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One billion hectares of landworldwide is affected by several kinds of salinity and

associated problems. The soil quality (SQ) in salt-affected soil (SAS) is impaired

because of the presence of excess electrolytes, disproportionate Na and Ca in

soil solution and exchange phase, rhythmic changes in the hydrological cycle,

decreasing soil organic matter, poor vegetative cover, low soil biological

activity, and crop residue return. Sodic and saline–sodic soils have the

potential to provide alkaline reactions and soil physical constraints to

regulate the soil attributes affecting SQ. Because of high spatial variability

and rapid temporal changes, selection of simple, robust, low cost, and high-

throughput master indicators for assessing SQ is very essential for monitoring

the aggradation or degradation of SAS. Therefore, screening the master

indicators for developing a minimum dataset for SQ assessment of SAS is an

important issue for sustainablemanagement of soil in these agro-ecologies. We

captured the SQ indicators for SAS from several ecosystems of different

countries and discussed the problems of parameterization for assessing SQ.

Improved SQ for optimum soil functioning is needed for confirming agricultural

productivity and food security around the globe. This review describes the

causes and drivers for sodification/salinization and mechanism-oriented

rehabilitation options such as the application of mineral gypsum, flue-

gas–desulfurized gypsum, elemental S, acidified biochar, polymer, salt

tolerance mechanisms, and other agro-techniques for improving the quality

of SAS. Based on the SQ assessment, a suite of site-specific soil management

practices are advocated for the greening of SAS and prosperity.
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Introduction

The presence and abundance of soluble and precipitated salts

are the primary cause of soil salinization, halting ecosystem

functions and limiting crop growth and production (Seleiman

et al., 2022). Rehabilitation of salt-affected soil (SAS) is a

principal agenda in the present plans of developing countries

and countries of arid–semi-arid regions to meet the

food–feed–bioenergy need of the expanding population.

Shortage of freshwater, erratic rain, increase in temperature,

the incidence of drought, rise in evapotranspiration

requirement of the crops, sea-level rise, intrusion of brackish

water, ingression of sea–water, extension of irrigated farming in

the canal command area, and dependency on wastewater for

irrigation causes increase the salt load in the farmland (Al-

Suhaibani et al., 2021; Alkharabsheh et al., 2021; Badawy

et al., 2021). Furthermore, inappropriate drainage networks

increase the risk of salinization/alkalization and cause

deterioration of soil health (Kamra, 2021).

Based on the nature and stoichiometric dominance of

electrolytes, SAS is categorized into saline, sodic, and

saline–sodic soils. Saline soil has an electrolytic conductivity

of the aqueous soil saturated paste extract (ECe) higher than

4.0 dS m−1 at 25°C and the pH of the saturation paste (pHs) less

than 8.2 and ESP (exchangeable sodium percent) less than 15 or/

and sodium adsorption ratio (SARe) of the same saturated paste

extract <13.0 mmol1/2 L−1/2 (Abrol et al., 1998). Soil salinization

occurs because of the existence of water-soluble salts in the soil; a

rising flux of saline underground water; prolonged irrigation with

saline, brackish, or wastewater; and drainage congestion and

intrusion of saline seawater in the coastal areas (Singh, 1998;

Eswar et al., 2021). The sodic soils are usually known as “alkali

soils” carrying a disproportionately larger quantity of Na+ than

Ca2+ and Mg2+ in the soil solution and exchange phase. The soil

reaction (pHs) in this type of soil >8.2, ESP of greater than 15 or/

and sodium adsorption ratio (SARe) of the saturated paste

extract >13.0 mmol1/2 L−1/2 and variable electrolyte

concentration. These soils are categorized as “saline–sodic”

having pHs of >8.5, ESP of >15%, SARe>13 mmol1/2 L−1/2, and

ECe of >4 dS m−1 at 25°C. Irrigation with sodic water (presence of

carbonates and bicarbonates of Na) and a shallow sodic water

table led to soil sodification (Choudhary et al., 2011; Sheoran

et al., 2021). The unfavorable influence of different types of salts

on soil properties creates limitations for crop production (Taha

et al., 2020; Ding et al., 2021; Taha et al., 2021; Zain et al., 2021).

Therefore, reclamation and strategic management are requisite

for crop production (Rai et al., 2021c; Hopmans et al., 2021).

Soil health or soil quality is largely defined as “fitness for use”

or “capacity of the soil to function” (Karlen et al., 1997). A

modest attempt had been made for assessing the soil quality of

agricultural soil (Masto et al., 2008a; Martins et al., 2017; Basak

et al., 2021a). But only a few groups had attempted a

comprehensive assessment of soil quality of salt-affected soils.

Some discrete studies identified key soil quality indicators for

addressing soil quality of saline and sodic soil (Mahajan et al.,

2016, 2021b; Sione et al., 2017; Vasu et al., 2018; Yu et al., 2018). It

is a well-established fact that reclamation and management of

salt-affected soils are associated with a decline in ESP, ECe, pHs,

and improved crop yield (Rai et al., 2022; Sheoran et al., 2022).

