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Whether the Directed Technical
Change Promotes the Improvement of
the Energy Structure in China

Guisheng Hou * and Hongyu Song

College of Economics and Management, Shandong University of Science and Technology, Qingdao, China

Optimizing energy structure is necessary to achieve full decarbonization. In this study, we
introduced thermal power, clean energy, and traditional fossil energy as three different
input factors into the translog production function. We considered three improvement
paths of the energy structure, including replacing fossil energy with electricity and using
thermal power to substitute for clean energy and then analyzed whether the directed
technological change promotes the optimization of the energy structure in China. The
results show that there is a substitution relationship between thermal power and clean
energy during the internal transition process, and the biased technical change is thermal
power-using, which suggests that technological change is not conducive to the
improvement of electricity structure from thermal power to clean energy. In external
transition, the biased technical change is fossil energy-using instead of thermal power-
using or clean power-using, and there is a substitution relationship among three factors,
which shows that technical change goes against the improvement of energy structure from
fossil energy to electricity. We propose that the Chinese governments adopt energy price
or carbon tax measures to adjust the directed technical change and thus optimize the
energy structure. In addition, according to the results from China, different countries can
improve the energy structure based on their characteristic production mode.

Keywords: energy structure, economic growth, ridge regression, directed technical change, substitution elasticity

INTRODUCTION

Since the reform and opening up, while China’s economy has been growing rapidly, the problems of
environmental pollution and energy depletion have become more and more serious (Chen et al.,
2022), and the sustainable economic development has become the focus of the Chinese government.
According to the World Energy Statistics Yearbook, China’s fossil energy consumption accounted
for 24.66 percent in 2019, renewable energy for 23.42 percent, and coal for more than 50 percent of
the world total consumption. At present, traditional fossil energy remains the most dependable
energy source in China. Therefore, energy transfer is particularly urgent for the Chinese government.

The Chinese government has realized that previous development models are unsustainable, so the
government is implementing the new ones. At the 75th United Nations General Assembly, President
Xi Jinping announced China’s goal of peaking carbon dioxide emissions by 2030 and achieving
carbon neutrality by 2060. China has become the world’s largest user of clean energy and is further
promoting the revolution in energy structure. Based on its own national conditions, the
Revolutionary Strategy for Energy Production and Consumption (2016-2030) mentioned that
China plans to increase the share of non-fossil energy in primary energy to 20% by 2030 and 50% by
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FIGURE 1 | Boundary definition of internal and external substitution.
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2050. Therefore, the governments’ goals of energy structure
restructuring will be the driving forces for the optimization of
the energy structure.

Technical innovation, technical change, and other
technological progress methods are necessary for optimizing
energy structure. Recently, to promote energy technical
progress, the Chinese government adopted subsidies and
carbon taxes to encourage the technical change of carbon
emission reduction. The total factor productivity is often
adopted to measure China’s technical progress (Chen et al,
2022; Zhong et al, 2022). However, Hicks (1932) considered
that the change of factors relative to price will simulate specific
technical inventions to reduce the use of expensive production
factors. It means after the technical change occurs, the demand
proportion of factors changes and the technical change is biased.
With the economic growth, the path of technical progress is
becoming more complicated, and some scholars proved the
existence of biased technical change (Wang et al,, 2021; Zhu
etal., 2021). After that, more literature paid close attention to the
role of directed technical change in carbon emissions (Liu and Li,
2021; Zhong et al., 2021), and few studies analyzed how directed
technical change affects the improvement of energy structure.

In addition, energy substitution plays a vital role in
improvement of energy structure. However, existing studies
mainly focus on the substitution between energy and non-
energy (Lee, 2005; Yang et al., 2018; Lin and Raza, 2021). For
China, “electricity substitution” is the primary support for
promoting energy structure (Zhou, 2018; Liu and Wang, 2019;
Chen et al., 2020). At present, the task of China’s “electric energy
substitution” requires us to not only effectively use the electric
energy to alter polluting energy consumption methods such as
scattered coal and fuel oil but also vigorously transform the
inefficient generation production mode using clean power to
substitute thermal power. As far as the “electricity substitution” in
the transformation, it includes two goals of “internal electric
substitution” and “external electric substitution.” External
substitution is the orderly transition from primary energy to
secondary energy, while internal electric substitution is the
technological upgrade of clean power to thermal power. The
boundary definition of internal and external electric substitution
is shown in Figure 1. Therefore, this study considered three
structural optimization paths and separately analyzed whether

directed technological change facilitates them. In the transition of
fossil energy to electricity, we consider two transition paths:
replacing traditional fossil energy with thermal power and
clean power. In the internal electric transformation, we
consider the transformation path of using thermal power to
substitute for clean power.

