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Spatial heterogeneity in methane (CH4) flux requires a reliable upscaling approach to reach
accurate regional CH4 budgets in the Arctic tundra. In this study, we combined the CLM-
Microbe model with three footprint algorithms to scale up CH4 flux from a plot level to eddy
covariance (EC) tower domains (200 m × 200m) in the Alaska North Slope, for three sites in
Utqiag_vik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-
Ivo), for a period of 2013–2015. Three footprint algorithms were the homogenous footprint
(HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that
assumes gradually declining contribution from center grid cells to edges, and the dynamic
footprint (DF) that considers the impacts of wind and heterogeneity of land surface.
Simulated annual CH4 flux was highly consistent with the EC measurements at US-Beo
and US-Bes. In contrast, flux was overestimated at US-Brw, US-Atq, and US-Ivo due to
the higher simulated CH4 flux in early growing seasons. The simulated monthly CH4 flux
was consistent with EC measurements but with different accuracies among footprint
algorithms. At US-Bes in September 2013, RMSE and NNSE were 0.002 μmol m−2 s−1

and 0.782 using the DF algorithm, but 0.007 μmol m−2 s−1 and 0.758 using HF and
0.007 μmol m−2 s−1 and 0.765 using GF, respectively. DF algorithm performed better than
the HF and GF algorithms in capturing the temporal variation in daily CH4 flux each month,
while the model accuracy was similar among the three algorithms due to flat landscapes.
Temporal variations in CH4 flux during 2013–2015 were predominately explained by air
temperature (67–74%), followed by precipitation (22–36%). Spatial heterogeneities in
vegetation fraction and elevation dominated the spatial variations in CH4 flux for all five
tower domains despite relatively weak differences in simulated CH4 flux among three
footprint algorithms. The CLM-Microbe model can simulate CH4 flux at both plot and
landscape scales at a high temporal resolution, which should be applied to other
landscapes. Integrating land surface models with an appropriate algorithm provides a
powerful tool for upscaling CH4 flux in terrestrial ecosystems.
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1 INTRODUCTION

Northern Arctic tundra is characterized by polygonal patterns
due to freeze-thaw cycles with large spatial heterogeneity in
vegetation and soil water table (Budishchev et al., 2014;
Petrescu et al., 2015; Lara et al., 2020). This heterogeneity
leads to a large spatial variability of methane (CH4) flux (Xu
et al., 2010; Budishchev et al., 2014), as the production,
consumption, and transport processes of CH4 are primarily
related to hydrology, vegetation, and microbial activities
(Vaughn et al., 2016). Modeling and predicting the spatial
variability of CH4 emissions at broader scales depend on the
upscaling algorithms that consider heterogeneous landscapes
(Davidson et al., 2016; Xu et al., 2016). At the plot scale
(10–2–1 m2), closed chambers are commonly employed to
measure CH4 flux for dominant topography and/or vegetation
types (Fox et al., 2008; Davidson et al., 2016). Numerous
empirical and mechanistic modeling studies have attempted to
upscale these measurements to the landscape scale (104–105 m2)
and evaluated them against eddy covariance (EC) flux (Baldocchi,
2008; Chen et al., 2012; Xu and Tian, 2012; Davidson et al., 2017).
Yet, these estimates ignored the impact of the spatial variability of
CH4 flux within the source area. Accurate regional estimations of
CH4 flux require an upscaling approach that considers the
mechanistic CH4 processes, including the key factors that
control CH4 flux across time and space (Xu et al., 2016).

Factors affecting Arctic CH4 emission vary substantially across
spatial scales (Mer and Roger, 2001; Serrano-Silva et al., 2014; Xu
et al., 2016). The soil water table has been identified as a key factor
determining the CH4 flux (Funk et al., 1994; Pirk et al., 2017). In
addition, plant coverage and composition play an important role
in CH4 emission by affecting CH4 transport pathway and
providing substrate for methanogens (von Fischer et al., 2010;
Bhullar et al., 2013; McEwing et al., 2015; Davidson et al., 2016).
Greater vascular plant coverage and density were linked to higher
CH4 emission (McEwing et al., 2015; Andresen et al., 2017), and
vegetation types can explain a large proportion of the variation in
CH4 flux in Arctic tundra (Sturtevant and Oechel, 2013;
Davidson et al., 2016). This is because sedges and vascular
wetland plants not only exist in waterlogged areas prime for
CH4 production, but they also transport CH4 through their tissue
straight to the atmosphere (Lai, 2009). Therefore, it is critically
important to include vegetation characteristics within an EC
footprint to improve the accuracy of CH4 estimation at the
landscape scale. In most CH4 models (Xu et al., 2016),
vegetation is represented as plant functional types (PFTs), and
in each PFT group, plant species share similar responses to
environmental factors (Langford et al., 2016). Therefore, it is
critically important to integrate mechanistic models of CH4

cycling with high-resolution spatial datasets of vegetation
coverage and environmental factors to improve the accuracy
of estimations of CH4 flux at the landscape scale.

The process-based CLM-Microbe model has been tested in
simulating plot-scale CH4 flux by validating with different
polygonal characteristics’ (e.g. troughs, rims, and centers) flux
at Utqiagvik, Alaska (Wang et al., 2019). In the previous study, we
upscaled model-simulated flux from the plot to landscape scales

and validated it with EC measurements using the area-weighted
average approach (Wang et al., 2019). However, this approach
can be rather inaccurate because the contribution of areas in
upscaling might be different within the EC tower footprint,
leading to a significant mismatch (Oechel et al., 1998; Fox
et al., 2008). Accurate knowledge of footprints is of crucial
importance for upscaling from plot-scale flux measurements to
the landscape scale. Flux footprint algorithms generate the spatial
extent and position of the probable source area for EC flux
measurements by integrating effects of wind direction and
speed, roughness at a specific time point, thereby they are
widely used for understanding EC estimates and improving
greenhouse gas budgets (Horst and Weil, 1992; Kormann and
Meixner, 2001; Kljun et al., 2015; Heidbach et al., 2017). In our
study, we combined the CLM-Microbe model with three
footprint algorithms to better scale up to the landscape-scale
CH4 flux. The CLM-Microbe model represents 17 PFTs for
vegetation across the globe (Wang et al., 2019; He et al.,
2021a; He et al., 2021b); adding Arctic- and boreal-specific
PFTs in its vegetation modules makes it more appropriate to
capture Arctic vegetation processes.