But, the reclamation and management strategies in SAS had an

influence on all soil processes influencing the physical, chemical,

biological, and biochemical properties of soil (Mahajan et al.,

2021b; Zhao et al., 2021). The relative response of different soil

attributes depends upon the intrinsic soil properties, geological

settings, hydrological cycle, and other pedogenic forces driving

salinization and sodication (Jobbágy and Jackson, 2004). The

nature and amount of the amendment needs are also governed by

these factors. The amendments needed for bringing the same

amount of change in soil quality to perform the desired function

in vertisols are different from those of inceptisols at the same level

of pH and ESP in the semi-arid region of the Indian Deccan

Plateaus (Pal et al., 2006). Therefore, linking all the management

and reclamation needs with the change in soil quality desired is

an important aspect of the management of these soils. In the

absence of a wholesome soil quality index, the imbalance in

fertilization and other management practices not only reduces

the use efficiency of applied nutrients but also increases the cost

of cultivation. Overuse of some nutrients also acts as a non-point

source of pollution in different components of the ecosystem. Soil

salinity and use of poor quality groundwater (saline/sodic with

high RSC; residual sodium carbonate) further aggravate the

agrarian distress. Therefore, orienting the crop management

decisions while keeping soil quality or soil health in focus is

the first and foremost step needed to manage soils more

efficiently and ensure profitability. Therefore, this study aimed

to provide an overview of the global extent of salt-affected soils,

strategies for successful rehabilitation, and approaches for soil

quality assessment followed worldwide. The mechanism for

salinity tolerance and agronomic measures for the

management and their impact on soil quality are critically

discussed. Furthermore, issues related to parameterization in

salt-affected soils for developing a minimum dataset for

describing the changes in soil attributes after the reclamation

of salt-affected soils, soil quality assessment, and future research

needs are also highlighted.

Materials and methods

This review was developed based on the published

information on the extent, distribution, characteristics,

development, rehabilitation strategies, salt-tolerance

mechanisms in crop plants, and soil quality assessment as per

the requirement of the hypothesis of the review. The information

available from Google Scholar, Crossref, Google Scholar profile,

Pubmed, ScienceDirect.com, Springer.com, Wiley Online
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Library, CSIRO Publishing, FAO reports, and CSSRI database

was retrieved using relevant keywords. Based on the

comprehensive review of the available literature (n = 161),

present state and key issues associated with the soil quality

assessment of salt-affected soil were developed as envisaged in

the hypotheses and objective of this review.

Results and discussion

Characterization and classification of salt-
affected soils

Soluble salts of different nature and quantities are present in

salt-affected soils. These salts are formed with a combination of

cations (Na+, Ca2+, Mg2+, and K+) and anions [Cl−, SO4
2–, CO3

2–,

HCO3
−, and SiOx

–n as and minor quantity of (H)xPO4
n and

NO3
−]. Considering the stoichiometric dominance of electrolytes

and their nature, SAS are classified into saline, sodic, and

saline–sodic.

Saline soils
Accumulation of soluble minerals from weathering of rocks

and minerals, aeolian deposits, and evaporation of seawater in

geological areas with drainage congestion are the reasons for soil

salinization (Gupta and Mathur, 2011). Scarcity of rainfall, shift

in precipitation patterns, high air temperature which led to

intense evaporation, and shortage in surface irrigation water

resources are the reasons for secondary salt accumulation in

irrigated agriculture. Faulty irrigation management through

border irrigation in the canal command area, imperfect

drainage system, and excessive use of underground saline/

alkali water without proper management also hastened soil

salinity development (Cai et al., 2010). An extensive irrigation

network had been developed in Indo-Gangetic Plain in India and

Pakistan (Fishman, 2018; Hayat et al., 2020), China (Xu et al.,

2013), Australia (Ranatunga et al., 2010), Egypt (Abdel-Fattah

et al., 2020), and United States (Hansen et al., 2018) for creating

the habitation settlement, crop productivity assurance, and

increasing the livelihood security. Irrigation in some regions

without giving due consideration to irrigability classification

caused accumulation of the appreciable quantity of electrolytes

(Na+, Ca2+, and Mg2+ salts) present in irrigation water in the root

zone. Some proportions of electrolytes maintain soil permeability

or prevent aggregate failure, loss in soil permeability, and

drainage congestion (Quirk, 2001; Bennett et al., 2019). The

poor vegetation cover and excess use of irrigation water and

agricultural input alters the equilibrium of the underground

water and causes exposure of soils to salts. Rise in mean air

temperature causes an increase in evaporation demand as well as

change and shifting in rainfall distribution. This phenomenon, in

turn, increases/decreases water availability, drainage congestion

or occurrence of flood, and land subsidence and soil erosion at

coastal lines (Brammer, 2014). Sea level rise because of the

melting of glacial snow and thermal expansion of seas are

responsible for the inundation of adjacent coastlines (Eswar

et al., 2021). The sea-level rise and terrestrial ingress of

brackish water is the primary threat to global coastal

ecosystems (Dasgupta et al., 2015). Heavy storm and/or surges

influence the temporary inundation of low-lying coastal lines

with brackish water. The recurring intrusion of seawater by land-

use change from paddy rice to brackish aquaculture or shrimp

farming is also responsible for soil salinization, build-up of

acidity, and losses of organic C content, which increases the

vulnerability of the rice ecosystem in coastal areas (Ali, 2006;

Blankespoor et al., 2017). The climate change also drives soil

salinization by promoting upward salt flux because of the

increased temperature of the earth and seawater and changes

in rainfall patterns (Wasko and Sharma, 2017; Seleiman and

Kheir, 2018).