According to the aforementioned analysis, some scholars
measured the biased technical change in China’s different
industries. However, most studies considered the technical
change bias between energy and non-energy. We innovatively
investigated the technical change bias between electric energy and
fossil energy as well as thermal power and clean power from the
perspective of electricity substitution. Moreover, most of the
existing literature focused on the role of technical change in
carbon emissions. Few studies explored the impact of directed
technical change on optimizing energy structure.

Compared to the existing studies, there are mainly three
aspects of contribution in this study. First, we considered the
technical change bias among clean power, thermal power, and
fossil energy. We calculated the biased technical change in
interfuel energy by providing a novel perspective from
electricity substitution. Second, we explored the impact of
technical change bias on the improvement of energy structure.
This work broadened the field of research as existing studies focus
more on the role of biased technical change in the economy.
Finally, the substitution elasticities among fossil energy, thermal
power generation, and clean energy are calculated. This work
provided a comprehensive perspective to understand the
relationship between directed technical change and the
improvement of energy structure.

LITERATURE REVIEW

Energy structure optimization is considered to be necessary for
full decarbonization. The feasibility of energy structure
optimization depends on the substitutability between different
energy sources. The substitution relationships between energy
and non-energy have been investigated by some studies. In
China’s steel industry, Smyth et al. (2011) examined the
possibility of inter-factor substitution between capital, energy,
and labor. The results show that the substitution relationship
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exists among capital, energy, and labor. This result suggests that
removing the energy price ceiling reduces energy use and
increases capital use. Shao et al. (2016) analyzed the
improvement path of green transformation in the country’s
industrial sector and found an alternative relationship between
labor and fossil energy. They also show a complementary
relationship between capital and fossil energy. Zha and Zhou,
(2014) proposed a method to analyze the energy and non-energy
substitution elasticity by combining the log production function
and the alternative constant elasticity function. The results show
that there is a substitute relationship between capital-energy and
labor-energy. The empirical findings of two important
conclusions were made by Raurich et al. (2012): first, the
alternative elasticity between capital and labor is greater than
1 in Spain and less than 1 in the United States. Second, the rising
price rise deviates the estimate of this elasticity from 1. Lin and
Liu, (2017) analyzed the factor substitution relationship of energy
in China’s machinery industry, and the results show that
substitution  relationships energy—capital and
energy-labor. The alternative elasticity of the former pair is
about 1.029, and that of the latter pair is about 1.030. This
suggests that it is a better way to increase more capital and
labor than energy will help reduce carbon emissions in China’s
machinery industry. Lin and Raza, (2021) investigated fuel
substitution possibilities in Pakistan’s agriculture sector with
Ridge regression. The results show that labor, capital, and
energy consumption are all substitutes. Yang et al. (2018)
divided energy into two factors of fossil energy and non-fossil
energy and treated them into production functions to analyze the
substitution elasticities of input factors. The results show there is
a substitution relationship in the pair of capital-labor as well as
the pair of labor-fossil energy, but there is a complementary
relationship in the pair of capital-fossil energy. Lee (2005)
explored the potential of substitution in the pair of
sulfur—capital. The substitution elasticities indicate that there is
a high substitutability in the pair of capital-sulfur. Koetse et al.
(2008) investigated the substitution elasticities of capital-energy,
and confirmed that there are opportunities to save energy capital
through energy price regulations.

