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Consumption of different pharmaceuticals has increased since the COVID-19

pandemic. Some health institutions worldwide approved the use of drugs such

as ivermectin, hydroxychloroquine, azithromycin, dexamethasone, favipiravir,

remdesivir, lopinavir-ritonavir, chloroquine, dexamethasone for the treatment

of the virus. Once consumed by humans, these compounds are released in

urine and faeces, ending up inwastewater and conducted to treatment plants or

directly discharged without prior treatment into surface water and soil, with

minimum values recorded between 7 ng/L and < 0.08 μg/L for azithromycin

and ivermectin respectively, as well as dexamethasone with 0.73 ng/L in surface

water and an average of 50–60 ng/L for favipiravir. Their presence has

numerous toxicological effects on aquatic and terrestrial species, influencing

population decline and altering the growth of organisms. However, the

environmental consequences of pharmaceuticals in the environment are

poorly known, especially for antivirals studied in this article. This work aims

to analyze the presence, treatment and ecotoxicity of drugs used in the

pandemic COVID 19, mainly focusing on aquatic and terrestrial ecosystems

since that is where they arrive through wastewater. Ecotoxicological effects on

flora, fauna and humans are also analyzed. Once there, they persist in the

environment causing severe ecological damage, developmental and growth

disorders in animals and plants and, in many cases, even the death of species.
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1 Introduction

The new coronavirus pandemic (COVID-19) outbreak in Wuhan, China, has spread

rapidly around the world (Zhao et al., 2020). The origin of its zoonosis dates back to

ecosystem changes that have reduced biodiversity, greatly facilitating contact between

humans and animal reservoirs, in this case, bats that carry pathogens, such as
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SARS-CoV-2 (Platto et al., 2021). Since then, efforts have mainly

been directed to rapidly acquiring epidemiological,

microbiological, pathogenetic, clinical, diagnostic, therapeutic,

and preventive healthcare information to fight against pandemic

features (Forestieri et al.,2021). There was no specific vaccine or

antiviral medication for the treatment of COVID-19. Illness

management strategies included supportive care, quarantine

and prevention of complications of this disease (Mhadhbi

et al., 2020), which mainly affects the lungs, but evidence of

systemic disease affecting various organs such as the liver is

emerging (Cheng et al., 2021).

In this new health situation, several drugs have been used for

its treatment; among the most commonly used were

hydroxychloroquine (Gautret et al., 2020), azithromycin

(Rosendaal, 2020), remdesivir ceftaroline fosamil, ceftolozane/

tazobactam, cefditoren, ceftriaxone, colistin, doxycycline and

linezolid (Gonzalez-Zorn, 2021), and Ivermectin (Zaheer et al.,

2021). Azithromycin is an antibiotic derived from erythromycin,

belonging to the macrolide group and with a broad antibacterial

spectrum (Mhadhbi et al., 2020). Hydroxychloroquine is an

antimalarial drug with properties to treat autoimmune

diseases such as lupus and rheumatism (El-Din Abuo-Rahma

et al., 2020), and ivermectin is an antiparasitic for veterinary use

(Jans and Wagstaff, 2021), Were also prescribed redeliver and

dexamethasone in high amounts (Desgens-Martin and Keller,

2021). These drugs have also been used to treat COVID 19,

although evidence of their effectiveness is limited in the case of

Azithromycin and Hydroxychloroquine (Cavalcanti et al., 2020;

Lagier et al., 2020). As a result, its consumption has increased

(Gonzalez-Zorn, 2021), representing a significant environmental

presence.

Today, several pollutants are present in the environment

around the world (Rasheed et al., 2021), also in places like the

European community (Rodriguez-Mozaz et al., 2020),

prompting regulatory organisms to impose increasingly

stringent limits on water (Díaz-Cruz and Barceló, 2007; Olu-

Owolabi et al., 2021). Antibiotics are widely used in human

medicine, animal husbandry, agriculture and aquaculture (Vilca

et al., 2021); their residues have become a global environmental

problem. However, antibiotics in the aquatic environment are

not yet well known (Díaz-Cruz and Barceló, 2007). These drugs

are also found in terrestrial ecosystems, as they reach them

through irrigation and fertilization with biosolids from

wastewater treatment plants (Gottschall et al., 2012) and

animal manure used to fertilize agricultural fields (Liu et al.,

2016). Moreover, that contaminates the crop fields with the

residual medicines they contain, thus affecting mainly the life

that develops in the soil (Tarazona et al., 2021); or using manure

from the excrement of animals treated with these drugs. So it is

common for soils to become contaminated with drug residues

after being fertilized with animal manure (Sun et al., 2021).

The glucocorticoid, dexamethasone has generated significant

concern due to its widespread contamination in the environment

and its application in treating patients with COVID-19 (Gao

et al., 2022). Dexamethasone is a pharmaceutical compound

prescribed in human medicine for allergies, asthma and

autoimmune disorders (Isobe et al., 2015), also in veterinary

medicine to restore muscle strength. As a growth promoter in

marine aquaculture farms (Chang et al., 2007), this compound’s

residue can contaminate natural watersheds through inputs from

wastewater treatment facilities and confined animal feeding

operations (Lalone et al., 2012). As well as antivirals such as

lopinavir/ritonavir for its antiviral property, or its

immunomodulatory property, such as dexamethasone, for its

wide use to treat diarrhoea caused by lopinavir/ritonavir

(Domingo-Echaburu et al., 2022), in addition to other

antivirals as shown by clinical studies, Favipiravir and

Remdesivir are new antiviral drugs that are effective against

COVID-19 (Emam et al., 2022).