Sodic soils
Carbonate salts supplied through weathering of alkaline

alumino–silicate minerals, shallow groundwater table, large

evaporation demand, and aeolian deposition favor the build-

up of these salts (Jobbágy et al., 2017). The Indus basin of India

(Qadir et al., 2018; Sheoran et al., 2021), the vertisols (Shirale

et al., 2018) of the Indian Deccan plateau, irrigated farming areas

in Australia, Central Asia with Iraq, Iran, and the Aral Sea Basin

(Raiesi and Kabiri, 2016), Nile and Niger valley in Egypt and

Africa (Abdel-Fattah et al., 2020), and the irrigated basin of

Argentina (Sione et al., 2017) showed the deposition of Na salts

and prognosis of sodication (Figure 1). Sodic soil remains

dispersed and deflocculated because of failure in aggregation.

Clogging of pore space restricts air entry and lowers hydraulic

conductivity (Bennett et al., 2019). Presence of Na+ and CO3
2–/

HCO3
− and poor microbial activity under alkaline soil

pH conditions limits carbon supply and promotes its loss

because of increased organic matter mobility (Datta et al.,

2019; Basak et al., 2021a Deb et al., 2020). The precipitation

of Ca2+ as amorphous CaCO3 aggravated the Na+-induced

toxicity and nutritional deficiency of Ca2+ (Rai et al., 2021b).

The disintegration of rocks is the primary source of CaCO3 in the

soil having poor aeration. The soluble Ca2+ and Mg2+ in the

soil–water environment supplied from biochemical weathering

and exchange process supply and prolonged water trajectory

make sure the system is saturated with Ca2+/Mg2+ upon HCO3
−

(Jobbágy et al., 2017). Contrarily, in short trajectories, the chance

of HCO3
− saturation may arise because of chemical weathering of

calcareous rocks. Moreover, Na+ selectivity in the sodic

environment reinstates Ca in the solution and results in

precipitation of CaCO3. In an extreme alkaline condition

(pH ~12.0), the hydrolysis of Na2CO3 (Bajwa and Swarup,

2012) and precipitation out of Ca2+ in CaCO3 favor the

existence of OH− in soil–water solution. Therefore, a rise in

the soil pH in calcareous sodic soils than in non-calcareous sodic
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soil is rational because of the spontaneous release of OH−. In one

way, the presence of exchangeable Na and in another way the

nonexistence of a good quantity of neutral soluble salts lead to

development of extremely higher pH (Basak et al., 2015).

2NaHCO3 → Na2CO3 +CO2 +H2O,

Na2CO3 + 2HOH → 2Na+ + 2OH− +H2CO3,

Na−feldpars +HOH → H−silicate clay +NaOH.

Extent and impact of SAS

A significant land area (~932.2 Mha) of the Earth is affected

with salinity (Rengasamy, 2006). The faulty irrigation practices

further aggravated this problem, and 34.2 Mha of total irrigated

area is affected by salinity (Mateo-Sagasta and Burke, 2011;

Aquastat, 2016). Because of the dynamic nature of soil

salinity/sodicity, more than hundred countries are affected by

SAS distributed on all the continents. Central and southeastern

Asian countries (China, India, Pakistan, Iran, and Iraq) and other

Western countries (United States), a major part of Australia,

Argentina, and some areas of Brazil from the Southern

Hemisphere; Italy and Spain from Europe are the main spots

of global soil salinization (Ghassemi et al., 1995; Aquastat, 2016).

Soil salinization is extensively reported in some important river

basins, namely, Aral Sea Basin in Central Asia, Indo-Gangetic

Basin in India, Indus Basin in Pakistan, Euphrates Basin in Syria

and Iraq, Yellow River Basin in China, San Joaquin Valley in

California, and Murray–Darling Basin in Australia, and these are

reported to have severe problems of salinization (Chang and

Silva, 2014; Qadir et al., 2014). Salinity- and sodicity-induced

land degradation and faulty agricultural practices promote the

buildup of salinity and increase sodification and reduce crop

productivity. Salinization dents nearly of US$ 31 million annual

loss in agricultural productivity (FAO, 2015). The yield losses of

major agricultural crops, namely, wheat, rice, sugarcane, and

cotton are about 40, 45, 48, and 63 percent on SAS in the Indo-

Gangetic Plain of India, respectively (Sharma et al., 2015). These

losses in wheat and rice crops are 20–43 and 36–69 percent from

SAS in the Indus Basin of Pakistan, respectively (Murtaza, 2013).

Furthermore, in the United States, Egypt, Uzbekistan, and

FIGURE 1
Salinity and sodicity: problem and threat (adopted from Falloon and Betts, 2010; Raiesi and Kabiri, 2016; Rengasamy, 2016; Liu et al., 2017; Sione
et al., 2017; Mandal U. K. et al., 2019; Neubauer et al., 2019; Abdel-Fattah et al., 2020; Hayat et al., 2020; Mahajan et al., 2021a).