As the energy shortage becomes an increasingly serious issue,
some studies begin focusing on interfuel substitution. For
example, Bello et al. (2018) used Ridge regression to analyze
alternative resilience between different energy in Malaysia and
found that hydropower is a substitution for other fossil energy,
suggesting a cleaner fuel can be transformed in the country’s
power generation. Lin and Abudu, (2020b) analyzed the
alternative possibilities between energy in the Middle East and
North Africa and found that perfect alternatives existed between
renewable and non-renewable energy in the power sector. David
(Ma and Stern, 2016) used cross-price elasticity to analyze the
substitution elasticity between energy sources in China’s
provinces and found a complementary relationship between
coal and electricity, and diesel and electricity, with gasoline
and diesel as alternative relationships. Lin and Atsagli, (2017)
analyzed the possibility of technical changes and energy
substitution between oil, coal, and electricity in South Africa
and found that all inputs were alternatives. This alternative

exist in

Directed Technical Change

relationship suggests that removing all price caps and
subsidies for oil would reduce the demand for oil. An input
distance function was applied by Xie et al. (2017) to measure the
substitution between non-fossil energy and fossil energy in China.
The results confirmed the potential substitution between them.
Considering the increasing cost of fossil energy and the limited
resources in China, Zhou and Zhang, (2010) supported the
substitution between non-fossil energy and fossil energy. Lee
and Jin, (2012) utilized the input distance function to examine the
possible substitution between thermal capital and nuclear capital.
The results show that nuclear capital can be used to substitute
thermal capital in the Korean electric power industry. Li and Lin,
(2016) investigated substitutability among electricity, coal, and
oil. They found there are substitutions among these three input
factors, and the elasticity values indicate the existence of inelastic
substitution. Furthermore, Mohammadi et al. (2022) applied the
LMDI method to decompose the energy intensity changes. The
results showed that substituting different types of fuel could not
reduce energy intensity in Iran. The aforementioned literature
analyzes the possibility of energy substitution in inter-fuel energy,
energy, and non-energy.

However, existing studies also ignore the relationship between
technological progress bias and energy transformation. Hicks
(1932) divided technical change into three categories: when
technological progress is more conducive to improving the
marginal output of i (j), technological progress is called i (j)
bias, while the technical change is called neutral, if the impact of
technological change on the marginal output of i and j is biased.
Many scholars measured China’s technological progress bias. For
example, scholars (Li, 2013; Dong and Chen, 2014; Yao et al,
2014; Li and Li, 2018) analyzed the technical change between
labor and capital and found that the technical is capital-biased.
Xiu et al. (2019) added energy factors into production function,
and the results showed that the technical is energy-biased.

Also, in general, in the external transition, if the order of
production technology is biased to thermal power generation-
using or clean energy-using, manufacturers will be more inclined
to increase thermal power generation or clean energy instead of
fossil energy. Under this circumstance, if there is a substitution
relationship between energy factors, directed technology changes
will help to promote the transformation from fossil energy to
electricity, thus promoting the external transition. In the internal
transition, if production technology is biased toward clean power-
using, then producers will be more inclined to increase the input
of clean power instead of thermal power. If there is an alternative
relationship between clean power and thermal power, this
directed technical change can effectively promote the energy
transition from thermal power to clean energy. Therefore, the
order of directed technical change is the key to determine the
energy transition.

Therefore, in the external transition of electric energy, stimulating
the production technology biased toward thermal power or clean
energy and strengthening the alternative relationship between fossil
energy and secondary energy can effectively promote the external
transformation. In the internal transition, it is a reasonable way to
stimulate the production technology biased to clean power-using
and to strengthen the substitution relationship between thermal
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TABLE 1 | Value of R-square and beta coefficients when k is given as different constants.

K RSQ InC InN InF InR

0.00 0.9999 -5.202 -11.84 15.188 11517
0.05 0.9997 0.2175 0.2336 0.2485 0.2499
0.10 0.9991 0.2131 0.2284 0.2435 0.2450
0.15 0.9980 0.2089 0.2236 0.2386 0.2401
0.20 0.9967 0.2049 0.2192 0.2339 0.2354
0.25 0.9954 0.0770 0.0302 0.0657 0.0716
0.30 0.9948 0.0741 0.0387 0.0661 0.0709
0.35 0.9942 0.0717 0.0455 0.0664 0.0703
0.40 0.9936 0.0698 0.0511 0.0666 0.0698
0.45 0.9931 0.0681 0.0557 0.0668 0.0693
0.50 0.9926 0.0666 0.0595 0.0668 0.0688
0.55 0.9921 0.0654 0.0628 0.0669 0.0684
0.60 0.9916 0.0642 0.0656 0.0669 0.0680
0.65 0.9911 0.0632 0.0680 0.0668 0.0677
0.70 0.9907 0.0623 0.0701 0.0668 0.0673
0.75 0.9902 0.0615 0.0719 0.0667 0.0670
0.80 0.9897 0.0608 0.0735 0.0666 0.0666
0.85 0.9892 0.0601 0.0749 0.0665 0.0663
0.90 0.9887 0.0594 0.0761 0.0664 0.0660
0.95 0.9675 0.0588 0.0772 0.0663 0.0657
1.00 0.9877 0.0583 0.0782 0.0662 0.0654

