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Here, we report the chemical composition and optical properties of the fine particles
(PM2.5) and water-soluble organic carbon (WSOC) of these particles. Additionally, the
potential sources of WSOC emission were determined through the study on fluorescence
excitation–emission matrix spectra and parallel factor analysis (EEM-PARAFAC). Samples
were collected in an urban site of the Monterrey Metropolitan Area in Mexico during
summer and winter and characterized using attenuated total reflectance-Fourier-transform
infrared spectroscopy (ATR-FTIR), ultraviolet-visible-near infrared-diffuse reflectance
spectroscopy (UV–Vis-NIR-DRS), fluorescence spectroscopy, X-ray photoelectron
spectroscopy (XPS), and X-ray diffraction (XRD) techniques. The ATR-FTIR analyses
allowed the identification of inorganic ions (e.g., CO3

2−, SO4
2−, and NO3

−), organic
functional groups [e.g., carbonyls (C=O), organic hydroxyl (C-OH), carboxylic acid
(COOH)], and aromatic and unsaturated aliphatic hydrocarbons. The results obtained
by XRD and XPS revealed the presence of organic and inorganic chemical species in
PM2.5. The diffuse reflectance spectra of PM2.5 provided the absorption bands in the UV
region for CaSO4, CaCO3, and aluminosilicates. The absorption coefficient at 365 nm
(Abs365) and Ångström absorption exponent (AAE) values obtained for the aqueous
extracts suggest that many of the water-soluble organic compounds corresponded to
brown carbon (BrC) chromophores. The mass absorption efficiency values at 365 nm
(MAE365) were higher in the winter than summer samples, suggesting the presence of
more BrC compounds in the winter samples. The fluorescence indices combined with
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EEM-PARAFAC analysis showed that theWSOC fraction was mainly composed of humic-
like substances (HULIS) which are both of terrestrial and microbial origin.

Keywords: PM2.5, mass absorption efficiency (MAE)., water-soluble organic carbon (WSOC), parallel factor analysis
(PARAFAC), Ångström absorption exponent

1 INTRODUCTION

The extensive atmospheric pollution occurring in large cities as a
result of fast-growing urban and industrial development has caused
an increase in the number of people to be continuously exposed to
low-quality ambient air. Particulatematter (PM) is a common
atmospheric pollutant, which has been widely studied because of
its adverse effects on both the public health and global climate.
Particularly, fine PM (PM2.5) has been considered more dangerous
because it is able to penetrate the deep parts of the human lung.
Indeed, numerous studies have associated the components of PM2.5

to many respiratory (e.g., lung cancer) and cardiovascular diseases.
These components have also been found to cause genetic mutations
in animals (Lippmann et al., 2006; Happo et al., 2010). In addition
to the adverse effects on animal and human health, PM2.5 influences
both local and global climates. Several PM2.5 components have been
shown to cause the dispersion and absorption of light (including
infrared light). These effects on light disturb the radiation balance of
the atmosphere, which may then cause unexpected variations in the
atmospheric heating-cooling cycles (Jacobson, 2004; Huo et al.,
2016; Chen et al., 2019). Our present knowledge related to the
influence of PM2.5 on radiative forcing (change in energy flux in the
atmosphere) and climate change is still limited. Moreover, there are
difficulties associated with the current atmospheric models, which
are used to measure the magnitude of both capture and release of
radiation by PM2.5. For example, different types of aerosols may
exert a large range of contrasting effects on the net cooling or
heating of an atmosphere. This is caused by the high variability of
the PM2.5 properties in the atmospheric aerosols as a function of the
region.

PM2.5 is composed of a wide variety of chemical substances of
both organic and inorganic origin, being carbonaceousmaterial the
component that have attracted the most attention because they
contribute between 10% and 70% of the total mass of PM2.5, with
concentrations found in selected areas ranged from a few pg/m3 to
hundreds of ng/m3 (Tsapakis et al., 2002; Hecobian et al., 2010;
Khare et al., 2011). Black carbon (BC) is the main light-absorbing
carbonaceous material in the range from visible to near infrared
light. However, the fraction of organic carbon (OC) that is often
called “Brown Carbon (BrC)” has also been found to significantly
absorb ultraviolet (UV) and shorter wavelength visible (Vis) light
(Jacobson, 2001; Bond et al., 2004). The contribution of BrC to
climate change is not limited to its impact to the atmosphere due to
its ability and capacity to absorb solar radiation. Recent studies
have shown that BrC has accelerated the melting of snow and
decreased the Earth’s albedo (Andreae and Ramanathan, 2013;
Qian et al., 2015; Yan et al., 2018; Leskinen et al., 2020). Some
researchers have classified OC based on its water solubility, i.e., the
water-soluble organic carbon (WSOC) andwater-insoluble organic
carbon (Kondo et al., 2007; Miyazaki et al., 2009). The analyses of

the optical properties of WSOC have allowed the identification of
its probable emission sources, and thus provided helpful strategies
to control emission. In the literature it has been reported that
WSCOC originate from either primary sources (biomass burning,
fossil fuel combustion) or atmospheric secondary processes,
including gas-to-particle conversion and gas deposition onto the
surface of a PM (Graber and Rudich, 2006; Sullivan and Weber,
2006; Duarte et al., 2007).

The study of the optical properties of atmospheric particles
requires a variety of analytical techniques, including Fourier-
transform infrared (FTIR) and UV–Vis spectroscopy,
fluorescence, mass spectrometry (MS), and chromatography.
Hecobian et al. (2010) characterized the optical properties of the
water-soluble fraction of PM2.5 samples using various analytical
techniques. Their samples were collected in the southeastern
United States throughout different seasons of a year. They found
that the WSOC absorption was higher in the samples obtained
during the cold months. The WSOC content was closely related to
the presence of levoglucosan in the sample, suggesting that biomass
burning was the main source of the emission. Moreover, Chen et al.
(2016a) studied the relationship between the optical properties and
chemical composition of total suspended PM in samples using
FTIR, UV-Vis, fluorescence spectroscopy, electrospray ionization
mass spectrometry (ESI-MS) and high-resolution accurate mass
spectrometry (HR-AMS). They found that the mass absorption
efficiency (MAE) was higher for the less polar organic compounds
in the sample. In addition, the nitrogen and oxygen containing
organic compounds contributed significantly to the total absorption
of light and fluorescence of PM.

TheMonterreyMetropolitan Area (MMA) has been considered
themost polluted city inMexico and one of themost polluted cities
in Latin America (Clean Air Institute, 2012; INECC, 2014). The
elevated emissions in the MMA originate mainly from the high
industrial activity and vehicle traffic. However, studies on the
chemical composition of atmospheric PM and optical properties
of PM2.5 in the MMA have been limited (Mancilla et al., 2015;
Mancilla et al., 2016; Mancilla et al., 2019; González et al., 2016;
González et al., 2017; González et al., 2018; López-Ayala et al., 2019;
Longoria-Rodríguez et al., 2020; Longoria-Rodríguez et al., 2021).
There is also limited information on the absorption response and
light emission of PM2.5 in Mexico after exposure to variable
wavelengths of radiation (Liñán-Abanto et al., 2019; Carmona
et al., 2021). Furthermore, studies on the chemical and optical
characteristics of WSOC in PM2.5 in Mexico and other Latin
American countries have not been done. Therefore, this
research focuses on three main objectives; 1) determine the
chemical composition and optical properties of PM2.5 collected
in the MMA during winter and summer, 2) determine the effect of
seasonal variation on the chemical composition and optical
properties of the PM2.5, and 3) establish possible sources of
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WSOC emissions in MMA by applying the parallel factor analysis
(PARAFAC) model. The analytical techniques including
attenuated total reflection (ATR)-FTIR, UV/VIS-diffuse
reflectance spectroscopy (DRS), fluorescence, x-ray diffraction
(XRD), and x-ray photoelectron spectroscopy (XPS) were used
to determine the optical properties and chemical composition of
the PM2.5 samples.