Frontiers in Environmental Science frontiersin.org04

Basak et al. 10.3389/fenvs.2022.935785

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.935785


Turkmenistan, the crop yield losses are 10, 30, 40, and 40 percent,

respectively (Pitman et al., 2004). The monetary loss of

agricultural production in India and Australia are ~2.0 and

1.3 billion US$, respectively. Long-time irrigation with high

alkali water resulted in the build-up of sodicity with 14–16%

loss in the grain yield of wheat and rice (Sheoran et al., 2021). The

effect of salinity and presence of exchangeable Mg cause a yield

loss of cotton in the Aral Sea Basin of southern Kazakhstan

(Vyshpolsky et al., 2010). Depending on the type of land

degradations and their intensity, the cultivated crop/cropping

system followed, irrigation water quality, extension and

congestion of the irrigation/drainage network, and available

amendment use/management options available, and the saline

areas of Kazakhstan, India, and Pakistan reported a wide

variation in yield losses from 6 to 71, 40–63, and 36–69%,

respectively. Because of inflation adjustment, the cost of salt-

induced land degradation was US$ 441 ha−1 in 2013 (Qadir et al.,

2014), and the aggregated total annual economic loss was US$

30 billion (Shahid et al., 2018) at a global scale. Both yield penalty

and need for additional investment of higher input multifaceted

the economic costs for salt-affected lands. The crop yield losses

are particularly detrimental at the farm level but often

underestimated at the macro level (Mandal et al., 2018). India

loses annually around 16.8 Mt of agricultural production because

of salinity and associative constraints (Mandal S. et al., 2019).

Five percent of the Earth’s land area is salt-affected, and 75% of

the cultivable area under irrigated agriculture is affected by

salinity (Hopmans et al., 2021). For feeding the nine billion

people by 2050, it is anticipated that crop production can be met

by greening SAS soil with appropriate agro-techniques.

Plant adaptation strategies in the SAS
ecosystem

Plants face primarily the osmotic stress when exposed to salinity

(electrical conductivity, ECe) and suboptimal soil water potential.

Under these conditions, plants generate different osmolytes such as

proline, simple carbohydrates, polyols, amino acids, and quaternary

ammonium compounds such as betaine and glycine to increase the

osmotic balance at the cytoplasmic scale and try to maintain cell

turgidity (Seleiman et al., 2022). In this way, the plant metabolic

activities are sustained, and their growth and productivity are

maintained. By accumulating the simple and soluble

carbohydrates, plants enhance their osmotic potential and

alleviate osmotic stress (Sharp et al., 1990). In addition to water

stress, roots also experienced toxicity of Na+ in severe salinity;

therefore, plants need acclimatization under such conditions.

When Na+ is absorbed by roots, the plants can either exclude

Na+ from the cytoplasm or move it to the inactive metabolic

sites such as vacuoles. The K+/Na+ antiporter present at the

vacuolar surface plays a major role in separating Na+ and

consequently lowering the Na+ concentration in the cytoplasm

(Liang et al., 2018). The tolerant plants generate an antioxidant

mechanism by biosynthesis of various enzymes, namely, superoxide

dismutase and catalase. Several reports proved that the antioxidant

guard mechanism copes with the oxidative damage during salinity

stress in crops (Noctor and Foyer, 1998).

Soil quality of salt-affected soils:
Problems in parameterization

Huge spatial and temporal variations of soil are a challenge

for estimating some soil properties of SAS for soil quality

assessment. Alkalinity usually affect soil physical properties

with poor soil water permeability. Massive soil structure and

hard crust on the surface layer hinder seedling emergence and

poor plant establishment. Greater osmotic potential of saline

soils because of the abundance of soluble and quasi-soluble

electrolytes largely affect soil–plant water relation, and plants

face severe water stress due to physiological unavailability of

water (Wong et al., 2010). Impaired biogeochemical cycling of

essential nutrients, namely, excess losses of N, mysterious

behavior of soil P (Sundha et al., 2017), and an antagonism

relation between Cl− and H2PO4
−, Cl− and NO3

−, Cl−, and SO4
2–

and Na+ and K+ (Rai et al., 2021b; Sundha et al., 2022) are the

major issues associated with the nutrition of plant under SAS.

Furthermore, increased ionic strength also affects nutrient

elements present on soil colloids. Deficiency of Ca and excess

of Na affect K nutrition; the toxic appearance of HCO3
− and

CO3
2– in alkali soil also decreases the solubility and availability of

Zn and Fe. Many sodic areas also exhibit severe soil erosion,

which promotes the loss of soil organic matter (Wong et al., 2010;

Datta et al., 2019; Deb et al., 2021; Basak et al., 2021b). The

extended periods of submergence because of poor soil

permeability also affect soil biological properties (Wong et al.,

2010). The researcher mostly specified most of the time to

analyze physical features and climatic factors associated with

specific salt-affected soils. Therefore, special attention is needed

while selecting analytical techniques (Table 1) for estimating

physical, chemical, and biological attributes of these soils (USSL,

1954; Bhargava, 2003; Basak, 2014).

Soil quality assessment of SAS

Soil quality is measured for making an inventory of the health

status of soils and assessing the impacts of human perturbations on

them. Such assessment should be carried out with respect to

undisturbed pristine or virgin sites. However, it is difficult to find

such sites (as a reference level) for comparison to capture possible

degradation or aggradation caused by anthropogenic perturbation.