Unfortunately, the population’s use of these drugs to treat

COVID-19 has been uncontrolled, with self-medication being

one of the primary forms of consumption. This has led to an

increase in the consumption of drugs, consequently increasing

their residues in the environment. Furthermore, although the

toxicological effects are not yet described in detail, it is known

that these pharmaceuticals are toxic for flora and fauna species,

which is necessary to evaluate to treat this type of residue better.

This review compiles information on the presence of residues of

these drugs in aquatic and terrestrial ecosystems, as they reach

them through wastewater and the use of biosolids as fertilizer,

and also analyzes their ecotoxicological effects on flora, fauna and

humans in order to have a better understanding of these effects in

our environment.

2 Methodology (sources of
information and research)

The literature review process was carried out directly in

databases such as Science Direct, Scopus, Pubmed, Springer,

ACS and Taylor & Francis, through scientific and review articles

reporting the detection and treatment technologies of drugs used

in the treatment of COVID-19. The selection of drugs was

developed from information disseminated by the World

Health Organization and studies warning pharmacological

treatment of COVID-19. In the present review, articles

published in the last ten years were selected; where the search

included keywords such as Azithromycin, Chloroquine,

Hydroxychloroquine, Ivermectin, Dexamethasone, Remdesivir,

Favipiravir, Water, Wastewater, Effluents, River, Soils, Detection

And Environmental Matrices, COVID-19, SARS-CoV-2, Drugs,

Antivirals, Antibiotics, Antiparasitics, Antiprotozoals,

Glucocorticoids, Presence, Occurrence, Degradation,

Ecotoxicity, Plants, Biota, Disposal, Removal and Treatment,

where the search was done individually for each compound,

maintaining the order in work (Figure 1).
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3 Pharmaceuticals used in pandemic

The macrolide antibiotic azithromycin has been a

recommended treatment against COVID-19, along with

hydroxychloroquine or redeliver (Cavalcanti et al., 2020).

Other drugs, such as the mentioned hydroxychloroquine or

chloroquine with or without azithromycin, have been widely

used to treat COVID-19 after the emergence of the first in vitro

antiviral effects against Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) (Fiolet et al., 2021), increasing

its consumption by up to 2,000% in the United States between

March 2019, and March 2020 (Cavalcanti et al., 2020). Another

study mentions that March 2020 was the month with the highest

rate recorded for azithromycin consumption since January

2017 in Spain; it was 400% of the use of this molecule in

February 2020 and more than 320% of the consumption in

January 2019 (Gonzalez-Zorn, 2021). Additionally, due to the

efficiency of antiviral treatments, the U.S. FDA approved

chloroquine and hydroxychloroquine in the emergency clinical

management protocols used in COVID-19, but with some

restrictions (El-Din Abuo-Rahma et al., 2020). Another drug

that has been used in large quantities to reduce the spread of

COVID-19 is ivermectin (Zaheer et al., 2021), since its approval

by the U.S. FDA due to its potential as an antiviral, in this

pandemic where a clinical benefit has been proven in some trials

(Jans and Wagstaff, 2021). Ivermectin has also been effective

against specific flaviviruses (dengue, Japanese encephalitis, and

tick-borne encephalitis virus) and the chikungunya virus (Gupta

et al., 2020).

However, using these drugs does not show conclusive results

concerning the improvement of Covid patients (Zaheer et al.,

2021). Such is the case of using ivermectin, in which its efficacy

was compared with a control group. The results indicated that

there was no significant difference between the control group and

the group treated with ivermectin, although there was a slight

trend of reduction in the length of hospital stay in the group

treated with this drug, indicating that this drug can be used as

additional therapy in the treatments used to treat COVID 19

(Abd-Elsalam et al., 2021). Similar results were found for

hydroxychloroquine and azithromycin applied together and

alone; even high doses of chloroquine (600 mg twice a day)

are associated with high mortality (Abd-Elsalam et al., 2021).

Therefore, despite the lack of concrete evidence of their

effectiveness, these drugs have been and continue to be widely

used to treat COVID 19, generating residues in the environment.

The recent COVID-19 pandemic has shown that

dexamethasone effectively reduced postinfection hyper

inflammation, resulting in a significant decrease in mortality

(Johnson and Vinetz 2020), as were other selected antiviral drugs

such as remdesivir (a nucleoside analogue prodrug), oseltamivir

(a potent and selective influenza A and B neuraminidase

inhibitor, also known as Tamiflu), lopinavir (a second-

generation protease inhibitor), darunavir (a second-generation

protease inhibitor), and umifenovir (a dual-acting direct antiviral

FIGURE 1
In laboratories, the percentage of studies on the presence of ivermectin, azithromycin, hydroxyquinone, Dexamethasone and Antivirals toxicity
studies.
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and multi-host targeted agent) (Reis et al., 2019). Among these,

several studies suggest that remdesivir is an antiviral drug against

Ebola but may also be effective in shortening recovery time in

hospitalized adults with COVID-19 (Beigel et al., 2020), as well as

lopinavir and Ritonavir alone or in combination with other

drugs, causing an increase in the concentration of antiviral

drugs in hospital wastewater and effluent (Czech et al., 2022).

3.1 Physical and chemical properties

3.1.1 Ivermectin
Since 1987, this compound has been widely used in

veterinary medicine, and its use in humans has become

widespread (Vokřál et al., 2019). Thus, nearly 3.7 billion doses

of ivermectin have been distributed worldwide in mass drug

administration (MDA) campaigns over the past 30 years (Nicolas

et al., 2020). Ivermectin is a specific inhibitor of importin α/β-
mediated nuclear transport and shows antiviral potential against

various RNA viruses by blocking the nuclear localization of viral

proteins (Lv et al., 2018). Its primary use is antiparasitic, anti-

helminthic (Howard 2007; Vokřál et al., 2019), and to treat

diseases caused by several single-strain RNA viruses in

humans (Barrows et al., 2016).