This study was designed to apply the CLM-Microbe model to
simulate plot-scale CH4 flux with a fine spatial resolution for five
study sites in the Alaskan Arctic tundra. By incorporating
different footprint algorithms, we upscaled the simulated plot-
scale flux to the EC domain and validated it with the EC
measurements. In this study, we aim to 1) evaluate the
accuracy of CH4 estimates simulated by the CLM-Microbe
model with different footprint algorithms, 2) compare the
homogenous footprint algorithm (HF), gradient footprint
algorithm (GF), and dynamic footprint algorithm (DF) for
assisting upscaling CH4 flux, and 3) investigate the primary
controlling factors of CH4 emission at the landscape scale in
the Arctic tundra ecosystems.

2 METHODOLOGY

2.1 Site Information and Experimental Data
2.1.1 Site Description
We performed our study at five sites in the northern Alaskan
tundra (Figure 1), and detailed information on sites and
measurements is available (Arndt et al., 2020; Arndt et al.,
2019). Three of these sites are located in Utqiag_vik (formerly
Barrow), including US-Beo (71.2810°N, 156.6124°W), US-Bes
(71.2809°N, 156.5965°W), and US-Brw (71.3225°N,
156.6093°W) (Zona et al., 2016). US-Beo is a polygonal coastal
tundra site on the Barrow Environmental Observatory, and US-
Bes is an inundated wet coastal tundra site at the southern end of
the previous Biocomplexity Experiment, usually with a water
table above the surface of the soil due to its low elevation (Zona
et al., 2009). US-Brw is a well-drained, moist coastal tundra site,
and its vegetation is dominated by graminoids (Kwon et al.,
2006). The US-Atq site (70.4696°N, 157.4089°W) in Atqasuk is
located about 100 km south of Utqiag_vik; and the US-Ivo site
(68.4805°N, 155.7569°W) in Ivotuk is located about 300 km south
of Utqiag_vik in the northern foothills of the Brooks Range
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(Figure 1) (Davidson et al., 2016). US-Atq is characterized by
polygonized tussock tundra and sandy soils (Walker et al., 1989),
and US-Ivo, the most inland site, is the warmest and gently
sloping tussock tundra (Davidson et al., 2016). The sensors are
located between 2.0–4.17 m above the ground (3.12 m at US-Beo,
2.20 m at US-Bes, 4.17 m at US-Brw, 2.42 m at US-Atq, and
3.42 m at US-Ivo) (Arndt et al., 2019). These study sites have a
polar maritime climate with the majority of precipitation falling
during summer months (June-August). Detailed meteorological
and vegetation information for these sites is posted in the Oak
Ridge National Laboratory Distributed Active Archive Center
(ORNL DAAC) (https://doi.org/10.3334/ORNLDAAC/1562 and
https://doi.org/10.3334/ORNLDAAC/1546).

2.1.2 Data Source
CH4 flux was monitored at a half-hourly time step using an EC
tower at each study site for the period of 2013–2015, and half-
hourly flux was calculated from raw data using the EddyPro
software by LI-COR while missing data were gap-filled (Oechel
and Kalhori, 2018). Winter CH4 flux was difficult to monitor due
to the frozen equipment and frozen soil (Goodrich et al., 2016;
Zona et al., 2016). Daily CH4 flux was calculated as the mean of
half-hourly EC flux. Detailed information about the
measurement protocols is available at https://daac.ornl.gov/
ABOVE/guides/AK_North_Slope_NEE_CH4_Flux.html.

2.2 Model Implementation
2.2.1 Model Description and Driving Data
The CLM-Microbe model branches from the framework of
default CLM 4.5 in 2013. Therefore, the CLM-Microbe has
default decomposition subroutines in CLM4.5 (Thornton and

Rosenbloom, 2005; Thornton and Zimmermann, 2007; Koven
et al., 2013). The improvements in the CLM-Microbe model
include a new microbial-functional-group-based CH4 module
(Xu et al., 2015; Wang et al., 2019), and a new framework for
microbial controls on carbon mineralization (Xu et al., 2014; He
et al., 2021b). Detailed mathematical expressions for CH4

production, consumption, and transport processes were
organized (Xu et al., 2015; Wang et al., 2019). The code for
the CLM-Microbe model has been archived at https://github.
com/email-clm/CLM-Microbe since 2015. The model version
used in this study was obtained from GitHub on 27 May 2020.

The CLM-Microbe model considers the dynamics of dissolved
organic carbon, acetate, O2, H2, CH4, CO2, and the processes of
fermentation, homoacetogenesis, methanogenesis, and
methanotrophy (Xu et al., 2015). The four key mechanisms
for CH4 production and consumption are methanogenesis
from acetate or from single-carbon compounds; CH4 oxidation
using molecular oxygen or other inorganic electron acceptors;
and four microbial functional groups perform these processes:
acetoclastic methanogens, hydrogenotrophic methanogens,
aerobic methanotrophs, and anaerobic methanotrophs (Xu
et al., 2015; Wang et al., 2019). The soil profile is the same as
the CLM4.5 (Oleson et al., 2013).