2 METHODOLOGY

2.1 Sampling of PM2.5
The sampling site was in the northwestern region of the MMA in
Nuevo Leon,Mexico. PM2.5 sampling was performed at the routine
monitoring station of the Integral Environmental Monitoring
System [Sistema Integral de Monitoreo Ambiental (SIMA), the
initials in Spanish] located in the San Bernabé suburb (25° 45’
24.86"N, 100° 21’ 56.95"W, 551 m. a.s.l.) near the Talleres subway
station. This station is surrounded by a highly populated urban
area and located alongside the westward winds, which is coming
from the highest density industrial area ofMMA. In addition, it lies
near a natural reserve Mount del Topo Chico. PM2.5 samples were
collected during July to August 2019 and January to February 2020
following the Method IO-2.1 USEPA method (U.S. EPA.
Environmental Protection Agency Methods, 1999), where
sampling temperature, relative humidity, and atmospheric
pressure conditions were recorded (Table 1). The samples were
collected every 6 days, collecting a total of 8 samples in each period.

A high-volume sampler HiVol 3000 from Ecotech, which was
previously calibrated according to Method IO-2.1 USEPA (U.S.
EPA. Environmental Protection Agency Methods, 1999) was
placed at the SIMA station. PM2.5 samples were collected for
24 h on fiberglass filters (EPM 2000 of 8″ × 10″), with a mean
airflow of 67 m3/h. For the sampling, glass fiber filters were
chosen instead of quartz filters since glass is a material that
does not interfere with the analyzes by the XRD technique. The
mass of a loaded filter was determined using an analytical balance
XS205 dual range fromMettler Toledo under a controlled relative
humidity. The filter was stored at−15°C when not in use.

2.2 Optical Analysis of PM2.5 Samples
2.2.1 ATR-FTIR Analysis
Chemical functional groups present in the PM2.5 were
identified by ATR-FTIR using a Nicolet omnic iS50 FTIR
spectrophotometer from Thermo Fisher Scientific.

Measurements were made in ATR mode using an ATR
Smart Orbit accessory supplied with a diamond crystal. All
spectra were recorded at a resolution of 4 cm−1 over the
spectral range from 4,000 to 400 cm−1. The absorption path
length and total data points were 1 cm and 7,468, respectively.
A scan was performed with the sample placed upside down on
the ATR crystal (diameter = 3 mm). The background
correction was performed by subtracting the absorption
spectrum of the filter without sample from that obtained for
the loaded filters. Samples did not require any pre-treatment
and were analyzed directly on the fiberglass filters. The
resulting set of data with baseline correction was analyzed
using the SpectraGryph 1.2 Spectroscopy software (Menges,
2020).

2.2.2 UV–Vis Absorption Profiles of PM2.5

PM2.5 samples were characterized using the UV–Vis-NIR-DRS
technique. The UV–Vis-NIR-DRS spectra were obtained with an
Agilent Model Cary 5000 spectrometer equipped with an external
integration sphere DRA 2500 from Agilent Technologies. The
analysis was carried out directly on a filter at an area of 0.3 cm2.
The absorption path length was 1 nm. The filter blank was
measured before the analysis. Prior to each measurement,
baseline corrections were performed at both 0% and 100%
transmittance. Samples were analyzed over the range from 200
to 2,500 nm with a resolution of 2 nm, which resulted in 2,301
data points.

2.2.2.1 Analysis of Water-Soluble Organic Carbon Fraction
by UV–Vis
For WSOC fraction extraction, 10% of the total area of a filter
(and filter blanks) was extracted with 30 ml of purified water
in an ultrasonic bath for 15 min. The purified water was
obtained from a Milli-Q system from Merck Millipore
(Burlington, MA, United States). The extraction procedure
was repeated twice. The extract was filtered through a 25-mm
outer diameter polytetrafluoroethylene (PTFE) syringe filter
of 0.22 µm pore size from Tisch Scientific. Approximately
3 ml of the filtered extract (WSOC solution) was placed in a 1-
cm quartz cuvette and scanned from 200 to 800 nm in 1 nm
increments using the Agilent Model Cary 5000. Purified
water was used as both blank reference and baseline
source of data.

The light absorption coefficient (Absλ, Mm−1) was
determined by Eq. 1 (Teich et al., 2017):

Absλ � (Aλ − A700) Vl

Va × L
× ln(10) (1)

where Aλ and A700 corresponded to the absorption of the extracts
at the wavelengths of λ and 700 nm, respectively. Vl was the
volume of the solvent that the sample extract removed from the
filter,Vawas the air volume, and Lwas the absorption path length
(i.e., 1 cm). The light absorption coefficient at 365 nm (Abs365)
was used as the indicator of BrC (Wu et al., 2019; Mo et al., 2021).
Furthermore, the mass absorption efficiency at 365 nm (MAE365,
m2g−1C) was measured. MAE is a parameter that described the

TABLE 1 | Statistical summary of the meteorological variables recorded during
both study periods. SD: Standard deviation.

Meteorological parameter Winter Summer

Average SD Average SD

Pressure (mmHg) 719.7 7.2 708.5 4.1
Relative humidity (%) 59.5 20.6 56.9 16.3
Solar radiation (W/m2) 145.4 222.8 238.9 273.1
Room temperature (°C) 21.1 6.3 35.9 2.9
Wind speed (km/h) 8.6 4.7 14.4 0.6
Wind Direction (degree) 15.0 67.0 136.9 83.2
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light absorbing ability of WSOC. This parameter was determined
by Eq. 2 (Chen et al., 2018):

MAE365 � Abs365
CWSOC

(2)

where Cwsoc represented theWSOC concentration in µgC/m3.
The WSOC concentration was determined using a total
organic carbon (TOC) analyzer model TOC-VCSH from
Shimadzu (Kyoto, Japan). During the analysis, the supply
gas pressure, carrier gas flow, and furnace temperature were
set at 200–250 kPa, 150 ml min-1, and 680°C, respectively. The
sample was acidified and injected into the analyzer oven. In the
oven, the carbon was catalytically oxidized to CO2 at 680°C and
the produced CO2 was detected by the sensitive Nondispersive
Infrared (NDIR) detector (2,500 cm−1). Moreover, the
wavelength dependence and light absorption of a water
extract was investigated by the Ångström absorption
exponent (AAE) in the wavelength range from 300 to
600 nm by Eq. 3 (Moosmüller et al., 2011).

AAE � ln (Absλ2 ) − ln (Absλ1 )
ln (λ2) − ln (λ1 ) (3)

2.2.3 Analysis of PM2.5 by Fluorescence Spectroscopy
The fluorescence of PM2.5 particles was measured by placing a
small portion of a filter (0.5 cm2) in the sample holder of a
spectrofluorometer Model FluoroMax-4 from Horiba, which
was supplied with a vertically assembled xenon-arc lamp set at
150 W without ozone. The excitation wavelength was 355 nm
and the emission wavelength ranged from 400 to 700 nm, with
slit set to 5 nm for both the excitation and emission
monochromators and using a 0.1 s integration time. The
detected signals were provided by a photon-counting
detector R928P PMT (185–850 nm). A photodiode array
was used to monitor the lamp output.