Therefore, a relative assessment of the quality of soils with varying

anthropogenic stresses is performed for screening and subsequent

adoption of less/non-damaging types for upkeeping health (Basak

Frontiers in Environmental Science frontiersin.org05

Basak et al. 10.3389/fenvs.2022.935785

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.935785


et al., 2021a). Screening of the indicator constitutes an important

part of soil quality assessment. Indicators are of two types—one,

inherent indicators—these are native and quasi-permanent and

undergo little changes; and the other, dynamic indicators—these

reflect/capture the signatures of perturbations to which soils are

subjected. They are selected based on several principles, as indicated

in Figure 2 (Mandal et al., 2016).

Formulation of minimum datasets

After generating the database on identified indicators for

soils subjected to different management practices, a critical

statement needs to be made as to the aggrading or degrading

influence of the practices on their (soils) quality (Masto et al.,

2008b). Often, it is difficult to assess the soil quality using

TABLE 1 Critical issues associated with quality data generation at a usual soil science laboratory for analyses of parameters of salt-affected soil.

Soil attribute Significance for soil
function

Method
employed for analysis

Important consideration for
SAS

Soil physical attribute

Bulk density Leaching, productivity, and erosivity Undisturbed soil clods disturb soil analysis Preference should be for in situ undisturbed soil
method

Hydraulic
conductivity

Water relations and aeration Guelph permeameter, constant head method
with disturbed soil samples

Falling head method is recommended with
undisturbed samples for sodic or saline–sodic soil
because of poor permeability

Soil texture Soil water relation, nutrient availability, and
soil erosion

International pipette method For saline and saline–sodic soil excess electrolytes
need to wash out (<40 μS cm−1) to promote
dispersion of soil particles Bhargava, (2003)

Aggregate analysis Physical stability and support aeration and
water relation

By wet sieving In situ undisturbed soil is a good representative

Soil chemical attribute

Soil pH and electrical
conductivity (EC)

Chemical environment of the rhizosphere Soil pH of saturation paste (pHs) and EC of
saturation paste extract instead of soil pH and
EC in soil: water mixture of 1:2

This process truly expresses the soil chemical
environment and available soil water content to
crop growth. Additionally, these corrected
expressions can categorize the problematic soils
from normal soil USSL, (1954)

Soil organic C and
soil organic matter

Food web in soil and determinant of soil
health

Analysis of SOM/SOC through Walkey and
Black wet oxidation method corrected for
recover factor

Oxidizable organic C is poorly correlated with the
total organic C of soil. The very labile C is a better
representative of available N. Very labile C
determination is less expensive and environment-
friendly Majumder et al. (2008)

Soil total C C concentration in soil Elemental analyzer Enough precaution needed because of small
sample handling

Soil available P P supply to the plant Olsen’s and Bray’s and Kurtz method for
neutral to alkaline and acidic soils, respectively

Very sensitive to silicate contamination; use of
itched glass recommended to avoid contamination

Cation exchange
capacity

Nutrient retention, buffering capacity,
filtration of water, Sanyal et al. (2012)

Leaching and centrifugation method Bhargava,
(2003)

Proper washing of soluble salts is requisite to
minimize error in results of salt-affected soils
Tucker, (1985)

Presence of toxic
substance

Soil biological activity and food chain
contamination

Extractable and proximate analysis AAS and ICPES facilities are necessary for
detection of extent and intensity of pollutant

Soil biological attribute

Soil microbial
biomass C

Microbial catalytic potential and repository
for nutrient; an early indicator of
management effect on soil properties

Chloroform fumigation and extraction method Time-consuming and laborious, possibility of
generating a spurious dataset; correction factor
needed to convert extracted carbon flux to MBC
Vance et al. (1987)

Soil respiration Microbial activity Laboratory incubation Suffers from large spatio-temporal variability

Soil enzymes Extracellular decomposition of complex
organic compounds

Individual methodology are described for
determining some assay values of soil enzyme

Determination is very costly

Each enzyme represent specific soil function

Frontiers in Environmental Science frontiersin.org06

Basak et al. 10.3389/fenvs.2022.935785

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.935785


individual indicators, unless the databases are judged for their

influence on the functional goal of soil. Accordingly, the

databases are screened through several parametric and

nonparametric statistical tests based on their influence on goal

variables to formulate a minimum dataset (MDS) of indicators

(Masto et al., 2008b). Subsequently, the databases for different

indicators screened are validated with goal variables or with

expected functions through statistical tools, namely, simple

correlation, multiple regression, principal component analysis

(PCA), and discriminant analysis (DA) to indicate their

(indicators) representation in the variability of goal functions.

The whole process of the formulation of MDS has elegantly been

described by earlier researchers (Andrews and Carroll, 2001;

Andrews et al., 2004; Basak et al., 2016) (Figure 3). Many

researchers in India also screened out master indicators for

different soil types and cropping systems for assessment of

soil health as a function of biological productivity/sustainable

yield only (Table 2); few of them have assessed soil quality using

management goals, namely, productivity, environmental

protection, specify targeted soil threats, and/or ecosystem

services by capturing identified distinguishing minimum

datasets of indicators (Bhaduri et al., 2014; Bhaduri and

Purakayastha, 2014; Bünemann et al., 2018). These indicators

varied significantly even within a soil type or production system.