In our previous study (Wang et al., 2019), this module was
validated with incubation flux and closed-chamber flux and
further compared with EC flux using an area-weighted average
approach for upscaling. In this study, we considered the spatial
heterogeneity of vegetation and elevation within the EC domain
for each study site and conducted the model simulations at a
spatial resolution of 4 m × 4 m with a domain of 40,000 m2 with
the EC tower at the center. Meteorological variables driving the

FIGURE 1 | The land cover in Alaskan region and an inset showing the location of the eddy covariance tower sites and National Oceanic and Atmospheric
Administration (NOAA) BRW station in Alaska. The land cover in Alaskan region was from GAP/LANDFIRE National Terrestrial Ecosystems data for U.S. and provided by
the United States Geological Survey (https://www.usgs.gov/). The US-Brw, US-Bes, and US-Beo are overlapped as three sites are close in distance; two-site labels are
shown in the inset.
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model include shortwave and longwave radiation, air
temperature, relative humidity, wind speed, and precipitation.
US-Beo, US-Bes, and US-Brw shared the same meteorological
parameters due to the small distance between sites, which were
generated by Xu and Yuan (2016) for the period of 1991–2015
and can be obtained from the Utqiag_vik, AK, station of NOAA/
Earth System Laboratory, Global Monitoring Division (http://
www.esrl.noaa.gov/gmd/obop/brw/). The data set is gap-filled
and at a half-hourly time step. Meteorological variables for
US-Atq and US-Ivo were extracted from the half-hourly, gap-
filled CRUNCEP dataset version 4.0 with a resolution of 0.5° × 0.
5° longitude/latitude resolution for a period of 1991–2014
(https://rda.ucar.edu/datasets/ds314.3/).

Other model parameters include spatial distribution of
vegetation and a digital elevation model with a resolution of
4 m covering the tower domain at each site, and soil organic
carbon (SOC) concentration at ten soil layers defined in CLM4.5
(Thornton and Rosenbloom, 2005; Thornton et al., 2007; Koven
et al., 2013). The vegetation distribution in the source area for US-
Brw, US-Beo, and US-Bes was determined using a random forest
algorithm using the plant functional type (PFT) from Langford
et al. (2019) as training data (Supplementary Figure S2). Four
PFTs were classified among five areas, including Arctic C3 grass,
bare soil, broadleaf evergreen shrub, and broadleaf deciduous
boreal shrub. The former three PFTs dominated and accounted
for >80% of the domain of each area. A World-View3 image
(Maxar Technologies) of the Barrow areas collected on July 24,
2016, was used with the plant functional type map overlaid to
predict plant functional types at the other Barrow sites. The
model was trained by using 1,000 pixels at random and then
applied the trained models to the World-View3 image near the
sites of interest. For the US-Atq andUS-Ivo sites, an unsupervised
linear spectral unmixing was performed in ENVI V5.2 (L3Harris
Geospatial) using the vegetation classes from a previous
publication (Davidson et al., 2016) to inform the number of
classes, with an additional open water category. Following the
unmixing, vegetation classes were applied according to (Davidson
et al., 2016). A 0.5 m (vertical resolution) digital elevation model
(DEM) was used for elevation data at the US-Beo, US-Bes, and
US-Brw sites (Wilson, 2012). The elevation maps for US-Atq and
US-Ivo were downloaded from ArcticDEM (v3.0 Pan-Arctic)
with a high resolution of 2 m based on the geographic
information of these two sites and further processed to maps
with a resolution of 4 m using the MATLAB software (R2018a,
the MatWorks, Inc.). SOC concentrations at 0–10, 10–20, 20–30,
and 30–40 cm at US-Bes, US-Atq, and US-Ivo were derived
from the Northern Circumpolar Soil Carbon Database
(Hugelius et al., 2013). Due to the lack of SOC data, we
assumed that US-Beo and US-Brw shared the same SOC
data as BES since these sites are adjacent. In addition, since
there was no spatial data of SOC, we assumed that all the grid
cells within a domain of 40,000 m2 had the same vertical
distribution of SOC. To calculate SOC at each soil layer for
model simulation, we assumed the cumulative SOC fraction
follows an asymptotic equation (Jackson et al., 1996; Xu et al.,
2013; Guo et al., 2020); therefore, SOC concentration for each
soil layer was estimated by an exponential equation:

Y � a × βd,

where the Y is SOC concentration at the soil depth d (m) and a
and β are the fitted “coefficient” (Supplementary Table S1). The
SOC dataset used for model simulation was shown in Table 1.

2.2.2 Model Implementation
Model implementation was carried out in three stages, similar to
the default CLM4.5 protocols (Oleson et al., 2013). The first phase
is an accelerated model spin-up that was set up for 2,000 years to
allow the system to accumulate C and reach a steady state. We set
the accelerated model spin-up for 2,000 years to allow more
carbon accumulation as the Arctic tundra has a low rate and
long period of carbon sequestration. Then a final spin-up was set
up for 50 years to allow the modeled system to reach a relatively
steady state. After the final spin-up, the transient model
simulation was set to cover the period of 1850–2015 for US-
Beo, US-Bes, and US-Brw, and the period of 1850–2014 for US-
Atq and US-Ivo. The difference in model duration was
determined by the available meteorological data for each site.
The climate data of 1850–2015 and 1850–2014 were covered as
the CLM-Microbe model can be set to cycle the extant
climate data.

For the model simulations, parameters for microbial
community and hydrological processes were set to default
values in the CLM-Microbe model for each study site (Oleson
et al., 2013; Xu et al., 2015; Wang et al., 2019). To simulate the
actual hydrological processes in this area, we modified the soil
hydrology module and changed parameters for the inundated
fraction to guarantee soil inundated below the 5th soil layer (2 m)
in the CLM-Microbe model. In addition, the parameters for
plant-mediated transport of CH4 were changed to allow CH4

emission from soil. The transient simulations for each site
produced output at the daily time step. The same model
parameters and settings were applied for all five study sites.

2.2.3 Footprint Algorithms
In this study, we upscaled the simulated CH4 flux to the landscape
scale using three footprint algorithms. The first algorithm was the
“homogeneous” footprint (HF) algorithm, which assumes the
footprint is a circular area with a radius of 100 m and the EC
tower as the center and each grid cell in the footprint contributes

TABLE 1 | Concentration of soil organic carbon (SOC) (kg C m−3) for model
initialization for all study sites.