The excitation–emission matrices (EEMs) of the WSOC
fractions were measured in the range from 200 to 600 nm for
excitation and 220–600 nm for emission. The band passes for
excitation and emission were 20 and 1 nm, respectively. Three
fluorescence indices were evaluated including the fluorescence
index (FI), biological index (BIX), and humification index
(HIX). These indexes have been implemented in studies
involving DOM in both soil and aquatic systems and
aerosol due to the similarities in the optical aspects of
WSOC and aquatic DOM. Indeed, these indexes have been
shown to provide some information on the nature of the
organic compounds present in the water-soluble fraction of
aerosols (McKnight et al., 2001; Huguet et al., 2009; Birdwell
and Engel, 2010). The fluorescence parameters FI, BIX, and
HIX were evaluated by Eqs 4–6, respectively.

FI � F(Ex � 370 nm, Em � 450 nm)
F (Ex � 370 nm, Em � 500 nm) (4)

BIX � F(Ex � 310 nm, Em � 380 nm)
F (Ex � 310 nm, Em � 430 nm) (5)

HIX � F(Ex � 255 nm, Em � 434 − 480 nm)
F (Ex � 255 nm, Em � 300 − 345 nm) (6)

where F represents the fluorescence intensity and Ex and Em the
excitation and emission wavelengths, respectively. In the
literature, FI <1.4 has been attributed to the fluorophores of
terrestrial fulvic acid with greater aromaticity, while values higher
than 1.9 correspond to fluorophores from microbial emissions of
lower aromaticity (McKnight et al., 2001; Wu et al., 2021). The
BIX value is used to assess the contributions from microbial
activities, BIX >1 indicates the predominant biological or
microbial formation, while BIX <0.6 corresponds to an
autochthonous component with smaller contribution from
biological materials (Huguet et al., 2009; Wen et al., 2021; Wu
et al., 2021). HIX value represents the degree of humification of
organic matter, higher values (HIX ˃10) are attributed to more
humic or aromatic organic matter associated with terrestrial
sources, while lower values (HIX ˂5) are associated with
organic matter freshly formed (Yang et al., 2020). Finally, to
support the information provided by the fluorescence indices, the
PARAFAC model was applied. Recently, some researchers have
reported the importance of using fluorescence indices and the
PARAFAC model to establish possible sources of emission of
carbonaceous material in the aqueous fraction. PARAFAC is a
statistical model approach that extracts independent
fluorophores from EEMs under ideal conditions (Bro, 1997).
The determination of the component number and the treatment
of the spectroscopic data, which included the biases correction,
scattering remove and normalization, was carried out by applying
the staRdom software [“spectroscopic analysis of dissolved
organic matter (DOM) in R”]. (Pucher et al., 2019).

2.3 Mineralogical and Chemical Analysis
2.3.1 Chemical Surface Analysis of PM2.5 Using X-Ray
Photoelectron Spectroscopy
The XPS technique was used to determine the surface chemical
composition of PM2.5. For this purpose, a Thermo Scientific
Escalab 250Xi spectrometer with both a six-channel
(channeltron) detector and a monochromatic X-ray Al Kα
source (1486.68 eV) was used. A selected 1 cm2 piece from the
center of each filter was cut and placed on the sample holder using
carbon tape. Measurements were read while keeping ultrahigh
vacuum conditions (10–10 torr). Survey spectra for all the samples
were collected over the 1100 eV range at a resolution of 1 eV per
step, 100 ms, and 150 eV of pass energy. For the chemical species
of interest, high-resolution spectra were collected at a resolution
of 0.1 eV per step and 20 eV of pass energy. For data treatment,
Avantage software (Thermo Scientific version 5.9) was used, and
the assignment of signals was made based on the literature reports
and the standards database of the National Institute of Standards
and Technology (NIST).

2.3.2 Characterization of Crystalline Phases by X-Ray
Diffraction
The mineralogical composition of PM2.5 was determined through
XRD by using a PANalytical Empyrean X-ray diffractometer with
Cu radiation (Kα = 1.5405 Å), and an X’Celerator ultra-fast

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9294494

Acuña Askar et al. PM2.5, Light Absorption, Northeastern Mexico

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


detector based on real-time multiple-step technology with
Bragg–Brentano geometry. The diffractometer (operating at
45 kV and 40 mA) collected the scans in the 2θ range of
5°–90° with a step size of 0.016° and 59 s per step. For
structural refinements, both the Rietveld method and the
crystalline phase identification approach were performed by
using the High Score Plus software version 3.0.5 and the
ICDD PDF+4 plus database as well (ICDD, International
Center for Diffraction Data, Newtown Square, PA, United States).

3 RESULTS AND DISCUSION

3.1 PM2.5 in the Monterrey Metropolitan
Area During the Winter and Summer
Seasons
The daily variation of PM2.5 concentrations found in the
MMA during the two study periods is shown in Figure 1. The
average concentrations of PM2.5 in winter were much higher
(three times higher) than in summer. The concentrations
found in winter and summer were 84.39 ± 11.67 and 25.04 ±
3.05 μg/m3, respectively. A similar seasonal trend has been
observed in other studies, which were conducted in different
cities (Zhou et al., 2020; Duan et al., 2021). According to the
regulation by Mexican Norm NOM-025-SSA1-2014 (SSA,
2014), the maximum allowed limit of PM2.5 in the air is
45 μg/m3 (24 h average). Therefore, the levels found in the
winter samples from the San Bernabé station was above the
maximum allowed limit, suggesting the poor air quality
and potential health risk to the exposed population.
The high levels found during the winter season was
attributed to the increase in both fossil fuels and biomass
burning, which was from the high energy demands by
both industries and residences during this season. Similar

results have been reported by different researchers (Ravindra
et al., 2022; Wang et al., 2022). In addition, low wind speeds
and rainfalls were registered during the winter (Table 1).
These conditions favored the stagnation of particles in
the area.

3.2. Functional Groups, Light-Absorbing
and Fluorescent Properties of PM2.5
3.2.1 Identification of Chemical Functional Groups by
ATR-FTIR
The infrared spectra of the PM2.5 samples that were collected
in winter and summer are shown in Figure 2. In the two study
period, the absorption bands between 612 and 615 cm−1and
1,080 and 1,135 cm−1was attributed to the sulfate ions, which

FIGURE 1 | Temporal evolution of PM2.5 during the summer and winter
seasons at the San Bernabé station.

FIGURE 2 | ATR-FTIR spectrum of selected PM2.5 samples collected on
fiberglass filters, (A) winter, samples: 1(W6), 2(W5), 3(W3), 4(W8) and (B)
summer, samples: 1(S1), 2(S3), 3(S6), 4(S8).
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were likely as CaSO4 (Allen et al., 1994; Maria et al., 2002;
Radulescu et al., 2017; Yu et al., 2018; Zeb et al., 2018). It is of
further importance to notice that CaSO4 particles has a cooling
effect on the atmosphere, which causes a negative radiative
forcing and alters the troposphere temperature balance
(Buseck and Pósfai, 1999; Martin et al., 2004). A summary
of the chemical species that were found in the samples is found
in Table 2. In majority of the collected samples, CO3

2−signals
(i.e., at 1,412 cm−1 and 872 cm−1) were predominant in the
PM2.5 samples (Shaka’ and Saliba, 2004; Bahadur et al., 2010;
Siciliano et al., 2018). Moreover, the band found between 710
and 719 cm−1 was related to the asymmetric vibrations of
CaCO3 (Varrica et al., 2019). Recent studies indicated that
both carbonate ion and its products from atmospheric aging
can affect the climate directly by dispersing and absorbing
solar and terrestrial radiation (Crowley et al., 2010; Tang et al.,
2015). They can affect the climate indirectly by changing the
microphysics, albedo, and useful life of clouds.