Ivermectin is a lipophilic substance and dissolves better in

organic solvents (Fisher and Mrozik 1989), with particular

physicochemical characteristics. Generally, the

physicochemical properties of compounds, such as water

octanol coefficient (Kow), distribution coefficient (Kd),

dissociation constant, as well as vapour pressure or Henry’s

Law constant (KH), contribute to determining whether a

substance has the affinity to concentrate further in water, soil

or air (Díaz-Cruz and Barceló, 2007). The vapour pressure of

ivermectin is less than or equal to 1.5 × 10−9 mmHg, which

indicates that this compound is unlikely to be volatile and

distributed in the atmosphere (Bloom and Matheson, 1993).

With a pKa value of around 6.5, it is more soluble in very

alkaline media (Rolim et al., 2014). Its solubility in water is

low, having a solubility value less than or equal to 4 mg/L (Fisher

and Mrozik, 1989). The sorption coefficient (Koc), ranging from

1.26 × 104 y 1.57 × 104, indicates a greater affinity for soil (Krogh

et al., 2008). Also, high values of the octanol/water partition

coefficient (Kow) and the distribution coefficient (KD) indicate

that the substance has a higher affinity for soil (Díaz-Cruz and

Barceló, 2007), where it can even form complexes with the

inorganic matter in the soil (Krogh et al., 2008). Therefore,

these values show that this compound has a greater affinity

for the soil than in aquatic environments (Brinke et al., 2010).

3.1.2 Azithromycin
Azithromycin is an antibiotic with a broad spectrum of

applications and is used to combat various infections caused

by Gram-negative and Gram-positive bacteria (Cano et al., 2020).

So it has also been considered therapy for treating COVID-19

(Vouri et al., 2021) and even mixed with hydroxychloroquine

(Lagier et al., 2020).

Azithromycin is an antibiotic belonging to the macrolide

group (Jafari Ozumchelouei et al., 2020). It is synthesized by

incorporating a nitrogen atom into the lactone ring of

erythromycin A, its chemical name is 9-deoxy-9a-aza-9a-

methyl-9a-homo-erythromycin A, and its molecular weight

is 748.98 (Jafari Ozumchelouei et al., 2020). The pKa value is

8.1 and 8.8, which shows that at low pH, azithromycin is in a

molecular form and tends to attract positive charges,

influencing its higher removal by adsorption of positive

charge (Cano et al., 2020). Likewise, protonated

azithromycin can hardly cross cell membranes, so a neutral

to primary medium is necessary for the molecules to cross cell

membranes (Derendorf, 2020). Additionally, it is worth

mentioning that high Kd values indicate a higher affinity

for sediment or soil materials than water, as in this case

(Jafari Ozumchelouei et al., 2020). Therefore, we will likely

find higher concentrations in sediments and soils than in

water. These physicochemical characteristics of the three

target antibiotics are found in Table 1.

3.1.3 Hydroxychloroquine
Hydroxychloroquine, approved by the Food and Drug

Administration (FDA) as an antimalarial drug, was reused to

treat COVID-19 patients (da Luz et al., 2021; Mendonça-Gomes

et al., 2021). Cell culture experiments have shown solid antiviral

action of hydroxychloroquine against a variety of viruses,

including HIV-1, dengue, Zika and West Nile viruses,

Venezuelan equine encephalitis virus, Chikungunya,

pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19)

(Gautret et al., 2021; Jans and Wagstaff 2021), in dermatology

and rheumatology and emerging roles in oncology (Yusuf et al.,

2017). It can control and reduce inflammatory pathways (Danza

et al., 2016). Hydroxychloroquine is likely to slow the severe

progression of COVID-19, inhibiting the cytokine storm by

suppressing T-cell activation. Also, it has a safer clinical

profile and is suitable for pregnant women (Zhou et al., 2020).

On the other hand, the combination of hydroxychloroquine with

azithromycin can give some pharmacological interactions; that is

why a study should be done on patients with heart disease,

abnormal electrocardiogram, dyslexia or the routine use of other

interacting drugs, all this before its application (Gautret et al.,

2021).

Hydroxychloroquine has three nitrogens in its chemical

structure, with pKa values of 4.0, 8.3 and 9.7; however, only

high values can be protonated, affecting its permeability in cell

membranes’ intracellular distribution (Derendorf, 2020). The

Kow value (3.84), shows that it has a lipophilic tendency. This

property can effectively bind to tissues, resulting in high

distribution volumes as in blood and plasma (Alves da Silva

et al., 2021). Concerning water solubility, it can reach up to
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26.1 mg/L. Therefore, the evaluated compound has an affinity for

water and even shows a lipophilic characteristic (Alves da Silva

et al., 2021); this represents a greater risk for the species that

inhabit the ecosystems.

3.1.4 Dexamethasone
The glucocorticoid dexamethasone has pharmacological

properties similar to cortisol, a natural steroid (Dusi et al.,

2011), so they form an essential group of these drugs and have

TABLE 1 Physicochemical properties of pharmaceutical residues used to treat COVID 19.