Directed Technical Change

LnCinN InCInF InCinR InNInF InNInR InFInR
6.1850 -37.40 38.025 17.993 -26.353 139.37
-0.0028 -0.0006 -0.0004 0.0053 0.0057 0.0108
-0.0026 0.0001 0.0004 0.0055 0.0059 0.0115
-0.0021 0.0007 0.0010 0.0058 0.0062 0.0119
-0.0017 0.0011 0.0015 0.0061 0.0066 0.0123
0.0068 0.0068 0.0069 0.0058 0.0065 0.0072
0.0067 0.0066 0.0067 0.0060 0.0066 0.0071
0.0066 0.0064 0.0065 0.0062 0.0067 0.0071
0.0066 0.0063 0.0064 0.0063 0.0068 0.0070
0.0065 0.0062 0.0063 0.0064 0.0068 0.0070
0.0064 0.0061 0.0062 0.0065 0.0069 0.0070
0.0064 0.0061 0.0061 0.0066 0.0069 0.0069
0.0063 0.0060 0.0060 0.0067 0.0069 0.0069
0.0063 0.0059 0.0059 0.0067 0.0069 0.0068
0.0063 0.0059 0.0058 0.0067 0.0070 0.0068
0.0062 0.0058 0.0058 0.0068 0.0070 0.0068
0.0062 0.0058 0.0057 0.0068 0.0070 0.0068
0.0062 0.0057 0.0057 0.0068 0.0070 0.0067
0.0061 0.0057 0.0056 0.0068 0.0070 0.0067
0.0061 0.0056 0.0056 0.0069 0.0070 0.0067
0.0061 0.0056 0.0055 0.0069 0.0070 0.0066

power and clean power. The aforementioned three paths for energy
structure optimization can be promoted through the appropriate use
of policies and pricing. Hicks (1932) believed relative factor price
changes of production were an stimulant for the invention to save
the use of a factor that becomes relatively expensive. Acemoglu
(2002a) and Acemoglu (2002b) pointed out two reasons that can
affect technical change are price effect and endowment effect. In
addition, Luo et al. (2018) analyzed the role of international trade in
technical change by introducing the intermediary factor of price
distortion in China. Based on this, Popp (2002) found that energy
prices have a positive effect on energy-saving and innovative
technologies through data from the US region, arguing that
environmental taxes can encourage the development of new
technologies and thus reduce the cost of controlling pollution.
Osman (Habesoglu et al, 2022) also affirmed that the taxation
revenues have a negative effect on carbon emissions. Kong et al.
(2020) analyzed Chinese manufacturing companies and found that
rising energy prices would require them to positively reflect their
energy conservation efforts and ultimately enhance their energy-
saving innovation. Lin and Chen (2019) analyzed how electricity
prices affect the technology innovation of renewable energy in
different provinces of China. The results showed that higher
electricity prices that mainly include fossil energy would lead to
an increase in renewable energy technology innovation. The
aforementioned analysis shows that energy relative price, carbon
tax, and other policies can affect the order of biased technological
change with different energy sources.

DATA

For the translog production function model, the variables are
selected from the China Statistical Yearbook, China Energy
Statistical Yearbook, and China Power Statistical Yearbook.

Variables mainly include GDP, capital, clean energy, fossil
energy, and thermal power generation. The GDP is converted
to a constant base price in 1997. Fossil energy includes coal, oil,
and natural gas. Clean power includes hydroelectric, wind,
nuclear, and solar power. The unit of the energy variable is
uniformly converted to tce. We calculate the capital stock by
the equation as follows (Shan, 2008):

K, =K, (1-6)+1,, (1)

where K means the capital stock, § is the depreciation rate, and
I; represents the investment. The initial value of capital stock is
obtained as follows:

KO =IO/(g+(§), (2)

where g is the investment growth rate.