Layer Depth (m) US-Beo US-Bes US-Brw US-Atq US-Ivo

1 0.007 44.6 44.6 44.6 51.6 50.8
2 0.028 45.4 45.4 45.4 51.4 49.6
3 0.062 46.6 46.6 46.6 51.0 47.6
4 0.119 48.8 48.8 48.8 50.5 44.6
5 0.212 52.6 52.6 52.6 49.5 40.1
6 0.366 59.4 59.4 59.4 48.0 33.5
7 0.620 72.8 72.8 72.8 45.7 25.0
8 1.038 101.7 101.7 101.7 42.0 15.4
9 1.728 101.7 101.7 101.7 42.0 15.4
10 2.865 101.7 101.7 101.7 42.0 15.4
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equally (Figure 2A). The second algorithm was the “gradient”
footprint (GF) algorithm, which assumes the footprint is also a
circle area with a radius of 100 m and the EC tower as the center,
but grid cells contribute distinctly and their contribution weights
decrease from 1 at the center to 0 at the edge in the footprint
(Figure 2B). Both HF and GF were constant over time. The third
algorithm was the “dynamic” footprint (DF) algorithm, which
considered the influence of wind direction, wind velocity, air
temperature, sensible heat, precipitation, and the landscape
roughness to rigorously characterize the actual EC footprint
(Chen et al., 2012; Kim et al., 2006; Kormann and Meixner,
2001) (Figure 2C). The DF was developed to estimate the
probability of flux originating from a particular location
surrounding the flux tower (Chen et al., 2012).

We produced the footprint with HF and GF algorithms using
R, version 3.6 (R Core Team, 2020) and implemented the DF
following the protocols using the MATLAB software (R2018a,
MatWorks, Inc.) (Kormann and Meixner, 2001). The DF was
generated at a daily time step and only for the days with no
precipitation. Meteorological data for the DF were derived by the
EC technique, including friction velocity, crosswind covariance,
Monin-Obukhov length, roughness length, displacement height,
and wind direction available at the half-hourly time step for the
period of 2013–2015 (https://daac.ornl.gov/ABOVE/guides/AK_
North_Slope_NEE_CH4_Flux.html).

2.2.4 Model Evaluation
Model evaluation was performed for the combined use of the
CLM-Microbe model with each footprint model. The upscaled
flux was calculated by the grid-cell CH4 flux and its weight in the
footprint and validated with the measured EC flux in 2013–2015
for each site. The coefficient of determination (R2) and root mean

square error (RMSE) were calculated for comparing upscaled and
observed daily CH4 flux at monthly and annual time steps using
R, version 3.6 (R Core Team, 2020). The coefficients cannot be
calculated for all months because of insufficient observations and
limited DF. To further quantify the model accuracy, we adopted
an index of Normalized Nash-Sutcliffe Efficiency (NNSE). The t is
the time series of data, T is the total sample size, and Qo and Qm

are the observed and modeled data, respectively. The NNSE has a
range of [0, 1], and higher values indicate better model
performance. It is noted that the NNSE is different from R2 as
the NNSE takes heavy consideration of absolute values of
individual data points, while R2 relies on the covariance
between observational data and modeled outputs.

NNSE � 1

1 + ∑T

t�1(Qt
o−Qt

m)2
∑T

t�1(Qt
o−Qo)

2

2.2.5 Statistical Analysis
Annual estimates of CH4 flux at each site were calculated based
on observed and upscaled flux. Because some observed flux and
DF estimates were missing, we interpolated those data with a
linear method at daily time scales using R, version 3.6 (R Core
Team, 2020). This approach has been applied to gap-fill the
missing data, ranging from 10% for US-Beo, 21% for US-Bes, 42%
for US-Brw, 43% for US-Atq, and 24% for US-Ivo. Additionally,
in the current version of the CLM-Microbe model, CH4 emission
does not occur when the surface water is frozen. Hence, we only
used the flux for the period from DOY (day of the year) 121 to
DOY 280 for annual estimates for all study sites. Therefore,
annual CH4 flux for those areas can be underestimated by the

FIGURE 2 | Source area and weight distribution for different footprint algorithmswithin an area of 200 m× 200 m and the EC tower as the center (50 latitude grids ×
50 longitude grids): (A) the “homogeneous” footprint (HF) algorithm regards each grid cell contributes evenly to total EC flux, (B) the “gradient” footprint (GF) algorithm
regards the contribution of grid cells gradually decrease from the center to edge; and (C) the “dynamic” footprint (DF) algorithm considers the environmental influence to
generate dynamic EC footprints at daily time step. Figure (A) and (B) are constant throughout the year. Figure (C) shows a sample of EC footprints produced for
ATQ on 22 September 2013. Grey indicates the data are unavailable. Relative weights are shown and the weights for all grids within the entire domain sum to one.
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mode since cold season flux can contribute up to 50% of annual
flux (Zona et al., 2016). We also investigated the effects of air
temperature, precipitation, vegetation composition, and elevation
on temporal and spatial variations of CH4 flux for each site. A
correlation analysis was conducted for quantify the effects of daily
air temperature and precipitation on daily CH4 flux in
2013–2015. Correlations between vegetation composition and
elevation and CH4 flux were analyzed based on the spatial
distribution of those variables in 2013–2015. Pearson’s
correlation coefficients (rp) are shown in Table 4 and
Supplementary Table S5. All statistical analyses were
conducted using R scripts developed in-house (version 3.6).

3 RESULTS

3.1 Simulated CH4 flux Based on Footprint
Algorithms
Compared with EC measurements, the estimates using DF
algorithm were similar to those using HF and GF across study
sites in 2013–2015, with an R2 range of 0.210–0.629
(Supplementary Table S3, Supplementary Figure S1). A total
of 61–63% of the variations in observed flux were explained by the
simulated flux at US-Bes and US-Atq using different footprint
algorithms, while only 21% was explained for US-Ivo
(Supplementary Table S3, Supplementary Figure S1). Values
of RMSE were comparably small (0.008–0.011 μmol m−2 s−1) for
all sites, except 0.023 at US-Ivo (Supplementary Table S3). At the
monthly scale, the temporal variations of simulated CH4 flux were

improved using the DF algorithm compared with HF and GF
algorithms, especially in the summer months (July–September),
whereas the accuracy of estimates was similar using the HF and
GF algorithms (Table 2). In the months when the DF algorithm
performed better, the correlation (R2) between observed andmodeled
flux was greatly increased compared with HF and GF algorithms
(Table 2). However, we also observed a decreased accuracy of 36%
using the DF algorithm compared withHF andGF algorithms at US-
Ivo in September 2013. In the majority of the study period, the
accuracy of estimated CH4 flux was consistent among DF, HF, and
GF algorithms as shown by the similar NNSE values among the three
algorithms (Table 2). Overall, the three footprint algorithms were
consistent for all sites (Table 2). For instance, the NNSE value was
0.758 for the HF algorithm, 0.765 for the GF algorithm, and 0.782 for
the DF algorithm at the US-Bes site in September 2013, indicating a
slightly better performance of the DF algorithm than the other two
algorithms.