Similarly, variation was apparent in screened master indicators

for salt-affected soil across the globe (Table 2). Therefore, the

selection of methods for measuring indicators assumes

significance to minimize the variation within a soil type or

production system and measure soil functionality and their

integration to capture informative soil quality indices

(Lehmann et al., 2020). A few desirable features of methods

for measuring indicators are 1) high throughput, 2) ease of use, 3)

storage, 4) potential reference material, 5) achievability, 6)

FIGURE 2
Criteria for soil quality indicator selection modified from
Mandal et al. (2016)

FIGURE 3
Schematic diagram showing all the processes, namely, indicator selection, minimumdataset formation, interpretation, and integration involved
for calculation of soil quality index (modified from Andrews et al., 2004)
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deployment status, 7) sample collection, 8) international

comparisons, 9) how much soil, 10) infrastructure, 11)

cost—hardware/labor, and 12) multi-parametric in nature

among the screened indicators even for a similar production

system raised at different geographical sites (Mandal et al., 2016).

One of the major tasks for researchers is to work on finding

TABLE 2 Soil quality assessment in salt-affected soils; figures in parenthesis are the number of attributes used.

Agroecology and
region

Country Method used Variability
explained (%)

Selected soil quality indicator Reference

Alkaline soil, semi-arid
region

China Principal component
analysis and expert
opinion (EO)

86 (22) Invertage, N/P ratio, dissolve soil organic carbon
(SOC), sodium adsorption ratio, very labile C

Yu et al. (2018)

Semi-arid environment
under different tillage

Iran PCA 89 (16) C and N mineralization, alkaline phosphatase, urease,
microbial biomass C, and CaCO3 content

Raiesi and
Kabiri, (2016)

Vertisols under sodic water
irrigation

Argentina Regression analysis
and EO

Aggregate stability, water percolation, SOC,
exchangeable sodium percent (ESP), pH, and
electrical conductivity (ECe)

Sione et al.
(2017)

Semi-arid Deccan plateau India PCA and EO 86 (24) Clay, pH, CaCO3, ESP, exchangeable magnesium, and
saturated hydraulic conductivity

Vasu et al. (2018)

Saline soil in Indo-
Gangetic Plain

India PCA and EO 62–67 (15) α-glucosidase activity, microbial biomass C (MBC),
ECe, KMnO4– oxidizable N, MBC: MBN, and urease
activity

Soni et al. (2021)

Sunderbans delta India PCA and EO 84 (23) MBC, ECe, soil moisture content, and pH Mitran et al.
(2021)

Sodic soil, Indo-Gangetic
Plain

India PCA 73 (23) ECe, SAR, DTPA extractable Cu, SOC, hot
water–soluble B and Olsen’s P

Barman et al.
(2021)

Coastal saline soil India PCA 82 (18) Soil pH1:2.5, EC1:2.5, DTPA extractable Fe, Zn, Cu, hot
water–soluble B, basal soil respiration, and urease

Mahajan et al.
(2021b)

FIGURE 4
A comprehensive framework for developing soil quality indices.
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commonality in indicators for different soil types and production

systems. This will facilitate development of easy and inexpensive

methods for common master indicators and their inclusion in

routine analysis in soil testing laboratories for assessment of soil

health. Studies assessing the quality of soils to meet other

ecosystem services have hardly been conducted in India,

although its role and capability for providing water security

(NO3, As, or F pollution), waste recycling, biodiversity,

environmental protection, and climate change abatement are

in urgent demand for assessment. A modest beginning can be

made with the existing long-term experiments where along with

biological productivity, biological diversity, carbon budgeting,

and crop quality may be included as goal variables (Bhaduri et al.,

2014).

Calculation of soil quality index

Screened soil quality indicators for a production system

highlighting the aggradation or degradation effect through

multidimensional trends (positive, negative, or no change) and

intensity (degree) are converted into an index. These indicators

are combined together (Figure 3) into a combinable index (soil

quality index) for getting a unique value for describing

aggradations or degradation in soils owing to specific

management practices. To combine the indicators, sometimes

different weights are given to them based on personal judgment

or values of the coefficients of determinations of multiple

regression, principal component analysis (PCA), and

discriminant analysis (DA) associated with those indicators

during screening through different statistical methods in the

form of a weighted additive or simple additive (Andrews and

Carroll, 2001; de Lima et al., 2008; Mukherjee and Lal, 2014). The

soil quality index (SQI) is developed for soils under different

management practices and cropping systems in a large number of

long-term fertility experiments in India by several researchers

(Basak et al., 2021a; Figure 4). Recently, Soni et al. (2021) assessed

the SQI for saline soils under tillage, mulching, and deficit saline

water irrigation.