METHODS
Model

Electricity and traditional fossil energy can be seen as two input
factors with different features. The electricity can be divided into
clean energy and thermal power generation. Some studies exist on
energy and non-energy about biased technical changes and
elasticity substitution. However, few studies focus on the
biased technical changes and clean elasticities among
interfuels. In order to improve the research on energy
structure, we combine the biased technical change and
elasticity substitution to analyze the transition of internal and
external electric transitions.

For the purpose of estimation, we hope to find a function that
allows us to track the substitution elasticity and directed technical
change bias between Chinese fuel inputs. There are a number of
functions that can help solve the substitution elasticity problem
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between energy inputs, including constant elasticity of substitution
and the popular Cob-Dogglas production functions. The translog
function is adopted because of the estimable and inclusive
advantages. The estimable advantage has two points. First, the
model that is estimated only needs the basic quantity or price
data. Second, the model can estimate scenarios with multiple
elements (n > 2) without any changes. In addition, the inclusive
advantage also has two points. First, it can be regarded as an
approximation to the second-order Taylor expansion. Second,
specific parameters (e.g., output elasticity and alternative elasticity)
can be estimated and tested by actual data without a prior setting
(Hao, 2015). We can use either cost or production function to obtain
the substitution elasticity and biased technical change. The cost
function is not available for all the input prices, so we adopted
production function to estimate the substitution elasticity and the
directed technical change during 1997-2019 in China.

According to Wesseh and Lin, (2016), the translog production
function can be given as follows:

InY, =B+ BInX;+05) Z/i-j InX;InX;, (3
i i j

where Y; indicates the output; X;; and X;; mean various input
factors i and j; and 3, and f;; are estimated coefficients.
Specifically, the production function model includes gross
domestic product (Y), capital (C), traditional fossil energy
(N), and electricity (E). However, the research studies did not
include labor because labor-energy factor substitution is usually
weak according to the literature (Chen et al., 2020). Here, E
represents electricity (E) which is assumed to be weak and

separable. Hence, the electricity can be decomposed into clean
energy (R) and thermal power generation (F). The production
function thus is specified as follows:

InY, =B, +B.InC, + By InN; + Sy InR, + B InF; + B, InC, In N,
+BerInCiInR; + B InCy InF; + B In Ny In R,
+BypIn N, InF; + B In R InF, + 0.5%B.. (InC,)*
+0.5%B (In N,)* + 0.5%B,, (In R)* + 0.5%,, (In F)*.

4)

From Eq. 4, we can gain substitution elasticity of various
factors. The output elasticity of an input factor is as follows:

ay)y diny,
”’t‘M‘d1nxit_ﬁ"+§ﬁ”lnxj" ®

Therefore, for each input energy factors (N), (R), and (F), the
output elasticity is calculated respectively as follows:
_ ay,/y, _dny,
Nt = AN /Ny~ dIn N,
=By +PonInCi + ByrIn R + By InF; + By In Ny, (6)
B ay,/Y, _dnY;
" = 4R, JR, ~ dInR,
=Br +BcrInCi + ByrIn Ny + BppInF, + B InR,,  (7)
_dv,/Y, dhy,
dF;[F, dInFp

=Br+BcpInCy + BypIn Ny + B InCy + Bz InFp. (8)

e

where 7, g, and np, indicate output elasticity of traditional
fossil energy (N), clean power (R), and thermal power (F). Then,
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the substitution elasticity between input factors can be obtained. RD;; = B./n,) - ( /3]_ _ ;71,), (14)

The substitution elasticity of different energy sources is
calculated as:

Sub — [MPﬂ/MP,-,] . (X [Xy) o)
Y Xu /X0 d(MP;, [MP,)|

The substitution elasticity between the factors i and j can be

given as:
-1
_ 1 i
Subs,-j— <1+2< ij—;iﬁii—;j ]]>> . (10)

Specifically, the substitution elasticities between N, R, and F
are as follows:

Subsnr = (1 + 2(/3NR Y - ”—N/sRR)> . D
0N Mr
_ Mk N B
SubsNF = <1 + 2<ﬁNF - _ﬁNN - _/‘;FF>> > (12)
0N Np
_ _NMrp  _1ME -
Subspg = (1 + 2<ﬁFR —PBrr _ﬁRR>> . (13)
Ne Mr

From Eqs 11-13, Subsygr, Subsyr, and Subspg are the
substitution elasticities between fossil energy (F) and clean
power (R), traditional fossil energy (N) and thermal power (F),
and thermal power (F) and clean power (R). A positive Subs;;
means the substitution relationship between the factors, while a
negative Subs;; denotes the complementarity.