3.2 Simulated CH4 flux Among Study Sites
The CLM-Microbe model captured the starts, peaks, and seasonal
trajectory of CH4 flux across study sites using different footprint
algorithms (Figure 3). US-Beo, US-Bes, and US-Brw showed
similar trends for CH4 emission with comparable average daily
flux, even with different footprints in 2015 (Figure 3). The
average CH4 flux of the growing seasons (DOY 121–280) at
these three sites was in a range of 0.017–0.020 μmol m−2 s−1 in
2015. US-Atq and US-Ivo had higher average flux than US-Bes
and US-Brw across footprints in 2013–2014. The average CH4

flux at US-Atq was 0.020 μmol m−2 s−1 in 2013, and

TABLE 2 | Coefficients for simulated daily CH4 flux for each month using the homogeneous footprint (HF), gradient footprint (GF) and dynamic footprint (DF) algorithms
compared with observed flux for all study sites. (RMSE: root mean square error; Bolded values are significant at p = 0.5; NNSE: the Normalized Nash-Sutcliffe Efficiency).

Site Year Month R2 RMSE NNSE

HF GF DF HF GF DF HF GF DF

US-Beo 2015 May 0.103 0.103 0.384 0.007 0.007 0.008 0.072 0.071 0.071
2015 Jun 0.699 0.696 0.631 0.006 0.006 0.004 0.731 0.732 0.724
2015 Jul 0.312 0.310 0.391 0.014 0.014 0.015 0.389 0.394 0.411
2015 Sep 0.181 0.182 0.566 0.007 0.007 0.006 0.271 0.262 0.247

US-Bes 2013 Jul 0.745 0.740 0.989 0.016 0.016 0.019 0.181 0.178 0.177
2013 Aug 0.521 0.517 0.394 0.008 0.009 0.009 0.323 0.314 0.314
2013 Sep 0.461 0.459 0.758 0.007 0.007 0.002 0.758 0.765 0.782
2013 Oct 0.015 0.015 0.309 0.012 0.012 0.012 0.025 0.025 0.025
2014 Jun 0.527 0.520 0.419 0.007 0.007 0.007 0.502 0.498 0.495
2014 Aug 0.373 0.373 0.420 0.01 0.01 0.012 0.133 0.129 0.127
2015 Jun 0.617 0.623 0.605 0.012 0.012 0.01 0.576 0.569 0.569
2015 Aug 0.247 0.242 0.173 0.007 0.006 0.006 0.310 0.322 0.318
2015 Sep 0.096 0.101 0.810 0.01 0.01 0.01 0.156 0.162 0.170

US-Brw 2013 Sep 0.712 0.712 1.000 0.004 0.004 0.002 0.157 0.154 0.158
2014 Jun 0.584 0.585 0.524 0.005 0.005 0.005 0.112 0.112 0.112
2015 Jun 0.598 0.602 0.735 0.013 0.013 0.012 0.092 0.092 0.092

US-Atq 2013 Aug 0.004 0.005 0.841 0.005 0.005 0.005 0.012 0.012 0.010
2014 Jun 0.352 0.361 0.271 0.019 0.019 0.018 0.090 0.090 0.086
2014 Sep 0.506 0.504 0.560 0.006 0.006 0.006 0.022 0.022 0.019

US-Ivo 2013 Jul 0.442 0.438 0.423 0.015 0.015 0.016 0.012 0.012 0.013
2013 Sep 0.364 0.364 0.234 0.049 0.049 0.046 0.049 0.049 0.048
2014 Aug 0.002 0.002 0.408 0.023 0.023 0.022 0.098 0.099 0.091
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0.019 μmol m−2 s−1 in 2014 using different footprints. At US-Ivo,
the average CH4 flux in 2013–2014 was 0.036–0.037 μmol m−2 s−1

using HF and GF algorithms, and 0.040–0.051 μmol m−2 s−1

using the DF algorithm.
Annual estimates of upscaled CH4 flux were comparable using

different footprints for each study site in the same year with a
range of 3.0–8.3 g C m−2 (Table 3). Moreover, annual estimates of
upscaled CH4 flux were consistent with estimates of observed flux
for US-Beo and US-Bes in 2015 but were overestimated for US-
Brw, US-Atq, and US-Ivo in 2014–2015. A small difference in
annual estimates of CH4 flux was found among US-Beo, US-Bes,
and US-Brw with a range of 3.7–4.3 g C m−2 using different
footprint algorithms in 2015. Annual flux at US-Atq was
overestimated as 4.0 g C m−2 by all footprint algorithms, which
was 2.4 times the observed flux. In addition, the annual estimate
of observed flux at US-Ivo in 2014 was 4.6 g C m−2, which was
overestimated by 1.67–1.8 times using footprint algorithms
(Table 3).

3.3 Spatial Patterns of Simulated CH4 flux
Within Study Domains
Spatial patterns of simulated CH4 flux varied among study sites at
annual and monthly scales using different footprints (Figure 4
and Supplementary Figures S3–S19, Supplementary Table S4).

Generally, the spatial variations were greatest using the HF
algorithm across sites, which were 1.6 times of using the GF
algorithm and 3.2–28 times of using the DF algorithm
(Supplementary Table S4). Similar to spatial variations,
spatial averages for each study site using the GF and DF
algorithms were comparable but were about half of spatial
averages using the HF algorithm (Supplementary Table S4).
US-Ivo had the highest spatial averages compared with other sites
(unit = µmol m−2 s−1): 0.0125–0.129 using the HF algorithm,
0.0044–0.0046 using the GF algorithm, and 0.0012–0.0017 using
the DF algorithm (Figure 4, Supplementary Figures S3, S4,
Supplementary Table S4). US-Atq had the second-highest
spatial averages and variations (unit = µmol m−2 s−1):
0.0062–0.0069 using the HF algorithm, 0.0022–0.0025 using
the GF algorithm, and 0.0002–0.0004 using the DF algorithm
(Figure 4, Supplementary Figures S3, S4, Supplementary Table
S4). US-Beo, US-Bes, and US-Brw had similar spatial averages
using different footprint algorithms, which were 0.0047–0.0007
using the HF algorithm, 0.0016–0.0024 using the GF algorithm,
and 0.0001–0.0005 using the DF algorithm (Figure 4,
Supplementary Figures S3, S4, Supplementary Table S4).
Spatial patterns of CH4 flux were scaled up by three footprint
algorithms (Figure 4, Supplementary Figures S3, S4), but they
cannot be verified because there is no available observation for
spatial distribution of CH4.