Name Antibiotic
cas–number

Molecular formula Molecular weight
(g/mol)

Chemical
formula

Water solubility
(mg/L)

Log
kow

pKa

Ivermectin 70,288–86-7 875.10 C47H74O14 4 3.2 6.5

Azithromycin 83,905–01-5 748.98 C38H72N2O12 2.73 4.02 8.74 y
9.45

Hydroxy-
chloroquine

118–42-3 335.87 C18H26ClN3O 26.1 3.84 8.3 y 9.7

Dexamethasone 50–02-2 392.464 C22H29FO5 0.1 1.83 1,89 y
6.4

Remdesivir 1,809,249–37-3 602.585 C27H35N6O8P * 1.74 10.23

Lopinavir 192,725–17-0 628.80 C37H48 N4O5 7.7 × 10−3 6.26 13.39/-
1.5

Ritonavir 192,725–17-0 720.94 C37H48N6O5S2 5.2 5.28 13.68/
2.84

favipiravir 259,793–96-9 157.10 C5H4FN3O2 5 1.67 5.1
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a wide range of therapeutic applications, such as in the

treatment of asthma or other inflammatory diseases.

However, they also have an essential effect as growth

promoters (Herrero et al., 2012). Dexamethasone was

obtained by modifying the initial structure of cortisol by

introducing the 9-α-fluoro group, a 16-α-methyl

substituent, and an extra double bond between carbon

1 and 2 on the A-ring (Table 1). Dexamethasone binds

glucocorticoids more efficiently than cortisol; the presence

of the fluorine atommakes it more lipophilic, while the methyl

group attached to the C-16 carbon increases its affinity for the

mineralocorticoid receptor (Rang et al., 2012).

3.1.5 Antivirals (favipiravir, lopinavir, ribavirin,
remdimisir)

Lopinavir is an antiretroviral protease inhibitor (C37

H48N4O5, molecular weight of 628.80 g/mol, logKOW of

5.94), which is often used in HIV treatment in combination

with Ritonavir which is an HIV protease inhibitor

(C37H48N6O5S2, molecular weight of 720.94 g/mol, logKow of

TABLE 2 Presence in the environment of pharmaceutical residues used to treat COVID 19.

Pharmaceuticals Before the pandemic During the pandemic

Concentration Place Author Concentration Place Author

Azithromycin 7 ng/L Surface water Verlicchi et al.
(2014)

935 ng/L Surface water Chen et al. (2021)

130 ± 46 ng/L Wastewater effluent

Azithromycin 2.4 μg/L River sample Senta et al.
(2017)2.68 μg/L Wastewater effluent

Azithromycin 2,956.5 μg/L Industrial effluent Pereira et al.
(2017)33.53 ng/L Surface water

Azithromycin 0.14 μg/L Wastewater inflow to the
WWTP

Golovko et al.
(2014)

0.050 μg/L Wastewater effluent

Azithromycin 430 ± 50 y 14,900 ±
1700 pg/ml

Wastewater sample Koch et al.
(2005)

Azithromycin 44 ± 16 ng/L Wastewater sample A Al Aukidy
et al. (2012)175 ± 47 ng/L Wastewater sample B

Ivermectin 5–20 ng/L Water resources and tap water Charuaud
et al. (2019)

Ivermectin 4.29 μg/L Msunduzi River Omotola and
Olatunji
(2020)

1,500 ng/L Treated water
through urban
WWTP

Tarazona et al.
(2021)3.99 μg/L Entrance to Imanda reservoir

<0.08 μg/L Imanda reservoir outlet

6.57 μg/L Río Umgeni

<0.08 μg/L Blue lake

Hydroxychloroquine
(HCQ) and
Chloroquine (CQ)

5.01 μg/L –0.11 μg/L Traces on the surface sediments
of tidal sections of rivers, CQ in
groundwater and surface water

Olatunde et al.
(2014)

833 ng/L Domestic
wastewater

Kuroda et al. (2021)

Dexamethasone 0.33 ng/L Surface water, South China Gong et al.
(2019)

3 ng/L Domestic
wastewater

Kuroda et al. (2021)

Dexamethasone 0.73 ng/L Surface water Praveena et al.
(2018)

55.6 ng/L Surface water Desgens-Martin and
Keller (2021)

Dexamethasone 0.31 ng/L Surface water Chang et al.
(2007)

Favipiravir 50–60 ng/L Surface water Azuma et al.
(2017)

64 ng/L Domestic
wastewater

Kuroda et al. (2021)

Lopinavir 1,400 ng/L Domestic wastewater,
KwaZulu-Natal

Abafe et al.
(2018)

870 ng/L Domestic
wastewater

Kuroda et al. (2021)

Remdesivir ND ND ND 50–55 ng/L Domestic
wastewater

Kuroda et al. (2021)

Ribavirin ND Domestic wastewater Prasse et al.
(2010)

52.2 ng/L Surface water Chen et al. (2021)
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6.29) to increase its half-life by inhibiting its degradation by the

cytochrome (Krumm et al., 2021). On the other hand, the

antiviral lopinavir is reported with a concentration of

0.033 μg/L in the environment; thus, the Swedish

environmental classification of pharmaceuticals states that

lopinavir has a high bioaccumulation potential

(log Dow = 4.7, which is > 4) (Domingo-Echaburu et al.,

2022). At the same time, favipiravir is an antiviral drug used

to combat influenza due to its influenza virus RNA polymerase

inhibitory properties (Madelain et al., 2020).

4 Presence of pharmaceutical
residues used to treat COVID 19

4.1 Aquatic ecosystem

Today, several emerging pollutants are present in the

environment around the world, prompting regulatory

organisms to impose increasingly stringent limits on water

(Rodriguez-Mozaz et al., 2020; Olu-Owolabi et al., 2021).