Soil quality improvement under
different rehabilitation approaches
for SAS

Improving soil quality of sodic
soils—impact of gypsum and alternate
reclamation technology

Sodic soil reclamation was initiated by applying inorganic

substances, namely, gypsum, phosphogypsum, fly ash, inorganic

sulfur, sulfuric acids, pyrites, aluminum chloride, sugar industry

byproduct press mud and acid formers, and bioaugmented

substances with gypsum (CSSRI, 2006; Hafez et al., 2015; Rai

et al., 2021a). If irrigation water is safe for soil and crops, then

soil sodicity reclamation is principally a single-time investment for

sustaining production (Rai et al., 2021b). Usually, 3–4 years are

required after the adoption of reclamation technology for rice-

based cropping systems to reach their productivity potential

because of the gradual replacement of a large amount of Na+

from soil colloids by Ca2+ during the progress of reclamation

(Abrol and Bhumbla, 1979; Zhang et al., 2021). When sodicity is

a consequence of water-born alkalinity, then recurring applications of

amendments are advocated to overcome water-born sodicity

(residual alkalinity) and maintain soil quality and sustainable crop

yield (Singh et al. 2019; Sheoran et al., 2021). The application of

organic materials such as city waste compost, gypsum enrich

compost, sulfur-rich compost, and the byproduct of sugarcane

industry press mud in conjunction with gypsum improves crop

yield by decreasing soil pH and ESP because of decrease in the

precipitation of Ca and greater removal of Na in drainage waters

(Grigg et al., 2006; Choudhary et al., 2011; Sundha et al., 2020).

Calcareous sodic soils are recommended for reclamation through the

application of elemental sulfur (Ganjegunte et al., 2018). On-farm

and participatory research experiments conducted in the CSSRI and

other national laboratories reported improvement in soil quality

upon reclamation (Supplementary Table S1). The rice–wheat system

in the sodic area (pH1:2 8.7) of western India maintained optimum

yield by addition of 100 and 150 percent of the recommended doses

of fertilizer (RDF) with necessary improvement in pH1:2, EC1:2, SOC,

Olsen’s P, NH4OAc extractable K, andDTPA extractable Zn andMn

(Swarup and Yaduvanshi, 2000). Application of N @120 and P @

26 kg ha−1 + FYM/press mud/gypsum improved SOC and sustained

wheat yield in sodic soil (pH1:2) when irrigated with sodic water (RSC

8.5 me L−1; SAR of 8.8) in sodic areas of northwestern India

(Yaduvanshi and Sharma 2008; Yaduvanshi and Swarup, 2005).

Reclamation of soil declined soil pH1:2 and SARe and improved

SOC, and increased the uptake of KMnO4–N, Olsen’s P, and

NH4OAc extractable K. The results from the participatory

experiments carried out at 10 locations in the central Indo-

Gangetic plain showed a reduced level of sodicity (as decrement

in ESP, SARe, and soil pH1:2 and EC1:2Singh) and increased SOC and

improved soil porosity, void ratio, and saturated hydraulic

conductivity because of green manuring in the rice–wheat

cropping system (Singh et al., 2014), although the

phosphogypsum (PG) application is questionable because of the

presence of heavy metals (Mishra et al., 2019). However, the

application of PG was associated with declined soil pH1:2, EC1:2,

ESP, and SARe and improved soil fertility (increased Olsen’s P,

NH4OAc extractable K, and DTPA extractable Fe, Mn, Zn, Cu etc.),

soil physical quality (reducingwater-dispersible clay and bulk density;

and improving infiltration, aggregate ratio, mean weight diameter

and aggregate associated C), and improved rice yield (Nayak et al.,

2013). Recently, Yu et al. (2014) claimed the neutralization of soil

sodicity and improvement of soil physical properties such as an

increase in hydraulic conductivity and soil porosity reduce by the
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application of flue gas desulphurization gypsum (FGDG). Acidified

biochar produced from rice straw and dicer wood chips facilitate the

losses ofNa and reduce the EC and SARe (Sadegh-Zadeh et al., 2018).

Improving soil quality of saline soil: impact
of agronomic practices and engineering
measures

Reduce tillage, deficit irrigation, mulching, adoption of low

water requiring crops, and cultivation of salt-tolerant varieties

for water-saving and minimizing salt load in applied irrigation

events are strategies for productive utilization of saline soils

(Singh, 2009; Li et al., 2019; Seleiman et al., 2019). Deficit

irrigation (DI) with available saline water is adopted to check

frequent drought and sustain crop production (Jiang et al.,

2012; Nagaz et al., 2012). Paddy straw mulch and efficient water

management had the potential for restoring soil health,

checking evaporation, and improving crop productivity

(Purakayastha et al., 2019; Soni et al., 2021) (Supplementary

Table S2). These practices permit water to move more quickly

into and through the soil profile, increasing salt leaching and

inhibiting salt build-up in surface soil (Grigg et al., 2006; Yuan

et al., 2019; Zhang et al., 2021). Therefore, the DI and mulching

synergized with the climate and soil of a geographical area can

be a nature-based solution working within the limits of the

existing natural resources (Visser et al., 2019; Soni et al., 2021).

Zero tillage is also effective in increasing soil fertility, building

soil organic carbon, restoring soil structure, and leading to a

reduction in soil evaporation and salinity (Wang et al., 2014).