Directed Technical Change

The biased directed technical change of input elements can be
computed by output elasticity and parameter estimates of Eq. 4.
To do this, the following formula is adopted:

where RD;; indicates the differences in directed technical change
between input factors i and j; ; and B; represent estimated
coefficients from Eq. 4; and 77; and 7, represent output elasticities.
A positive value for RD;; means the biased technical change is
i-using, and thus in the production process, the producer prefers
to save j, while a negative value for RD;; implies that the directed
technical change is j-using and the producer prefers to save j in
the production process.

MAJOR RESULTS

According to the translog production function we established, a
number of parameters are estimated. The multicollinearity can
be found among the input factors. The OLS method is not
applicable if there exists a multicollinearity problem. Because of
the high correlation between the independent variables, IXTX|
is close to zero. In this case, although the inverse matric of
|XT X| exists and the least-squares estimation of the regression
parameters can be obtained, the variance of the corresponding
estimate will increase as the correlation coefficient increases.
The increased variance also improves the confidence intervals of
parameter estimates, thus decreasing the accuracy of regression
coefficient estimates.

To address the problem of multicollinearity, some studies (Xie and
Hawkes, 2015; Lin and Long, 2016; Xiu et al., 2019; Lin and Abudu,
2020a) estimate the function by ridge regression. The solution is to
include a bias parameter K (K > 0) to the least-squares estimator of the
regression parameters. It is establisbed as: ﬁ(K) = (ry + KI )’1ryx.
It can Abe proved:  E(B(K))= (rxx + KD 'r, and
Cov(B(K), B(K)) = 0 (rex + KI) 1y (rex + KI)™'. Obviously,
when K > 0, /3(K) is a biased estimate of 8 (Wang, 1999), where
K represents the ridge parameter.
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TABLE 2 | Ridge regression with K = 0.35.

Ridge regression with K = 0.35

Directed Technical Change

Multicollinearity R 0.9971

R-square 0.9942

Adj. R-square 0.9841

SE 0.0772

ANOVA table

df SS MS

Regress 14.0000 8.1880 0.585
Residual 8.0000 0.0480 0.006
F-value Sig F
98.0469 0.0000

Variables in the equation

Variable Coefficient SE(B) Beta T VIF
InC 0.0717** 0.0057 0.0963 12.5538 0.0812
InN 0.0455* 0.0194 0.0275 2.3520 0.1893
InR 0.0703** 0.0031 0.0739 23.0433 0.0142
InF 0.0664*** 0.0036 0.0650 18.3479 0.0173
InCinC 0.0057** 0.0005 0.0997 11.3749 0.106
InNInN 0.0041* 0.0016 0.0288 2.5255 0.1797
InRInR 0.0073** 0.0004 0.0775 20.7654 0.0192
InFinF 0.0068*** 0.0003 0.0680 21.8796 0.0133
InCInN 0.0066*** 0.0003 0.0766 22.3325 0.0163
InCInR 0.0065*** 0.0004 0.0888 15.6887 0.0442
InCinF 0.0064*** 0.0003 0.0849 18.6974 0.0285
InNInR 0.0067** 0.0003 0.0610 19.2517 0.0139
InNInF 0.0062*** 0.0006 0.0540 11.0668 0.0329
InFinR 0.0071** 0.0003 0.0730 25.0069 0.0118
Constant 5.3637** 0.2871 0.0000 18.6797

The parameter values of K can be determined based on the
values of the R-square and beta coefficients for ridge regression
(see Table 1), ridge trace of production function (see Figure 2),
and the R-square and K-values (see Figure 3). In this study, the K
value is 0.35. Using SPSS software, the model results were
obtained by calling the “ridge regression. sps” statement.

As is seen from Table 1, the R-square and beta line values of
the ridge regression become stable when k is in the range of
0.3-0.4. When K is between 0.0 and 0.3, Table 1 shows the
unstable beta coefficients of K, N, KN, KF, KR, and NR, with
positive and negative conversion changes with K.

As shown in Figure 1, the ridge trace becomes fairly stable
when K reached around 0.35, consistent with previous
conclusions. Furthermore, the ridge values are also supported
by the variance expansion factor (VIF). The severity of
multicollinearity can be calculated by VIF in some linear
models. Through R language programming, we obtain the VIF
values which are less than 0.2 for all variables at K = 0.35, and we
obtain specific results as shown in Table 2.