Antibiotics are widely used in human medicine, animal

husbandry, agriculture and aquaculture (Vilca et al., 2021),

and their residues have become a global environmental

problem. However, antibiotics in the aquatic environment are

not yet well known (Díaz-Cruz and Barceló, 2007). One of the

most significant problems of the widespread use of antibiotics

that causes environmental contamination is the alarming

increase in antibiotic-resistant infections (Martinez, 2009). For

example, they were Having azithromycin reports 7 ng/L in

surface water and 130 ± 46 ng/L in treatment plant effluents

due to the consumption and sales of pharmaceuticals in Italy,

together with data related to their excretion and disposal during

wastewater treatment (Verlicchi et al., 2014), 2.4 μg/L in water

samples, 2,956.5 μg/L in industrial effluents, since they are

released from the human body through urine and faeces as a

mixture of the unchanged parent compound and various

metabolites (Senta et al., 2017), 0.14 μg/L in wastewater input

to WWTP attributed to the increase in human consumption of

personal care pharmaceutical products (Golovko et al., 2014),

and 4.29 μg/L in Msunduzi River (Al Aukidy et al., 2012), and

listed by the USEPA as an emerging contaminant since 2009

FIGURE 2
Use of pharmaceuticals and their release cycle in the environment.
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(Guo et al., 2018). This antibiotic is also known to be one of the

antibiotics found in high concentrations in water samples

(Pereira et al., 2017; Mao et al., 2021). For this reason, it is

even included in the European Union’s water policy watch list

(González-Pleiter et al., 2021); this indicates that its presence in

the environment is dangerous.

A similar situation is presented concerning ivermectin, given

that since the end of March 2020, its use for the treatment of

COVID 19 has been confirmed, which has had an impact on its

high consumption by the population (Essid et al., 2020), which in

turn has influenced the increase of waste in the aquatic

environment (Olu-Owolabi et al., 2021). Moreover,

hydroxychloroquine is a well-known antimalarial and

antirheumatic drug that has recently garnered unprecedented

attention as a potential therapeutic agent against viral infections

(Perrone et al., 2020) COVID 19 disease. Increased consumption

of hydroxychloroquine results in increased residues in the

aquatic environment through wastewater (Bensalah et al.,

2020). Therefore, the residues of these drugs used to treat

COVID 19 end up in aquatic ecosystems due to ineffective

treatment at the wastewater treatment plant. The reported

concentrations can be seen in Table 2.

Glucocorticoids, including dexamethasone, enter the aquatic

environment mainly through excretion of the compound and its

metabolites from patients and, to a lesser extent, from use in

livestock and aquaculture (Liu et al., 2015), where the highest

reported concentrations of the glucocorticoid family were

measured in untreated hospital wastewater in Switzerland,

where a total concentration of 3,423 ng/L, comprising

1,720 ng/L of dexamethasone, was found (Macikova et al.,

2014). Considering the data presented by (Carpagnano et al.,

2021), the increased use of antivirals such as lopinavir and

Ritonavir during the COVID-19 pandemic increased their

concentrations in hospital wastewater and effluents (Figure 2).

4.2 Terrestrial ecosystem

These drugs are also found in terrestrial ecosystems, as they

reach them through irrigation and fertilization with biosolids

from wastewater treatment plants (Gottschall et al., 2012) and

animal manure used to fertilize agricultural fields (Liu et al.,

2016). Moreover, they contaminate the crop fields with the

residual medicines they contain, thus affecting mainly the life

that develops in the soil (Tarazona et al., 2021); or using manure

from the excrement of animals treated with these drugs. So it is

common for soils to become contaminated with drug residues

after being fertilized with animal manure (Sun et al., 2021). Such

is the case of a study in which dry biosolids from a wastewater

treatment plant were applied to determine the concentrations of

drug residues in the water, soil and wheat grown in the area,

finding a total of 80 residues of pharmaceutical and personal care

products, including azithromycin in soil samples (Sun et al.,

2021). However, trace residues of drugs, including azithromycin,

have also been found in soils that are not influenced by

wastewater treatment plant discharges, which explains that

there are other non-point factors related to anthropogenic

pressure and its different activities that contribute to the

presence of these compounds (Yi et al., 2019). Because this

compound arrives on agricultural land through irrigation

water contaminated with ivermectin; for example, a study

shows different water ecosystems polluted with ivermectin <
0.08 μg/L (Imanda reservoir outlet), 6.57 μg/L (Río Umgeni)

and < 0.08 μg/L (Blue lake), this for medication in humans

and accumulation of animal tissues (Omotola and Olatunji,

2020) which represent risks for environment (Table 2).

5 Ecotoxicological aspects of the
drugs used for Covid

5.1 Ivermectin

5.1.1 Toxicity to aquatic organisms
During the COVID-19 pandemic in 2020, ivermectin was

used in more significant quantities than in previous years; if it

continues to be widely used during this pandemic, high amounts

of ivermectin could be deposited in the water ecosystems (Essid

et al., 2020). This compound exerts acute and chronic toxic

effects on aquatic organisms and can cause changes in biological

diversity and ecosystem functioning (Goessens et al., 2020). Due

to its widespread use and poor metabolism in animals, the

toxicity of ivermectin in aquatic environments has received

increasing attention. The primary source of potential toxicity

is the accumulation of animal tissues and the excretion of urine

and faeces in the environment (Zhang et al., 2020). In the aquatic

environment system, ivermectin represents an ecological risk for

aquatic organisms (biota) (Mesa et al., 2017) because it can cause

toxicity in living beings. One study found that ivermectin can

cause oxidative damage, including cytotoxicity and genotoxicity,

through direct DNA damage (Zhang et al., 2020). In addition to

acute and chronic toxicity in freshwater (Bundschuh et al., 2016).