The weak shoulder signals between the ranges from 1,320
to 1,330 cm−1 and 820–830 cm−1 in some samples suggested
the presence of NO3

− species (Figure 2B). These signals
overlapped with the strong CO3

2− signals between 1,412
and 870 cm−1. In addition, in some summer and winter
samples, the absorption signals between 1,760 and
1,800 cm−1 were observed, which indicated the presence of
inorganic nitrate Previous studies on the MMA have reported
the presence of NO3

− in PM2.5 (Martinez et al., 2012; Mancilla
et al., 2019). Meanwhile, the peaks between 1,000 and
1,044 cm−1 and peak at 800 cm−1 were due to Si-O bonds
(samples: S1, S3, S6, W6, W5, and W3) The peak between
1,000 and 1,044 cm−1was due to the asymmetric stretching
vibrations of the O-Si-O, while the peak at 800 cm−1was due
to bending vibrations of the O-Si-O bond in the silicates
(Maria et al., 2002; Shaka’ and Saliba, 2004; Simonsen et al.,
2009; Radulescu et al., 2017; Zeb et al., 2018). In addition, in
both summer and winter samples, a peak was observed
between 900 and 920 cm−−1, which was indicative of Al-
(OH) bond vibrations. Compounds with Al-(OH) are
usually present in aluminosilicate minerals such as
kaolinite (Al2Si2O5(OH)4) (Ravisankar et al., 2010). It

should be noted that this peak appeared more intense in
the summer samples and in some cases this peak overlapped
with the carbonate band at ~877 cm−1. The absorption signals
found between 3,618 and 3,700 cm−1as well as 3,695 and
3,700 cm−1 corresponded to the vibrations of the OH
functional groups, which are typically located between the
tetrahedral and octahedral layers of clay minerals
(aluminosilicates). These functional groups have been
shown to interact with the Si-O-Si layers to produce
bonds, which produce characteristic absorptions at 3,620
and 3,695 cm−1 (Davarcioglu, 2011; Varrica et al., 2019).
Additionally, the absorption bands at lower frequencies of
around 540 cm−1 and the small peak at 750 cm−1, which
appeared in some samples were attributed to the Al-O-Si
bonds in silicates (Chou et al., 2005; Coury and Dillner,
2008).

The OH stretching vibrations around 3,400 cm−1observed
in our samples (Figure 2) indicated the presence of water and/
or hydroxylated compounds such as alcohols and polyols from
biogenic sources and biomass burning (Gipson et al., 2015;
Siciliano et al., 2018; Zapata-Hernandez et al., 2020). The
broad band observed between 1,617 and
1,640 cm−1confirmed the presence of water in the samples.
The broad band signal between 1,617 and 1,640 cm−1 indicated
of an overlap of the signals from different chemical functional
groups including the stretching vibration absorptions for C=C
aromatic and C=O bonds. Some authors have attributed this
broad band signal to the functional groups found in
organonitrates, aromatic amides, and organic amines (Ji
et al., 2015; Radulescu et al., 2017; Siciliano et al., 2018;
Zapata-Hernandez et al., 2020). Meanwhile, the appearance
of the weak shoulder signals at around 1,220 cm−1 in most of
the samples supported the presence of organ nitrated
compounds (Shaka’ and Saliba, 2004).

The broad band observed between 3,534 and 3,560 cm−1 in
our samples (Figure 2) were due to the vibrations of the O-H
groups in alcohols, phenols, and carboxylic acids (Allen et al.,
1994; Coury and Dillner, 2008; Shaka’ and Saliba, 2004). A
weak peak between 1,798 and 1,800 cm−1 was observed in three
and five of the summer and winter samples, respectively. This

TABLE 2 | Summary of the functional groups identified by FT-IR on the PM2.5 samples collected in both seasons.

Functional group Wavelenght (cm−1) Winter samples Summer samples

Sulfate 613, 1,080–1,135 ALL ALL
Nitrate 820–830, 1,320–1,330,

1,760–1,800
W4, W5, W6, W8 S5, S6, S7, S8

Si-O 800, 1,000–1,044 W1, W2, W3, W5, W6,
W7, W8

S1, S2, S3, S6, S7, S8

Al-OH 900–920, 3,618–3,700 W5, W6, W7 S1, S3, S6, S8
Carbonate ions CO3

2− 712, 872, 1,412 ALL ALL
Aromatic 772, 870, 910, 1,030, ALL ALL
OH stretching (water and/or hydroxylated compounds such as alcohols,
polyols)

1,617, 1,640, 3,400 W1, W2, W4, W5, W6, W8 ALL

Aliphatic stretching 2,850, 2,920 W1, W2, W4, W5, W6,
W7, W8

S1, S2, S4, S5, S6,
S7, S8

O-H groups associated with alcohols, phenols, and carboxylic acids 3,534, 3,560 W1, W2, W4, W5, W6 W8 S1, S3, S5, S6, S7, S8
Carbonyl 1,798–1,800 W4, W6 S6, S7, S8
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peak corresponded to the vibrations of the carbonyl functional
group (C=O) in carboxylic acids. The amounts of carboxylic
acids seemed to be higher in the winter samples suggested in
Figure 2A (Siciliano et al., 2018). In most of the collected
samples, peaks were observed between 2,920 and 2,850 cm−1,
which were associated to the CH2 in aliphatic compounds
(Shaka’ and Saliba, 2004; Zapata-Hernández et al., 2020).

3.2.2 Analysis of PM2.5 Samples by X-Ray Diffraction
and X-Ray Photoelectron Spectroscopy
3.2.2.1 Chemical Analysis of the Crystalline Phases by X-Ray
Diffraction
The XRD diffractograms obtained for the PM2.5 samples in the
two study periods are shown in Figure 3. Several reflections with
different intensities were observed in the diffractograms. Most of
the signals corresponded to the crystalline phases of CaCO3

(index number or ICDD No. 010721937), SiO2 (ICDD No.
010781252), and CaSO4·2H2O (ICDD No. 010741433). Signals

with lower intensities corresponded to the aluminosilicates
including kyanite (ICDD No. 000110046), albite (ICDD No.
010831658), leucite (ICDD No. 010768736), sillimanite (ICDD
No. 000380471), pyrophyllite dehydroxylated (ICDD No.
010734051), and NaCl (ICDD No. 010763457). In the
literature it is reported that in the study region there are some
mineral deposits related to these crystalline phases (such as
muscovite, sillimanite, kaolin, albite, quartz, plagioclase,
feldspars, and micas), only some of them are commercially
exploited (nl.gob.mx, 2020). On the other hand, it is known
that these mineral phases are used in the refractory and ceramic
industry, which are abundant in the area and therefore it is not
ruled out that they also contribute to the emission of these
crystalline compounds (Bradt, 2008). Adjustments on the
reflection profiles were carried out by the Rietveld method,
which allowed us to perform semiquantitative analysis on each
of the crystalline phases detected (Rietveld, 1969). The refinement
of the signals provided the mass percentage of each crystalline
phase in the diffractograms. The results showed that the most
abundant crystalline phases were CaCO3 and SiO2 (Table 3).
CaSO4 was also abundant while aluminosilicates and NaCl were
the least abundant. These phases have been extensively reported
in the literature (Ahmady-birgani et al., 2015; Zarasvandi et al.,
2011). The average percentage of CaCO3 was slightly higher in
summer (73.9%) than in winter (71.1%). These findings were
consistent with the ATR-FTIR results, which showed the
carbonate absorption bands at 1,412, 872, and 710–719 cm−1,
in all samples collected in both seasonal periods. These crystalline
phases may have emerged from natural sources (resuspension of
crust material) and anthropogenic sources. We note that MMA is
a semiarid region with many ceramic, glass and, cement industrial
facilities, as well as quarries inserted within the expanding
metropolitan area.