Table 1 shows that the results of the ridge regression model are
significant. All the statistical test metrics, including goodness of
fit, standard error, the significance levels of the regression
equations (F and sig values), and the variance table reflect this
as a reasonable model. Furthermore, the value of the VIF reflects
that the ridge regression effectively overcomes the problem of
multicollinearity. All of the regression coefficients were

significant. Both individual variables and cross-term and
square term regression coefficients are positive. The results
correspond with economic reality, indicating increasing
returns for all inputs. Thus, the equations of the model can be
written as follows:

LnY, = 5.3637 + 0.0717In C, + 0.045In N, + 0.0703In R, + 0.0664In F,
+0.0057 (In C,)* + 0.0041 (In N,)* + 0.0073 (In R;)* + 0.0068 (In F, )
+0.00661n C; In N, + 0.00651In C; In R, + 0.00641nC, In F,
+0.0067 In N; In R, + 0.0062In N, In F; + 0.0071In F; In R,.

(15)

Interfuel Substitution Elasticities

Subsequently, the alternative elasticity between the internal and
external electric transition is calculated. As mentioned previously,
Subs;j>0(<0) means a substitution (complementary)
relationship between factors i and j. It can be found in
Figure 4 that: 1) the substitution elasticity between each
energy pair is high. The average alternative elasticity between
thermal power and clean power is 0.9740, the alternative elasticity
between fossil energy and thermal power generation is 0.9676,
and the alternative elasticity between fossil energy and clean
power is 0.9703. 2) The substitution elasticity between thermal
power and clean power is the highest, followed by fossil energy
and clean power, and the minimum substitution elasticity
between fossil energy and thermal power. 3) From the overall
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trend, whether it is electric energy internal substitution or electric
energy external substitution, the substitution elasticity between
energy shows a stable rising trend. This shows that the
substitution between internal and external Chinese electric
energy is obviously effective. This alternative trend also
suggests that the reduction of fossil energy use as well as
thermal power use can be obtained by increasing the clean

power use. In addition, the stable substitution relationship
between factors means that the choice of input factors is not
easy to adjust.

Interfuel Directed Technical Change Bias
Then, Figures 5, 6 show the directed technical change bias
between external electric transitions. It can be found that: 1)
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the mode Bias-NF> 0 Bias-NR> 0 indicates that the biased
technological changes are fossil energy-using rather than
thermal-using or clean energy-using nationwide. In fact, Yang
et al. (Lin and Raza, 2021) also found that the technological
change is biased toward fossil energy. 2) From the trend of
technological change, the trend between fossil energy (N) and
thermal power generation (F) is similar to the fossil energy (N)
and clean power (R): the positive technical change value tends to
decrease in the trend, especially after 2007, as it dropped to below
0.144. This suggests that the technical changes between
traditional fossil energy and thermal as well as clean power
generation are gradually shrinking. 3) The directed technical
progress between fossil energy and clean energy is far greater

than that between fossil energy and thermal power generation.
This shows that the Chinese government still needs to reverse the
order of technological changes using some policies between fossil
energy and clean power.

Next, the direct technical change bias between the internal
electric transition is calculated, as shown in Figure 7. The
conclusions are as follows: 1) the technical change bias (Bias-
FR) results for the whole period (1997-2019) are positive, which
means that the technical change is always biased toward thermal
power generation nationwide. This shows that governments still
need to reverse the order of technological change bias by
imposing carbon taxes on thermal power and providing
subsidies for clean energy. 2) The technical bias values of
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thermal power and clean power are fluctuating. Among them,
there is a descendant trend between 2000 and 2007, but the
direction has changed continuously from 2007 to 2019. 3) On the
whole, the biased technological change of the thermal power
generation is in a downward trend, indicating that the biased
technology of the clean energy power generation has a certain
development.

In general, the order of the biased technical change is N > F >
R. Among three factors in production, the first two orders
indicate the producers’ production preference, and the last
factor denotes producers’ relative aversion. We can find from
the biased order that the technical changes are fossil energy-using
and thermal power-using, while technical changes deviate from
clean power. The results indicate that from the national point of
view, China’s producers are more willing to use traditional fossil
energy and thermal power generation instead of using clean
power. This result shows the problems of energy consumption
and environmental pollution increase with the technological
change biased toward fossil energy-using. In addition, it also
means that producers should strengthen the production of clean
energy.