Their rapid sorption to sediment particles and high

persistence in aquatic sediments have raised concerns about

benthic and meiobenthic organisms (Brinke et al., 2010).

Ivermectin represents an ecological risk to aquatic ecosystems,

underscoring the need for management strategies for its use to

limit its entry into water bodies (Mesa et al., 2017).

5.1.2 Toxicity to terrestrial organisms
Ivermectin binds to the soil by forming complexes with

immobile inorganic matter (Krogh et al., 2008) and persists in

the environment with toxic effects on terrestrial invertebrate

species (Guimarães et al., 2019). (Verdú et al., 2018) report that at

a concentration of 100 μg/kg, they cause profound short- and

long-term ecological effects, decreasing dung beetle populations,
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manure degradation processes and soil properties and functions.

Therefore, it is necessary to continue developing practices

management that reduces the potential risks associated with

these highly toxic compounds (Bai and Ogbourne, 2016). The

terrestrial ecosystems’ contamination occurs because this

compound’s residues continue to be discharged into the soil

through sewage irrigation and contaminated manure (Zhao et al.,

2019). This compound is an antiparasitic widely used in

livestock; animals excrete it through manure and negatively

affect the survival and reproduction of organisms that degrade

manure, such as dung beetles and entomopathogenic nematodes

(González-Tokman et al., 2017; Villada-Bedoya et al., 2021).

Ivermectin affects the survival of Pristionchus maupasi (Kar

et al., 2020), Eisenia fétida (Zhao et al., 2019), Folsomia

candida (Guimarães et al., 2019), Hypoaspis aculeifer (Römbke

et al., 2010), Thorectes lusitanicus (Verdú et al., 2020), Sepsis

punctum (Conforti et al., 2018), Enchytraeus crypticus, Folsomia

fimetaria, Hypogastrura assimilis (Jensen and Scott-Fordsmand,

2012), among others.

This situation has led to greater attention being paid to the

toxic effects that their presence in the environment could trigger,

so several ecotoxicity studies have been conducted (Römbke

et al., 2010; Syslová et al., 2019; Vokřál et al., 2019; Villada-

Bedoya et al., 2021) or in species communities (Brinke et al.,

2010). This allows us to understand the magnitude of this

compound’s damage to the terrestrial ecosystem.

5.1.3 Toxicity of ivermectin in humans
This compound has toxic effects on humans since the

ingestion of ivermectin is associated with the capacity to

generate teratogenesis, congenital anomalies and abortions

(Nicolas et al., 2020), which is corroborated by studies where

it was found that miscarriages and infant malformation are

associated with accidental ingestion of ivermectin by mothers

(Gyapong et al., 2003). Therefore, there is a severe risk for

pregnant women who accidentally consume this drug directly

or indirectly through food and water.

5.2 Azithromycin

5.2.1 Toxicity to aquatic organisms
Lakes and rivers are sources of livelihoods, food and water in

many parts of the world, and these aquatic ecosystems are

vulnerable to new and known environmental pollutants as

emerging water pollutants, including antibiotics (Vilca et al.,

2021). Since azithromycin is a primary contaminating antibiotic

in water, its toxicity to aquatic organisms has been investigated

(Li et al., 2020). The presence of this antibiotic in environmental

matrices and the effluents of conventional wastewater treatment

plants has been evidenced in recent years, which leads to the need

to develop new treatment alternatives that allow its total removal

and minimize the eventual adverse effects, as well as a selection of

resistant bacterial strains, associated with their presence in bodies

of water (Cano et al., 2020).

The presence of azithromycin and hydroxychloroquine at

12.5 μg/L affects wild aquatic life, such as neotropical tadpoles of

Physalaemus cuvieri species. In fishes like Zebrafish (Danio rerio),

azithromycin and hydroxychloroquine at 2.5 μg/L induce protein

reduction, redox imbalance, and possible oxidative stress

(Mendonça-Gomes et al., 2021). In the European Sea, Bass

(Dicentrarchus labrax) azithromycin causes oxidative stress,

peroxidative damage and neurotoxicity at 20 mg/L, inducing 18%

and 7.5% of larvae mortality and morphological abnormalities,

respectively (Mhadhbi et al., 2020). They affect the microfauna

inhibit the growth of algae, and microalgae reduce energy reserves

(proteins, carbohydrates and lipids) and deteriorate the cellular

structure of Chlorella pyrenoidosa (Mao et al., 2021). Another

study suggests a common concern for chloroquines and

dexamethasone while a very high environmental impact for

ivermectin and azithromycin, even at use levels below the default

value of 1% of the population (Tarazona et al., 2021). On the other

hand, contamination with microplastics is observed, so these are

exposed to a variety of other pollutants, which can transport and

react with antibiotics such as azithromycin in the aquatic

environment (González-Pleiter et al., 2021).

In other research carried out with 53 analyzed antibiotics in the

sampling stages, 17 were detected in the treated wastewater effluents,

and one of them was azithromycin (Rodriguez-Mozaz et al., 2020),

which is considered a marker of contamination; this is why proper

wastewater treatment systems are essential (Pazoki et al., 2016).

Similarly, macrolides, including azithromycin, which is considered

genetically toxic to fish, have been reported to bioaccumulate in fish

tissues, as well as in aquatic environments such as rivers and surface

waters, also causing damage to developmental, cardiovascular systems

and metabolic, as well as in the alteration of the antioxidant and

immune responses of fish (Yang et al., 2020). These studies show that

azithromycin has toxic effects on living organisms (Bai and

Ogbourne, 2016), and its presence in the environment represents

a severe environmental and human health problem.