FIGURE 3 | Left column shows the comparison of upscaled CH4 flux using the homogeneous footprint (HF) algorithm (green points), the gradient footprint (GF)
algorithm (blue points) and the dynamic footprint (DF) algorithm (red points) with the EC observed flux (black points) for (A)US-Beo, (C)US-Bes, (E)US-Brw, (G)US-Atq,
and (I) US-Ivo at daily time step during a period of 2013–2015. The right column shows the differences of CH4 flux between GF and HF for (B) US-Beo, (D) US-Bes, (F)
US-Brw, (H) US-Atq, and (J) US-Ivo.
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3.4 Controls on the Variations in CH4 flux
Air temperature and precipitation were the primary factors
determining CH4 flux at the temporal scale (Table 4). The
influences of air temperature and precipitation on CH4 flux were
highly dependent on footprint algorithms across study sites. In
summary, air temperature explained 67.3–74.3% whereas
precipitation explained 22.3–35.6% of the temporal variations in
CH4 flux among the five study sites (Table 4). At the spatial scale,
CH4 flux was negatively correlated with bare soil percentage and
positively correlated with Arctic C3 grass percentage using different
footprint algorithms among the five sites, except for US-Bes; in other
words, higher vegetation cover was associated with greater CH4

emission (Supplementary Table S5). Arctic C3 grass percentage
was strongly related to CH4 flux at US-Beo using the HF (rp = 0.385,
p < 0.0001), GF (rp = 0.284, p < 0.0001) and DF (rp = 0.265, p <
0.0001) algorithms; at US-Atq using the HF (rp = 0.718, p < 0.0001),
GF (rp = 0.305, p < 0.0001) and DF (rp = 0.280, p < 0.0001)
algorithms; and at US-Bes (rp = 0.488, p < 0.0001) and US-Ivo (rp
= 0.305, p < 0.0001) using the HF algorithm. More Arctic C3 grasses
facilitated CH4 emission among five study sites (Supplementary
Table S5). Generally, soil temperature and soil water content were
positively correlated with CH4 fluxes using different footprint
algorithms (Supplementary Table S5); however, their correlations
seemed to be overlaid by Arctic C3 grass and bare soils. CH4 fluxes
were positively correlated with soil temperature (rp = 0.265, p <
0.0001) and soil water content (rp = 0.249, p < 0.0001), but these
direction of correlationwas changed usingGF (rp= -0.242, p< 0.0001
for soil temperature; rp= -0.210, p< 0.0001 for soil water content) and
DF (rp = -0.229, p < 0.0001 for soil temperature; rp = -0.200, p <
0.0001 for soil water content) algorithms (Supplementary Table S5).

4 DISCUSSION

4.1 Importance of Footprint Algorithms in
Upscaling CH4 Emission to the Landscape
Scale
In this study, we integrated three footprint algorithms with a
microbial functional group-based CH4 model for upscaling plot-
scale CH4 flux to the landscape scale. Generally, the simulated flux
was consistent with the observed CH4 flux at the five study sites
during 2013–2015 (Figure 3). This confirmed that the CLM-
Microbe model is capable of simulating the temporal pattern of
landscape-scale CH4 emission in Arctic tundra (Wang et al., 2019).
Additionally, Arctic tundra (about 11,563,300 km2) was estimated to
emit 7.54–20.87 Tg CH4 per year based on our maximum and
minimum annual estimates using different footprints among all
study sites, which were comparable to previous estimates (Zona
et al., 2016). However, our model generally overestimated CH4

emissions for US-Brw, US-Atq, and US-Ivo in 2014–2015 and
underestimated flux for US-Bes in 2014, regardless of footprint
algorithms (Table 2). GF and DF algorithms narrowed the
discrepancies between simulated and observed flux for US-Ivo
compared with the HF algorithm, and their effects were small,
and upscaled fluxes were still 1.67–1.78 times annual estimates of
observed flux. It is probably due to the relatively homogeneous
surface of the source area, which led to small spatial variations in
CH4 flux at US-Ivo and further weakened the influence of footprints
on upscaled fluxes (Figure 4).

The footprint algorithms can be a key factor for the regional
quantification of the CH4 flux. For example, at US-Bes in September
2013, theR2 of theDF algorithmwas almost double theR2 for theGF
algorithm. This is because the upscaled flux can be simulated to be
zero using the GF algorithm, which can lead to a huge difference
betweenmeasured and upscaled data. But upscaled flux using theDF
algorithm can only be calculated when the measured flux is not zero,
which guarantees that the upscaled flux using the DF algorithm

TABLE 3 | Annual estimates of observed and upscaled CH4 flux using the
homogeneous footprint (HF), gradient footprint (GF) and dynamic footprint
(DF) algorithms for all study sites in 2013–2015 (Unit: g C m−2 year−1, n.a.: not
available).

Site 2013 2014 2015

Observed US-Beo n.a n.a 4.1
US-Bes n.a 3.8 3.7
US-Brw n.a 1.5 2.7
US-Atq n.a 1.7 n.a
US-Ivo n.a 4.6 n.a

HF US-Beo n.a n.a 4.1
US-Bes 3.0 3.2 3.7
US-Brw 3.4 3.6 4.3
US-Atq 4.4 4.0 n.a
US-Ivo 8.0 8.3 n.a

GF US-Beo n.a n.a 4.1
US-Bes 3.0 3.1 3.7
US-Brw 3.4 3.6 4.3
US-Atq 4.5 4.0 n.a
US-Ivo 8.0 8.2 n.a

DF US-Beo n.a n.a 4.1
US-Bes n.a 3.1 3.7
US-Brw n.a 3.6 4.3
US-Atq n.a 4.0 n.a
US-Ivo 8.1 7.7 n.a

TABLE 4 | Pearson’s correlation coefficients (rp) for relationships between air
temperature, precipitation and upscaled CH4 flux using the homogeneous
footprint (HF), gradient footprint (GF) and dynamic footprint (DF) for all study sites
(Bold indicates | rp | > 0.2; * indicates p < 0.05, **p < 0.01).

