et al., 2019).

The generation and fine-tuning of MIC management plans

the results of any MIC monitoring must be confronted with

additional evidence such as the chemistry of the matrix, the

operational conditions of each sampling point, history of

bacterial contamination, the presence of solids, tubercles and/

or pits on metallic surfaces and corrosion coupons, etc.,

(Figure 3). Unluckily, MIC modelling algorithms combining

operational and environmental variables with microbial data

are still to be developed. Until then, the full potential of novel

technologies won’t be exploited in full in the field and operators

will have to continue making decisions based on empirical

concepts (Eckert and Skovhus, 2018; Little et al., 2020).
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