5.2.2 Toxicity to terrestrial organisms
Azithromycin has toxic properties frequently detected in

municipal biosolids and identified by the USEPA as an

emerging contaminant (Gravesen and Judy, 2020). Soil

toxicity is mainly due to manure fertilizers and the reuse of

domestic wastewater in crop irrigation (Ezzariai et al., 2018).

Pharmaceutical effluents alter the physicochemical

characteristics and the bacterial community of the river

sediments, which contribute to the enrichment of genes for

antibiotic resistance (Sun et al., 2021). The bioavailability of

azithromycin for terrestrial organisms is often limited in the

context of biosolids, but they can alter and enter the ecological

food web. For example, a study with earthworms exposed at

0.03–0.16 mg/kg (dw) shows minimal toxicity in earthworms’

microbial functioning (Sidhu et al., 2019).
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TABLE 3 Toxicological evaluations with main drugs used for Covid treatment 19.

Compound Specie
or living being

Toxic effects Toxic dose Author

Ivermectin Salvinia Reduction in % survival, reproduction and length of
growth

1,150, 458, 50 and
22 μg/kg in bung

Mesa et al. (2017)

Ceriodaphnia dubia

Hyalella

Pomacea

Ivermectin Humans (Células HeLa) Decreased colony formation, increased autophagy and
mitophagy in HeLa cells and oxidative DNA damage

0, 2.5, 5, 10 and 20 µM Zhang et al. (2020)

Ivermectin Nematodes Decrease in the abundance of nematodes 1.8, 9 and 18 ng/g for
10 days

Essid et al. (2020)

Ivermectin Humans Spontaneous abortion and congenital malformations - Gyapong et al. (2003)

Ivermectin Sepsis punctum Increased mortality - Conforti et al. (2018)

Ivermectin Thorectes lusitanicus Biomagnification of ivermectin - Verdú et al. (2020)

Haematobia irritans The affection of insects in the larval stage affects their
population

- Roncalli (1989)

H. thirouxi potans,

Stomoxys calcitrans

Musca autumnalis

M. domestica

M. vetustissima

M. xanthomelas,

Onthophagus bicornis Reduced activity in the formation of manure balls

Onthophagus gazella

Ivermectin Sinapis alba 20% of root growth inhibition 0.2 mg/kg Vokřál et al. (2019)

Ivermectin Euoniticellus
intermedius

At high doses, it reduced muscle mass and increased lipid
mass at intermediate doses. Modification of offspring sex
ratio and, at high doses, increased male horn size

3.16, 10, 31.6, 63.2, 100,
316 and 500 μg/kg

González-Tokman et al.
(2017)

Ivermectin Arabidopsis thaliana Modification of genes in the plant rosettes 5 µM Syslová et al. (2019)

Ivermectin Comunidades
meiobentónicas

Alteration of the community structure, decrease in the
population of some species and increase in the abundance
of others

0.6, 6.2, and 31 μg/kg Brinke et al. (2010)

Ivermectin Euoniticellus
intermedius

Increased expression of heat shock protein 70 and
metabolism

10 μg/kg Villada-Bedoya et al.
(2021)

Ivermectin Sepsis punctum Increased mortality and decreased egg-laying in males
sperm deterioration

69–1978 μg/kg Conforti et al. (2018)

Ivermectin Folsomia candida Toxicity in terms of survival and reproduction decreases
in the growth of individuals

40 mg/kg Guimarães et al. (2019)

Ivermectin Eisenia fetida CL50 = 8,4 mg/kg of soil. Survival and reproduction of
earthworms and mites were affected

LC50 = 8.4 mg/kg Römbke et al. (2010)

Folsomia candida

Hypoaspis aculeifer

Hydroxychloroquine The total abundance and Shannon-Wiener index of
assemblages decreased, while individual mass and trophic
diversity index increased at higher concentrations

3.16, 31.62 and 63.24 μg Ben Ali et al. (2021)

Azithromycin Oreochromis niloticus Increased defence cells, moderate liver damage, minor
histological changes in gills; therefore, moderate toxicity

0, 1, 50 and 100 mg/L Shiogiri and Ven (2016)

Azithromycin Daphnia magna Feeding inhibition, polysaccharide and protein depletion 1, 10, 50, 100 and
200 mg/L

Li et al. (2020)

Chlorella pyrenoidosa Growth inhibition

Azithromycin Anabaena sp Inhibition of growth and chlorophyll content of
cyanobacteria

500 mg/L González-Pleiter et al.
(2021)

Azithromycin Dicentrarchus labrax Larval mortality (18%) and morphological
abnormalities (7.5%)

0.63, 1.25, 2.5, 5, 10 and
20 mg/L

Mhadhbi et al. (2020)

(Continued on following page)
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The widespread presence of azithromycin in soils is a

growing concern for public health, and the amount that exists

is directly related to the density of the population (Yi et al., 2019).

Soil vulnerability to antibiotic contamination is essential in

determining the extent of contamination and the likelihood of

antibiotic resistance and ecotoxicological effects (De La Torre

et al., 2012). In general, soil exposure to macrolide antibiotics

such as azithromycin increases the relative abundance of

numerous genetic targets associated with resistance to

macrolides and other antibiotics and mobile genetic elements

(Sun et al., 2021). Likewise, biosolids or composting expose living

organisms to the toxic effect of pharmaceutical products such as

azithromycin (Buta et al., 2021). Meanwhile, fertilizer colloids,

porous areas and soil pH are the main factors influencing the

transport behaviours of antibiotics; also, the biodegradation of

antibiotics in the soil is highly dependent on the soil microbiome,

soil pH, and soil temperature, and interactions between

antibiotics (Zhi et al., 2019).