Footprint algorithms Site Air temperature (K) Precipitation (mm)

HF US-Beo 0.743** 0.222**
US-Bes 0.742** 0.222**
US-Brw 0.743** 0.222**
US-Atq 0.717** 0.342**
US-Ivo 0.720** 0.252**

GF US-Beo 0.743** 0.222**
US-Bes 0.742** 0.222**
US-Brw 0.743** 0.222**
US-Atq 0.717** 0.342**
US-Ivo 0.720** 0.251**

DF US-Beo 0.694** 0.204
US-Bes 0.736** 0.248**
US-Brw 0.734** 0.261**
US-Atq 0.673** 0.231**
US-Ivo 0.711** 0.356**
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would not be zero andmay be close to themeasured flux. This is why
the differences in upscaled flux between the DF algorithm and the
GF algorithm seem to be tiny in Figure 3, but the R2 using DF and
GF can be largely different in Table 3. Previous research found that
footprint algorithms were of considerable importance for improving
greenhouse gas budgeting (Kljun et al., 2015; Chi et al., 2021), and
footprints provide useful information about the spatial
representativeness of flux in the case that footprint size and
position determine the distribution of individual sinks or sources
in the study areas with large heterogeneity (Heidbach et al., 2017;
Reuss-Schmidt et al., 2019; Chu et al., 2021). Thus, it is reasonable to
have a small effect of footprints on improving CH4 estimates in
homogenous areas, suggesting that footprint estimates are more
important when validating CH4 emission models with EC fluxes for
areas with a heterogeneous and irregular vegetation pattern
(Budishchev et al., 2014). A study reported the footprint for 214
AmeriFlux sites and found that upscaling with a fixed-extent target
area can lead to up to 20% of biases. A recent review paper highly
recommended the footprint algorithm as a key task for the flux
community (Helbig et al., 2021). This study added another piece of
evidence of the importance of dynamic footprint in predicting CH4

flux at the regional scale.
The footprint algorithms varied among temporal scales; for

example, the DF algorithm had better performance in upscaling

the CH4 flux at the monthly scale than at the annual scale. The DF
algorithm performed better or comparable to improve the accuracy
of CH4 annual estimates compared with the HF and GF algorithms.
The HF and GF algorithms were immutable over time, whereas the
DF algorithm considers the impact of turbulence in releasing CH4

from ecosystems (Kljun et al., 2015). Strong atmospheric turbulence
can facilitate the instantaneous release of CH4 bubbles trapped
within the soil or on surfaces below the water table (Sturtevant
et al., 2012). Moreover, friction velocity, which is strongly correlated
with wind speed, has been reported to be positively correlated to CH4

emission in Arctic and sub-Arctic tundra (Sachs et al., 2008;
Sturtevant et al., 2012). The DF algorithm performed better in
summer months (July–September). This may be explained by the
enhanced preformation of dynamic footprint estimates over
heterogeneous ground, and in summer months the unstable
conditions of atmospheric turbulence and vegetation cause a
higher spatial heterogeneity than in winter (Sturtevant et al., 2012).

4.2 Factors Controlling Landscape-Scale
CH4 Emission
In this study, the air temperature was the dominant factor
controlling CH4 emission in the Arctic tundra, which
explained 67.3–74.3% of the temporal variation in CH4 flux.

FIGURE 4 | Spatial patterns of upscaled CH4 emission rates based on the homogeneous footprint (HF) algorithm in an area of 200 m × 200 m during a period of
2013–2015 for (A, F, K) US-Beo, (B, G, L) US-Bes, (C, H, M) US-Brw, (D, I, N) US-Atq, and (E, J, O) US-Ivo.
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Three study sites in Utqiag_vik (US-Beo, US-Bes, and US-Brw)
exhibited the same trend, start, peak, and end of CH4 emission
since they experienced the same climate conditions (Figure 3).
The annual average air temperature was highest at US-Ivo, the
southernmost study site, which correspondingly had the
greatest CH4 emission (Arndt et al., 2019; Arndt et al.,
2020). The key role of temperature affecting Arctic CH4

emission has been illustrated in numerous studies
(Morrissey and Livingston, 1992; Chistensen, 1993;
Christensen and Cox, 1995; Christensen et al., 2004; Nielsen
et al., 2017): 1) warmer temperature leads to a deeper active
layer, allowing a greater soil volume to produce CH4; 2)
temperature directly affects microbial activities and
efficiency of converting substrates to produce CH4, and 3)
temperature influences the plant growth and biomass in the
ecosystem that impacts CH4 transport via plants. Further,
precipitation explained 22.3–35.6% of the temporal
variations in CH4 flux among different sites. This is because
CH4 is produced by methanogens in inundated soils with no
oxygen, and is oxidized in soils above the water table or in
while diffusing through open water (MacDonald et al., 1998).

Spatial variations of CH4 emission were influenced by
vegetation distribution in Arctic tundra ecosystems. Higher
vegetation cover was associated with larger CH4 emissions
within study sites due to the stronger plant-mediated
transport of CH4 (Waddington and Roulet, 1996; King
et al., 1998). In contrast, the US-Bes displayed a positive
relationship between non-vegetation proportion and CH4

emission within the source area, which may be because
inundated areas inhibited plant growth, but accelerated
ebullition and production of CH4. C3 grasses dominate the
landscape of the Arctic tundra and are known to provide a
conduit for CH4 to transport to the atmosphere. As a result,
CH4 emissions are strongly correlated with vascular species
cover and root density (Joabsson and Christensen, 2001;
Sturtevant et al., 2012; Davidson et al., 2016). Further,
Bellisario et al. (1999) found an inverse relationship
between water table position and CH4 flux in a Canadian
northern peatland, and a greater vascular plant cover was
most responsible for higher emissions. A few comprehensive
analyses with the FLUXNET-CH4 data have confirmed the
substrate and water table as key controlling factors for CH4

flux (Chang et al., 2021; Delwiche et al., 2021; Knox et al.,
2021). More mechanistic analysis with our model for
quantitative understanding of those factors on CH4 flux is
deemed as future work.