Therefore, the directed technical change is not conducive to
improving energy structure. According to Yang (Habesoglu et al.,
2022), the price effect determines the order of biased technical
change. Therefore, adjusting the relative price between energy
factors can be a method to adjust the order of biased technical
change. For example, the increase of carbon tax or subsidy of
clean power can increase the price of fossil energy or lower the
relative price of clean power, so it can help adjust the order of the
biased technical change.

Improvement Path of Energy Structure

In terms of “internal and external electricity substitution” in the
transformation, external substitution is the transformation from
primary energy to secondary energy, while internal substitution is
the technical increase of clean power to thermal power
generation. Obviously, promoting the internal and external
substitution of electric energy is conducive to reducing the
pollution  emissions caused by high-carbon energy
consumption. Therefore, according to the degree of relative
factor deviation of directional technology change and the
alternative elasticity between pairs of input factors, a path to
promote energy transformation can be proposed.

The optimal production mode should be Bias-FR < 0 and
Subs-FR > 0. It means that the technological changes prefer clean
power-using, and increasing clean power-using will reduce
thermal power-using. However, the production model is Bias-
FR > 0 and Subs-FR > 0, which means that China currently
prefers to use thermal power generation rather than using clean
power, and there is an alternative relationship between clean
power and thermal power. Increasing thermal power use will
reduce clean power use. Therefore, the Chinese government
needs to make more efforts such as providing more green
finance funds (Samour et al., 2022) and imposing carbon taxes
to promote technological changes that favor clean power.

For the electrical energy external substitution, the perfect
production mode should be Bias-NF < 0, Subs-NF > 0 and

Directed Technical Change

Bias-NR < 0, Subs-NR > 0. However, the current production
mode in China is Bias-NF > 0, Subs-NF > 0 and Bias-NR > 0,
Subs-NR > 0. That means China now is inclined to use more fossil
energy than thermal power or clean energy. As a result, the
Chinese governments need to adjust the order of technological
changes between traditional fossil generation and thermal as well
as clean power.

CONCLUSION AND SUGGESTION

Optimizing the internal as well as external substitution is an
essential way for China to improve the energy consumption
structure and realize the green transformation. This study
builds an energy-related production model by the translog
production function, with capital, clean power, thermal power,
and traditional fossil energy as input factors. We also apply Ridge
regression to this model to eliminate multicollinearity.

First of all, at the level of technological change bias, China’s biased
technological change is thermal power-using and deviates from clean
power from the internal transition. Moreover, the deviation trend of
technical variation between clean power and thermal power is quite
stable. This stability shows that it is difficult for the Chinese
government to change the preference of the thermal power
generation factor. From the external transition, China’s technology
changes are more biased toward traditional fossil energy rather than
thermal generation or clean power. In addition, the technical
differences between clean power, traditional fossil energy, and
thermal generation are gradually narrowing.

Second, at the level of substitution elasticity, the substitution
relationship exists among fossil energy, thermal power generation,
and clean power, and it is quite stable. This suggests that increasing
clean power use in the internal transition can reduce the use of
thermal power. In the external transition, fossil energy use can be
reduced by increasing electricity. In addition, the trend of
substitution elasticity is stable upward in internal and external
transition with three pairs, indicating that with the development
of low-carbon energy technology, there is a considerable
replacement space in energy substitution.

Third, due to the unreasonable bias order of technical change
among clean energy, thermal generation, and fossil energy, we
find that the directed technical change is not conducive to
improving energy structure. Therefore, the innovation of
electricity should be paid attention to, which can reduce the
cost of electricity and expand the production scale of electricity.
Although the government has recognized the necessity to
promote clean energy development, the clean energy industry
is still limited. In order to improve the technical level of clean
energy, the governments should take some fiscal and tax policies
to improve the rapid upgrade of the clean energy technical level
and the development of the clean energy industry. For example,
the government can provide financial subsidies and tax policies
for the consumption of new energy vehicles and the production of
photovoltaic enterprises. In the long run, the construction of a
clean energy generation base should be encouraged in clean
energy-rich areas so that the clean energy supply can be
expanded and the electricity structure is optimized.
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