On the other hand, the average percentage of CaSO4 found
was significantly higher in winter (10.2%; min: 0% and max: 30%)
than in summer (4.5%; min: 0% and max: 12%), which was
consistent with the findings by the ATR-FTIR technique. In ATR-
FTIR, we found more frequent and greater intensity signals for
SO4

−2 (1,080–1,135 and 612–615 cm−1) in the winter samples.
This finding is relevant as most of the previous studies in the
MMA have assumed that sulfate associated to the PM2.5 is mainly
in the form of (NH4)2SO4 (Martinez et al., 2012; Mancilla et al.,
2019). The higher percentage of CaSO4 found in the winter
samples is likely more related to the meteorological parameters
and concentration of SO2 in the atmosphere, since we have

FIGURE 3 | X-ray diffraction patterns of PM2.5 collected in (A)winter and
(B) summer.

TABLE 3 | Contents of the most important crystalline mineral phases present in
the PM2.5 samples, which were obtained by x-ray powder diffractometry.

% Phases Season

Summer Winter

Calcite 73.9 71.1
Quartz 16.9 15.2
Gypsum 4.5 10.2
Aluminosilicates 3.4 3.2
Halite 1.2 0.3
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considered CaSO4 as a phase of secondary origin. Sulfates are
formed by photochemical reactions that occur between their
main precursor (SO2) and oxidizing species such as O3 and
NOx (Xu et al., 2016). Unfortunately, SO2 is not monitored in
the San Bernabé station. However, further exploration of available
ground-level SO2 data from the local air quality monitoring
network resulted in identifying that the nearby North 2 station
had a complete dataset for the periods of interest. The North 2
station is approximately 6 km to the southeast of the Northwest
(San Bernabé) station, in a very similar landuse and main
emission sources setup. Assuming that the North 2 station is a
good proxy for the Northwest station, we retrieved SO2 data for
the North 2 station for the months of interest (Supplementary
Table S2). The data confirms that SO2 levels are higher during the
winter period, which could contribute to the formation of sulfates
in this season. Another factor to consider is the changes in the
meteorological parameters, where several studies have shown the
dependency of sulfate levels to relative humidity and wind speed
(Banerjee et al., 2015; Pant et al., 2015; Lu et al., 2016). For
example, Song et al. (2014) attributed the high percentages of
sulfate found in their PM10 samples to the higher humidity and
low wind speed in the collection/sampling area (Henan, China).
Moreover, Yue et al. (2022) found that the reaction between SO2

and CaCO3 particles in the atmosphere was favored by relative
humidity values of greater than 40%. Therefore, the low wind

speed, high relative humidity, as well as the abundance of SO2 y
CaCO3 during the winter sampling (Table 1) in the MMA
explained the higher proportions of CaSO4 found in the
winter samples. It should be noted that there is no known
primary source of CaSO4 near the study area. In addition, in
some samples it is not possible to detect the presence of this
mineral phase, it is only detected when the meteorological
parameters are favorable for the photochemical reaction to
take place. For everything described above, it can be thought
that the CaSO4 found in the PM is of secondary origin

Similar amounts of SiO2 were found in all the samples. Several
reports have associated SiO2 with natural sources (Adamo et al.,
2008; Saitoh et al., 2008; Song et al., 2014). Thus, it was not
surprising to find SiO2 in our samples, since the overall soil
composition of the MMA falls within a sandy profile with
numerous deposits that are rich with SiO2. Nonetheless, the
contributions from anthropogenic sources were not
overlooked. For example, there is a large glass industry in
MMA, which uses crystalline SiO2 as raw material. Finally, we
note that the XRD and ATR-FTIR results of this investigation
complemented each other.

3.2.2.2 Determination of Surface Elemental Composition by
X-Ray Photoelectron Spectroscopy
High-resolution XPS spectra of the elements identified in the
survey scan were corrected using the C1s signal (285 eV) as
reference. The assignment of signals was carried out by
considering the data from the literature and National Institute
of Standards and Technology (NIST) database. The atomic
percentage of silicon was corrected by the method described
by Atzei and Rossi (2004) and Gilham et al. (2008). In both winter
and summer samples, high-intensity bands related to C and O
was found along with low-intensity bands related to Si, Na, N, and
S. Additional elements identified through their high- and low-
resolution spectra were Ca, Mg, Zn, Cl, and F. The surface
elemental composition of the PM2.5 samples are shown in
Figure 4. The most abundant elements found were C, O, and
Si followed by Na, S, N, and Ca. Similar results have been reported
in studies by Guascito et al. (2015), Atzei et al. (2014) and Huertas
et al. (2012). In these previous studies, C and O were the
predominant elements found on the PM2.5 samples. The
average percentage of C were higher in the winter sample,
which can be attributed to the higher consumption of fossil
fuels due to e.g., increased use of heating both at the industrial
and residential level in the MMA (Figure 4).

Signal speciation of C, N, S, and Ca was performed by
deconvolution of the high-resolution spectrum of each
element. For example, consider the high-resolution spectra of
C, N, and S shown in Figure 5. For C1s (280–295 eV), the
deconvolutions showed eight different states of oxidized
carbon found in all samples. These were the aliphatic (C-C,
285 eV), aromatic (C=C, 284.7 eV), EC (284 eV), carbonyl
(C=O, 288 eV), carbides (283.6 eV), carboxylics (O-C=O,
289 eV), carbonates (289.5 eV), and ether/alcohol (C-O,
296.5 eV). Several researchers have reported these contributing
functional groups on PM (Gaddam and Vander Wal, 2013; Atzei
et al., 2014). The atomic percentages of each contributing

FIGURE 4 | Surface elemental composition obtained by XPS of PM2.5

samples for the two study periods.
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functional group to the C1s signal are summarized in Table 4. The
aromatic hydrocarbons in all the samples were considered as the
highest component to the C1s signals. This was followed by the EC
and aliphatic hydrocarbons chains. The least contributing
component in the winter and summer samples were
carbonates and carbides, respectively. The atomic percentages
of highly oxidized species such as ether, alcohol, carboxylic acids
and/or carbonyl groups were significantly higher in the winter
samples. These were consistent with the results of the ATR-FTIR
spectra. The higher proportion of these functional groups in
winter could be related to an increase in coal burning, in addition
to a greater atmospheric oxidation caused by changes in
meteorological parameters (Domínguez et al., 1999; Ahlers
et al., 2000; Siciliano et al., 2018). In contrast, the decrease in
oxidized species observed in summer could explain the higher

proportion of aromatic and aliphatic groups recorded in this
season. On the other hand, average area percentage of EC in all
samples did not show any significant variation.