Several researchers report that salinity has an undesirable effect

on soil microbial biomass C, N, and basal soil respiration (BSR),

whereas it has a positive effect on metabolic quotient (qCO2)

(Tripathi et al., 2006; Egamberdieva et al., 2011; Iwai et al., 2012;

Mahajan et al., 2016). Salinity-induced stress might have

reduced the positive respiratory activities of the

microorganisms (Tripathi et al., 2007; Iwai et al., 2012). The

toxic effect of the dominant cation Na+ slows down the growth

of soil microorganisms and MBC rather than the C input (Rietz

and Haynes, 2003; Egamberdieva et al., 2011; Mavi and

Marschner, 2013). In general, larger soil enzyme activities

were noted with low electrolyte concentration and vice versa.

Organic amendments in association with microflora increase

mineralization, with an associated increase in CO2 release and,

consequently, soil aeration, apparently due to increased

enzymatic activities. Such an increase in mineralization

improves the soil fertility and crop productivity in saline

soil. Leaching accomplished by ponding water in the well-

leveled field with good quality water (annual rain, river, or

underground) is the reasonable choice to remove excess salts

and electrolytes in soils below the root zone in the soil profile.

The amount of salts leached from soils depends on the amount

and quality of irrigation water and soil texture. Surface flushing

with water is advocated to wash surface-deposited salts (Nayak

et al., 2008). This practice is recommended for soil with low

permeability, and soil is prone to crust formation. Scarping of

loaded salts is followed to manage marginal landholding

affected by salinity; however, recurring removal of salts is

recommended to attain desired change in soil salinity for

productive use. Proper leveling, zero (minimum) tillage,

mulching, conjunctive use of saline water in cyclic or mixing

mode with good quality water, light and frequent application of

saline irrigation for reduction of cumulative water deficit,

irrigating with best available water at sensitive crop stages

(germination and seeding emerging stages), pre-sowing

irrigation for Kharif (summer) crop, improving water use

efficiency practice by pressurized drip/sprinkler irrigation

which facilitates the washing of root zone salinity, and

sustaining crop production are the promising options for

fruitful utilization of SAS and saline water (Soni et al., 2021;

Garg et al., 2022; Rai et al., 2022). Exogenous application of

plant growth regulators (salicylic acid, thio-urea, and potassium

nitrate) alleviated sodicity stress of both soil and water-born

sodicity by triggering physiological parameters of the rice

(Singh et al., 2022). The use of bio-drainage is advocated to

manage waterlogged saline soils by physiological transpiration

of water (Dagar et al., 2016).

Underground or surface drainage is a long-term solution

for lowering the water table and leaching of salts and

providing a favorable salt balance in surface soil. A

perforated corrugated PVC pipe protected with synthetic

filter consistently established in the proper plan below the

rooting depth to reduce poor quality water table and remove

excess salts and water by gravitational action or pressurized

pump. Ingress of brackish water and seawater tides can be

checked by building tall and well-made earthen banks.

Building of pond and water harvesting unit conserves

seasonal rain and utilization of it for irrigation of dry

season crops and leaching of salts. The farm pond

technology delivers the scope for crop diversification,

round-the-year cropping, and integrated farming because of

improved irrigation facilities, checking of salinity, and

improved drainage conditions (Chinchmalatpure et al., 2015).

Conclusion and future research
direction

Soil salinity and sodicity are the major issues impacting crop

production on ~1 billion hectares of land distributed in arid and

semi-arid regions worldwide. These soils are broadly categorized

into saline, sodic, and saline–sodic depending upon the

dominance of soluble (chloride/sulfate) and/or alkaline salts

(carbonate/bicarbonates) of Na, K, Ca, and Mg. The

disproportionate presences of salts in these soils reduce the

choice of the crop and incur the annual productivity loss
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equivalent to 31 million US dollars. Application of Ca-bearing

salts, pyrites, and other organic amendments and engineering

and agronomic approaches are successful in the rehabilitation of

these soils. The success of rehabilitation of SAS can be further

enhanced by selecting crop varieties capable of withstanding

osmotic stress, water deficit, and toxicities of specific ions. The

soil quality indices developed for different stages of the

rehabilitation of salt-affected soils act as a tool for monitoring

the real-time progress of the management process adopted in

these soils. The screening of the inherent and dynamic indicators

capturing the signature of the soil perturbations constitutes an

important part of soil quality assessment. Different studies had

identified the bulk density, hydraulic conductivity, pH, electrical

conductivity, exchangeable sodium percent, microbial biomass

C, and soil enzymes, which are the master indicators for soil

quality assessment. The spatial and temporal variations of salt-

affected areas are the major problems for the selection of master

indicators of soil. A developed soil quality index for the SAS soil

will enable the functionaries to assess the real-time impact of

management options for different soil functions. It also enables

the farmers to select site-specific and goal-specific management

plans for improved resource use efficiency, reduced

environmental impact, increased productivity, and farm

economy. The soil quality–based management plan can be a tool

for policy planners for monitoring the progress of land reclamation,

soil health management, and environmental protection. Recent

development in material science has the potential to develop

some formulations such as polymers, nano-materials, acidified

biochars, elemental sulfur, sulfuric acid generator, and flue-gas-

desulphurization gypsum (FGDG), having the potential for

replacing gypsum as an amendment. In the future, scientifically

managed city waste compost can also supplement the sodic soil

reclamation program. Moreover, future application of these

alternatives for sustainable and profitable use in salt-affected soils

would not be practicable unless efficacy and efficiency in sodic soil

reclamation are established and low-cost methods for the

production are not devised.
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