Combining the controls on temporal and spatial variations
in CH4 flux, we found that climate and seasonal drivers
dominated the temporal variability while the spatial
heterogeneity in land surface property dominated the
spatial variability in CH4 flux. This is consistent with two
studies in the Arctic (Treat et al., 2018; Hashemi et al., 2021).
Considering the small differences among the three algorithms
in upscaling CH4 flux, it suggested that the variation in CH4

flux over months is larger than that of the variation across
space in the Arctic (Hashemi et al., 2021), indicating that
maybe the coarser scale models are suitable in capturing total

budget but not finer scale temporal rends in the Arctic
(Melton et al., 2013).

4.3 The Implications
This study has three major implications for model development
and upscaling CH4 emissions in the Arctic. First, the CLM-
Microbe model performed well in capturing the temporal
variability in CH4 flux among different landscapes in the
Arctic tundra, thereby improving the simulation accuracy for
CH4 flux with appropriate footprint algorithms. This study infers
that the DF algorithm had similar performance to HF and GF
algorithms if the landscape is flat. Second, this study emphasizes
the importance of vegetation composition in influencing the
spatial heterogeneity of CH4 emission in agreement with many
prior studies (Waddington and Roulet, 1996; McEwing et al.,
2015; Davidson et al., 2016). However, the proportions of
different plant function types are defined as unchanged during
model simulation. The CLM-Microbe model could improve
estimates by developing a more advanced vegetation module
to improve the simulation performance for vegetation effects
on CH4 flux that have been observed to change over decadal
timescales (Liljedahl et al., 2016; Arndt et al., 2019). Third, this
study infers the importance of topography in driving CH4 flux
across the heterogeneous landscape. This study adopted a spatial
resolution of 4 m × 4 m for the tower domain, yet soil
heterogeneity is observed within a sub-meter scale. Finer
resolution of soil and vegetation data might be critical for
better simulating CH4 flux at a sub-meter scale in Arctic
tundra landscapes.

4.4 The Way Forward
Previous and current results demonstrate the robustness of the
CLM-Microbe model to simulate the landscape-scale CH4

emission in the Arctic tundra by incorporating different
upscaling techniques (Wang et al., 2019). Here we identify
several tasks required to further advance the modeling of
landscape-level CH4 emission in Arctic tundra. First, CH4

emission during the cold season is very important, which
possibly contributes up to ~50% of annual estimates in Arctic
tundra (Zona et al., 2016; Arndt et al., 2020; Hashemi et al., 2021).
The formation of a zero curtain during the cold season thereby
contributes to a large underestimation of CH4 production
(Mastepanov et al., 2008; Mastepanov et al., 2013; Zona et al.,
2016). The current version of CLM-Microbe allows CH4 release
from a frozen soil surface, and the model does not effectively
simulate the CH4 dynamics associated with the zero-curtain in
Arctic tundra. Hence, a more accurate representation of the
actual soil hydrological and physical condition is warranted.
Second, estimation of the Arctic CH4 budget can be improved
by the CLM-Microbe model, owing to the simulation of different
microbial functional groups (methanogens vs methanotrophs)
acting in CH4 processes. Based on the current study, it is feasible
to conduct the model simulation of CH4 for Arctic regions using
the Circumpolar Arctic map. Extrapolating to the entire Arctic by
combining relatively high-resolution vegetation maps and
topography data would tremendously improve the accuracy of
the CH4 emission estimates. Third, the “hot moments” may
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represent a disproportionate contribution to the annual CH4 flux
in the permafrost region (Song et al., 2012; Mastepanov et al.,
2013; Pirk et al., 2015; Raz-Yaseef et al., 2016), yet no landscape
and regional modeling studies have fully taken it into
consideration these “hot moments” events (Xu et al., 2016).
Although our model showed a high pulse in the early growing
season, more mechanistic evaluation of the CH4 pulse dynamics
should be included in our future work. Fourth, the selection of
footprint algorithms for upscaling plot-level CH4 flux is
important for landscape-scale CH4 estimates. Currently,
various models have been used to estimate the source area of
flux measurements (Zhang et al., 2012; Budishchev et al., 2014).
This study compared three footprint algorithms for upscaling
CH4 flux. Other footprint algorithms such as Lagrangian particle
models (Heidbach et al., 2017) and the development of complex
“full flow” large-eddy simulations may need to be considered for a
more comprehensive evaluation.

5 CONCLUSION

This study reported applying the CLM-Microbe model to
landscape-scale CH4 emission in the Arctic tundra in
association with three footprint algorithms. The model
captured the temporal dynamics of CH4 emission for different
study sites, even when using the same model settings and
parameters. The DF algorithm improved the accuracy of
temporal variations in CH4 flux compared with the HF and
GF algorithms by considering the influence of wind and soil
surface conditions. It performed better on a monthly scale than
on an annual scale. Due to the relatively flat landscape in the
Arctic, the three footprint algorithms did not lead to substantial
differences in the magnitudes of observed CH4 flux within a
portion of the study sites. Air temperature explained 67–74% of
temporal variations of CH4 flux, whereas precipitation explained
22–36% of temporal variations. Concerning spatial dynamics,
vegetation cover was positively related to Arctic CH4 emission
from soil to the atmosphere. In particular, the C3 arctic grasses
play an essential role in facilitating CH4 transport from soil to the
atmosphere. Extrapolating our modeling results to the northern
Arctic tundra ecosystems led to an annual CH4 emission of
7.54–20.87 Tg CH4 per year. This study suggests that the
approach adopted in this study is applicable to other
ecosystem types around the globe. The selection of an
appropriate footprint model for upscaling CH4 flux depends
on the landscape characteristics of the study domains.
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