For the observed N1s signal in the samples, three contributors
were identified including amide/pyrrole groups, nitrites, and
nitrates, positioned at bonding energies of 399.2 and 402 eV
and 407, respectively. The results obtained for the winter and
summer samples showed a similar trend, where amide/pyrrole
groups predominated at the surface level on PM2.5 followed by
nitrates and nitrites. These were consistent with the ATR-FTIR
findings where organic amides and amines, as well as inorganic
nitrate were found in the samples. The abundance of amide/
pyrrole groups was associated to the burning of fossil fuels. The
nitrates and nitrites were of secondary origin from the photo-
oxidation reactions of gaseous nitrogenous precursors in the

FIGURE 5 | Deconvolution of high-resolution spectra in the region of the signal (A,B) C1s, (C,D) S2p, and (E,F) N1s of PM2.5 collected in winter and summer.
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atmosphere. In the literature, it has been reported that some ions
of secondary origin, such as nitrites, are more stable under
conditions of low solar radiation, which is consistent with the
lower solar radiation recorded in winter(Paoletti et al., 2003). The
atomic percentages obtained for the amide/pyrrole groups and
nitrates in the two seasons were similar. This confirmed that
seasonal variation had no significant effect on the amounts of
these species in the atmosphere. Interestingly, the concentrations
of nitrite were significantly higher in the winter samples
(Table 5), which was attributed to the typically lower solar
radiation during the cold months (Hoek et al., 1996; Lee et al.,
1999; Paoletti et al., 2003).

Two components for the Ca2p signal were identified, where
one was located at a binding energy of 347 eV, which
corresponded to CaCO3. The other was at 347.8 eV, which
was associated with CaSO4 (Guascito et al., 2015). Our results
showed that CaCO3 was the main signal contributor in all
samples, while the highest percentages of CaCO3 were found
in the summer samples (e.g., 74.6%). Notably, the deconvolution
of the C1s signals suggested a higher percentage of CaCO3 in the
summer samples. This was explained by the summer activities
related to the extraction of limestone from local quarries and its
use as a raw material in the cement binder industry. The
deconvolution of S2p signals showed that the sulfates and
organic sulfur compounds dominated the winter (68.4%) and
summer (65.9%) samples, respectively. The higher levels of
CaSO4 found in the winter samples were related to the
changes in meteorological conditions and possibly higher
concentrations of SO2 in the atmosphere during the sampling.
In summer, the meteorological conditions did not favor the
formation of the CaSO4, which led to an increase in the
percentages of organic sulfur in this season.

3.2.3 Diffuse Reflectance Spectroscopy Analysis
The DRS technique has been widely used for the characterization
of solid materials (Zwinkels et al., 2014; Bock et al., 2019), since it
is a tool useful to determine the electronic transitions from the
valence to conduction band (band gap) of semiconductor oxide
powders (Escobedo-Morales et al., 2019). In the environmental
sciences, has been applied mainly for the analysis of minerals in
soils (Sellitto et al., 2009; Szalai et al., 2013), however, we have
found a few studies that used DRS for the characterization of
atmospheric particulate material. For example, Wonaschütz et al.
(2009) used this technique for the characterization of BC and BrC
in atmospheric aerosols. In another study, Morozzi et al. (2021)
used DRS to characterize the diverse mineral phases of the Sahara
dust that were present in the PM samples obtained from the
Mediterranean area.

The diffuse reflectance spectra obtained from the PM2.5

samples are shown in Figures 6A,B. Significant attenuation of
the signal response in the visible region (400–800 nm) were
observed in all the spectra, indicating the presence of
chromophores that were likely from the carbonaceous
materials in the samples. On the other hand, the UV region
spectra showed some noticeable changes in the slopes of the
curves. These were associated to the electronic transitions in the
inorganic materials present in the samples (Makuła et al., 2018).
The spectra were converted by the Kubleka–$132#? Munk
function. To better define the processes involved, the second
derivative was obtained by following the methodology proposed
by Torrent and Barrón (2015) and the results are shown in
Figures 6C,D. In the spectra, the absorption band near
250 nm was related to the presence of CaSO4, whose
absorption range was previously reported to be between 250
and 350 nm (Nagabhushana et al., 2010). The absorption band

TABLE 4 | Atomic percentage of each contributing functional group to the C1s signals (n = 8).

Sample Element (atomic %)

Carbide Elemental Aromatic C-H Aliphatic C-H C-O C=O O-C=O Carbonate

Winter samples

1 0.1 13.7 23.7 20.6 17.4 17.0 5.7 1.9
2 6.2 21.9 19.7 16.3 14.2 14.2 2.0 5.5
3 7.9 14.7 24.8 12.4 11.5 14.7 13.4 0.8
4 13.4 20.1 10.3 16.7 12.5 13.5 8.3 5.3
5 14.2 21.6 14.5 13.3 13.6 15.1 4.8 2.9
6 0.1 24.8 22.6 23.1 19.7 5.0 3.1 1.6
7 14.0 29.8 22.1 15.3 8.9 6.2 2.5 1.3
8 0.1 22.3 35.5 14.7 7.9 16.3 3.0 0.2

Summer samples

1 2.7 21.7 25.1 26.7 10.3 5.6 6.6 1.4
2 0.5 22.1 19.5 20.5 8.4 14.7 13.1 1.3
3 1.3 13.1 28.9 25.5 18.8 3.8 5.4 3.1
4 4.7 13.6 42.6 11.9 15.0 — — 12.2
5 — 17.6 40.8 18.7 7.1 6.5 1.6 7.7
6 15.8 22.9 22.8 15.7 13.8 — — 9.0
7 — 20.2 27.8 19.7 12.7 5.9 — 13.7
8 — 36.9 26.0 27.0 — — — 10.2
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between 210 and 230 nm corresponded to the CaCO3 electronic
transition from the valence to conduction band (Al Omari et al.,
2016). The additional absorptions observed between 330–400 nm
in some samples are possibly related to electronic transitions of
the aluminosilicates containing transition metals (Zent et al.,
2008; Tarantola et al., 2019). The above demonstrates the
application of the DRS technique to characterize the inorganic
fraction present in PM. In addition, it is versatile, simple and low
cost since the analysis of the sample is done directly in the filter,
without the need to use reagents or solvents for its

3.2.3.1 UV–Vis Analyses of Water-Soluble Organic Carbon
To fully understand the optical properties of the water-soluble
fraction, UV–Vis analyses were performed on the aqueous
extracts of the PM2.5 samples collected in the San Bernabé
monitoring station. The variation of the Absλ with respect to

the wavelength of radiation in the range of 300–600 nm is shown
in Figure 7A. In both seasons studied, the absorption intensities
decreased notably at longer wavelengths, suggesting a strong
dependence with the radiation wavelength, which is
characteristic of BrC (Cheng et al., 2016; Wu et al., 2020).
Furthermore, the absorption coefficients of the winter samples
were higher than the summer samples. Similar results have been
reported by Chen et al. (2018) for samples obtained in Nanjing,
China. Prior studies have associated the Abs365 with the
absorption coefficient of BrC (not inorganic salts) (Hecobian
et al., 2010). The values for Abs365 and temporal variation are
shown in Table 6 and Figure 7B, respectively. The Abs365 values
were higher in the winter (1.15 ± 0.49 Mm−1) than summer
(0.66 ± 0.19 Mm−1) samples, which has been a seasonal trend
confirmed by other researchers (Kim et al., 2016; Chen et al.,
2020). The values we found were comparable to those reported by

TABLE 5 | Atomic percentage of each contributing functional group to the (a) N1s, (b) Ca2p, and (c) S2p signals.

N1s

Sample Winter Summer

Atomic % Atomic %

Pyrrolic/Amide Nitrite Nitrate Pyrrolic/Amide Nitrite Nitrate

1 29.0 50.6 20.5 66.0 - 34.0
2 60.9 24.5 14.6 57.2 10.1 32.7
3 53.2 27.4 19.3 65.1 0.0 34.9
4 66.3 — 33.7 55.1 11.9 33.0
5 48.9 29.8 21.3 72.8 — 27.2
6 71.7 13.3 15.0 62.7 8.7 28.6
7 44.1 15.7 40.3 49.8 21.8 28.4
8 50.6 14.4 50.6 48.1 41.1 10.9

Ca2p

Sample Winter Summer

Atomic % Atomic %

Carbonate Sulfate Carbonate Sulfate

1 41.0 59.0 87.6 12.4
2 48.7 51.3 68.1 31.9
3 51.3 48.8 72.3 27.7
4 48.2 51.8 72.9 27.1
5 53.5 46.6 79.7 20.3
6 39.4 60.6 76.3 23.7
7 34.4 65.6 72.2 27.8
8 83.9 16.1 67.7 32.3

S2p

Sample Winter Summer

Atomic % Atomic %

Sulfate Organic sulfur Sulfate Organic sulfur

1 80.0 20.0 29.5 70.5
2 74.7 25.3 100.0 —

3 57.4 42.6 20.3 79.7
4 72.1 27.9 27.3 72.8
5 92.8 7.2 21.9 78.1
6 56.2 43.8 19.9 80.1
7 58.2 41.8 23.9 76.1
8 55.7 44.3 29.7 70.3
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Liu et al. (2018) for samples obtained in Guangzhou City, China,
and by Liu et al. (2013) in Atlanta, United States. However, our
values were lower than those reported by Satish et al. (2017) for
samples obtained from the cities of Indo-Gangeti Plain, India
Satish et al. (2017) and Huang et al. (2018) for samples obtained
from Xi’an, China. Strong correlations of the Abs365 of water
extracts withWSOC concentrations for both winter (r = 0.89) and
summer (r = 0.93) were found (Figure 7C), which is indicative
thatWSOC contains BrC (Chen et al., 2020). The difference in the
Abs365 values found in both seasons could be attributed to
differences in the emission sources that predominate in each
season (Chen et al., 2018; Zhan et al., 2022).

On the other hand, the average MAE365 values in the winter
and summer samples were 0.23 ± 0.05 m2g−1 and 0.19 ±
0.04 m2g−1, respectively (Table 6 and Figure 8A). These
results indicate that BrC in winter has a higher absorption
capacity compared to summer. This could be attributed to a
higher concentration of BrC chromophores in winter and/or to
differences in the chemical nature of chromophores that
predominate in the cold season as a result of differences in
emission sources. In this study, the observed MAE365 values
were lower than those reported for cities with higher pollution
indices such as Beijing, China (Yan et al., 2015), Xi’an, China
(Yuan et al., 2020), and New Delhi, India (Kirillova et al., 2014).

In addition, our values were closer to the values reported for
Seoul, Korea (Kim et al., 2016) and Atlanta, United States
(Hecobian et al., 2010).

The AAE is a very important parameter that provides
information on the spectral dependence of the aerosol and
the absorption of light in bulk (e.g., extracts) (Moosmüller
et al., 2011). In the literature, it has been reported that BC
from the burning of fossil fuels generally has AAE values that
were close to 1 (Fraund et al., 2020). This means that the
refractive index values of BC are independent of the
wavelength. AAE values slightly higher than one indicated
the presence of BC or a mixture of BrC and BC (Pokhrel et al.,
2017). Meanwhile, high AAE values between 5 and 9 revealed
the predominance of BrC in the aerosol samples
(Chakraborty et al., 2016; Lin et al., 2017). The AAE
values calculated for WSOC of our samples in the
wavelength range from 300 to 600 nm are summarized in
Table 6. The average values obtained for the winter and
summer samples were 6.32 ± 0.78 and 7.33 ± 1.02,
respectively (Figure 8B). The high AAE values in all
samples as well as the high correlations found between
Abs365 and WSOC concentration demonstrated an
important contribution of BrC chromophores in the
WSOC (Lin et al., 2017; Yuan et al., 2020). The AAE

FIGURE 6 | Diffuse reflectance spectra of representative PM2.5samples obtained during (A) winter and (B) summer. Derivative of second order of the
Kubelka–Munk function of the same samples collected in (C) winter and (D) summer.
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values were higher in the summer samples, indicating a
greater contribution of compounds that absorb at shorter
wavelengths in these samples. Similarly, Chen et al. (2018)
reported that the highest and lowest values of AAE for PM2.5

samples collected throughout the year from Nanjing, China
was obtained from the summer and winter samples,
respectively. The results were explained by the difference
in the chemical composition or emission sources in these
seasons. Likewise, Kim et al. (2016) reported a similar
seasonal variation, where the higher values of AAE in
summer was attributed to the presence of metals that come
from the Earth’s crust

3.2.4 Analysis of PM2.5 by Fluorescence Spectroscopy
The fluorescence emission spectra (with excitation at 355 nm) of
the filters collected during winter and summer are shown in
Supplementary Figure S1. The maximum wavelength intensity
of the spectra from the winter and summer samples ranged from
440 to 464 nm and 439–449 nm, respectively. Similar ranges have
been reported by other researchers for highly oxygenated
carbonaceous and humic-like substances (HULIS) (McKnight
et al., 2001; Chen et al., 2016b; Qin et al., 2021). Barsotti et al.
(2016) reported that HULIS derived from the oligomerization of
phenolic compounds exhibited a strong fluorescence emission in

the vicinity of 450 nm. On the other hand, it is known that ozone
and hydroxyl radicals are able to cause the oxidation of volatile
organic compounds (VOCs) such as limonene and α-pinene. The
oxidation generated HULIS that showed strong fluorescence
emissions within the range of 437–513 nm. The average of
maximum emission intensities was higher in the winter (1.6 ×
106 ± 7.8 × 105 a.u.) than summers (1.4 × 106 ± 6.3 × 105 a.u.)
samples. This was attributed to the greater amounts of
oxygenated carbonaceous species found in the winter samples.
Through XPS analyses, we also found slightly higher values for
the total percentage of carbon and extent of functionalization by
oxidized species on the C1s signal in the winter samples.

An exploratory EEM study was conducted to gain insights on
the fluorescent compounds found in the samples. The aqueous
extracts of the samples obtained during both seasons were used.
The fluorescence indexes HIX, BIX, and FI were determined.
These indexes have been implemented in studies involving DOM
in both soil and aquatic systems and aerosol due to the similarities
in the optical aspects of WSOC and aquatic DOM. Indeed, these
indexes have been shown to provide some information on the
nature of the organic compounds present in the water-soluble
fraction of aerosols (McKnight et al., 2001; Huguet et al., 2009;
Birdwell and Engel, 2010). The FI values are summarized in
Supplementary Table S1, where 40% of the samples showed FI ~

FIGURE 7 | (A) Averaged light absorption spectra of the WSOC for the samples obtained in winter and summer. (B) Time series of light absorption coefficient at
365 nm (Abs365) for the two study periods. (C) Scatter plots of Abs365 versus WSOC.
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1.5 values. This suggested the presence of fulvic acid-like
substances with high aromaticity and of terrestrial origin.
Meanwhile, 60% of the remaining samples produced FI values
>2. This indicated the strong presence of fluorescent compounds
with low aromaticity and of microbial origin. Similar results have
been reported by Lee et al. (2013) in their EEM analysis of fresh
and aged organic aerosols. They suggested that aerosols with FI
values near 1.4 and 1.9 were associated with fulvic acids of
terrestrial and microbial origin, respectively. The presence of
this acid in our samples was verified by the FTIR and XPS results,
where C = O (1798–1800 cm−1) and OH (3500–3650 cm−1)
vibrations for the carboxylic acid group and OC = O, 289 eV
to the C1s signal for the carboxyl group, respectively were
observed. The autochthonous contribution index value (BIX
near 0.4) also suggested that fulvic acid came from
nonbiological sources. In addition, the HIX index found in the
aerosols of ~0.6 can be associated with the low-grade
humification fluorescent components.

The PARAFACmodel was applied to identify the possible sources
of emission for the water-soluble carbonaceous substances that were
present in the collected samples (Murphy et al., 2013). Recently, this
model has been used to characterize the water-soluble organic matter
in atmospheric aerosols (Mladenov et al., 2011; Matos et al., 2015;
Chen et al., 2021) and organic matter in various aqueous matrices

(Ishii and Boyer, 2012; Dittmar and Stubbins, 2014; Wünsch and
Murphy, 2021). It is important to mention that in Mexico and
possibly in Latin America, fluorescence indices and the PARAFAC
model had not yet been used in the study of atmospheric aerosols. The
results obtained are shown in Figure 9. The model was fixed for three
components and helped determine 99.1% the data set variance and
delivered central consistency values higher than 87%.Additionally, the
model was validated through the analysis of divided halves
(Supplementary Figure S2) and Tucke r´s congruence coefficient
for both excitation and emission spectra The coefficients were found
to be higher than the similarity threshold (0.95) proposed by Murphy
et al. (2014). Component 1 (C1) revealed the primary and secondary
signals (λex/λem) of 340/433 nm and 340/394 nm, respectively.
Component (C2) gave the primary and secondary signals of 300/
410 nmand 360/410 nm, respectively. Component 3 (C3) showed one
signal of 360/398 nm. The signals for C1 were similar to those
reported for highly oxygenated HULIS of terrestrial and dust
origin, which were found in aerosol samples from urban areas and
organic matter dissolved in water samples (Fu et al., 2015; Yan and
Kim, 2017; Qin et al., 2018; Wang et al., 2020). Moreover, Wen et al.
(2021) applied the PARAFACmodel to samples collected from three
sites with different environments in northern China. One of the
components presented signals of 245 and 360/476 nm, which were
associated with highly oxygenated HULIS from terrestrial sources. In

FIGURE 8 | (A) Time series of mass absorption efficiency at 365 nm (MAE365) for the two study periods, (B) linear regression fit log(abs365) versus log(λ) in the
wavelength range of 300–600 nm for both study periods.

TABLE 6 | WSOC mass concentration and light absorption parameters (Abs365, MAE365, and AAE), measured during winter and summer in the two study periods.

Sample Winter Sample Summer

Abs365 AAE WSOC MAE365 Abs365 AAE WSOC MAE365

Mm−1 μg/m3 m2g−1 Mm−1 μg/m3 m2g−1

1 1.25 6.93 4.49 0.28 1 0.68 7.23 2.93 0.23
2 1.26 5.36 5.18 0.24 2 0.55 7.59 2.98 0.18
3 0.47 6.72 3.23 0.15 3 0.84 5.69 — —

4 0.95 6.06 — — 4 0.69 6.10 — —

5 1.85 5.06 6.25 0.30 5 0.66 7.96 3.22 0.21
6 1.01 6.31 — — 6 0.47 8.49 2.88 0.16
7 0.63 6.99 3.58 0.18 7 1.01 7.11 4.10 0.25
8 1.77 7.14 6.09 0.29 8 0.41 8.43 2.74 0.15
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addition, Murphy et al. (2011) attributed the signal of 349/431 nm to
terrestrial humic- and fulvic-like fluorescent compounds in their
samples of organic matter dissolved in water.

In the case of C2, the fluorescence was associated to HULIS
of microbial origin (Søndergaard et al., 2003; Zhuo et al., 2010;
Murphy et al., 2011). Similar fluorescent compounds have
been identified in the DOM of groundwater (Chen et al., 2010).
On the other hand, C3 was similar to those found for humic
fluorophores present in wastewater (Stedmon and Markager,
2005; D’Andrilli et al., 2013). Here, the results of the
PARAFAC study were fully consistent with those obtained
from the fluorescence indices study. These studies revealed the
contribution of HULIS of terrestrial and microbial origin in
the samples. It is important to emphasize that the emission
sources and chemical composition of the fluorophores in the
PM may not be the same as those found in the DOM.
Moreover, only a few studies have used the fluorescence
indices and PARAFAC method to characterize the
fluorophore components in PM samples. Therefore, it was
not possible to compare the detected components that may be
found in different sources of atmospheric aerosols, such as
biomass burning, fossil sources, secondary aerosols of
biogenic, and anthropogenic VOCs, among others. In this
sense, the present work, although an exploratory study, may
serve as a basis to deepen the study of the fluorophore
components present in atmospheric aerosols in Mexico.

4 CONCLUSION

This study investigated the light absorption characteristics and
chemical composition of PM2.5 particles and their water-soluble
fraction. In winter, the concentration of PM2.5 recorded at the San
Bernabé station exceeded the limits in Mexico (NOM-025-SSA1-
2014), which was a potential health risk to the exposed
population. The presence of inorganic species in the samples
collected during winter and summer, such as CaCO3, CaSO4,
SiO2, and aluminosilicates were identified by ATR-FTIR, XRD,
and XPS techniques. The DRS spectra showed that most of the
detected constituents of the sample absorbed mainly in the UV
region (200–350 nm). The highest percentages of CaSO4 were
found in the winter samples (both at the surface level and in the
bulk). This was attributed to the higher concentration of SO2 in
the atmosphere, as well as the higher humidity and low wind
speed that were recorded during the winter months of sample
collection. The speciation of the C1s signal showed eight different
oxidation states for carbon in all samples, with aromatic
hydrocarbons, EC, and aliphatic hydrocarbons as the main
contributors to the overall signal.

The light absorption by the water extracts exhibited a strong
dependence with the wavelengths in the ranges 300 and 600 nm.
Optical parameters, such as ABs365 and AAE, as well as the high
correlation found between Abs365 and WSOC, showed that a
fraction ofWSOC corresponds to BrC chromophores. The Abs365

FIGURE 9 | Comparison of the final models with three normalized components according to the maximum fluorescence (Fmax) emission.
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and MAE365 were found to be higher in the winter than in
summer samples. This was attributed to the differences in the
chemical nature of the BrC compounds and/or to a higher
concentration of these compounds in the winter samples.
EEM-PARAFAC analysis showed that the water-soluble BrC
compounds were mainly HULIS that come from terrestrial
(C1), microbial origin (C2) and humic fluorophores (C3). A
high correlation was found between the fluorescence indices (FI,
HIX, and BIX) and EMM-PARAFAC, which suggested the
importance of both approaches in establishing the possible
sources of emission for the BrC compounds in the aqueous
extracts. We believe that it is necessary to continue the global
studies on the molecular characterization of BrC compounds and
fluorescence properties of atmospheric WSOC. These studies will
allow us to establish a database on atmospheric aerosols for more
accurate identification of possible emission sources.
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