5.2.3 Toxicity of azithromycin in humans
Azithromycin is an antibiotic that inhibits protein synthesis

in bacteria. It reduces biofilm formation (Parnham et al., 2014),

whose primary threat of presence in the environment is the

generation of antibiotic-resistant genes (Martinez, 2009), which

can occur in the environment and humans when they have a

prolonged treatment, i.e., bacterial resistance can occur in the

patient’s own body (Li et al., 2014) or also generate sensitivity to

the drug, and in some cases heart problems (Parnham et al.,

2014). Therefore, its administration should be prudence, thus

protecting environmental and human health.

5.3 Hydroxychloroquine

5.3.1 Toxicity to aquatic organisms
Pharmaceutical compounds such as hydroxychloroquine

have become emerging environmental pollutants due to

TABLE 3 (Continued) Toxicological evaluations with main drugs used for Covid treatment 19.

Compound Specie
or living being

Toxic effects Toxic dose Author

Ivermectin Folsomia candida All treatments affected community abundance and
composition, and the decrease in abundance
corresponded well with the increase in exposure
concentration for all species

10.8 cmol/kg Jensen and
Scott-Fordsmand (2012)Enchytraeus crypticus

Hypoaspis aculeifer

Mesaphorura
machrochaeta

Folsomia fimetari

Hypogastrura assimilis

Protaphorura fimat

Proisotoma minuta

Proisotoma fimata

Hydroxychloroquine y
Azithromycin

Danio rerio Reduced total protein levels and increased thiobarbituric
acid reactive substances, hydrogen peroxide, reactive
oxygen species and nitrite, suggesting a REDOX
imbalance and possible oxidative stress

2.5 μg/L Mendonça-Gomes et al.
(2021)

Ivermectin Thienemanni CE50 1.0 ug/L 1.1, 2.1, 3.3, 4.6, 6.9, and
9.2 mg/L

Brinke et al. (2011)

Caenorhabditis elegans CE50 5.2 ug/L

Azithromycin Daphnia magna Growth inhibition 200 ng/L Minguez et al. (2016)

Skeletonema marinoi Immobilization

Pseudokirchneriella
subcapitata

Growth inhibition

Artemia salina Growth rate inhibition

Azithromycin Pseudokirchneriella
subcapitata

Growth rate inhibition mortality and malformation were
observed after 96 h for X. laevis

10 mg/L Harada et al. (2008)

Xenopus laevis

Dexamethasone Psychrolutes phrictus significant increase in deformed gill operculum, a
significant decrease in weight and length, a decrease in
growth and development

500 μg/L Lalone et al. (2012)

Dexamethasone Danio rerio increased mortality 0.2 ng/L Chen et al. (2016)

Ritonavir Allivibrio fischeri inhibition of bioluminescence (up to 10%) 10 mg/L Czech et al. (2022)

Lopinavir Danio rerio pericardial edema and tail shortening 10 mg/L Czech et al. (2022)
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humans’ massive administration and more remarkable

persistence in the environment. Following the massive and

widespread use of hydroxychloroquine to treat COVID-19

worldwide (Lagier et al., 2020; Mendonça-Gomes et al., 2021),

an appreciable high amount is expected to end up in sewage

systems in coastal marine areas (Table 3). It may significantly

affect the meiobenthic nematode community, both quantitatively

and qualitatively (Ben Ali et al., 2021), thus affecting the diversity

of these species and the community structure itself, which affects

the functioning of the ecosystem. This compound and its

metabolites in the aquatic environment harm all organisms. In

addition, the ease of arrival of these substances into the

environment can also severely affect public health (Bensalah

et al., 2020).

5.3.2 Toxicity to terrestrial organisms
Due to intensive use and continuous release, high and

persistent concentrations of antibiotics are found in soils

worldwide; this contamination exacerbates the risks associated

with exposure and antibiotic resistance to soil ecosystems and

human health (Zhi et al., 2019). Ecological impacts can range

from subtle to overt due to acute exposure to higher levels of

hydroxychloroquine, such as in the case of ingestion by wildlife of

improperly disposed waste (Daughton, 2014). Sludge and

manure are the primary sources of contamination by

antibiotics of this type in all environment compartments (soil,

sediment, surface and groundwater) (Ezzariai et al., 2018).

5.3.3 Toxicity of hydroxychloroquine in humans
Prolonged exposure during treatment can cause damage to

health, such as the case of a study in which they show that there

are risks related to prolonged use of hydroxychloroquine, such as

choriocapillaris degeneration eyes with retinopathy disease (Ahn

et al., 2019). Similarly, in another study of prolonged exposure to

hydroxychloroquine (10.4 years on average), patients were found

to experience toxic effects on the retina, which diminished

somewhat when the medication was discontinued (Mititelu

et al., 2013); toxic effects are not only seen in the eyes. In

another study conducted on patients with rheumatoid

arthritis, it was found that those treated with

hydroxychloroquine had more significant bone erosion than

the other group treated with another drug (Van Der Heijde

et al., 1989). Therefore, voluntary exposure, in long-term

treatments, or involuntary exposure, through the environment,

to hydroxychloroquine leads to toxic effects in humans.

5.4 Dexamethasone

5.4.1 Toxicity to aquatic organisms
Dexamethasone (DEX) is a class of steroid hormones that

can be potentially harmful due to their endocrine-disrupting

properties (Quaresma et al., 2021). So (Lalone et al., 2012)

evaluated the toxicity of dexamethasone by mimicking

environmental conditions and showed that concentrations of

500 μg/L can alter fish’s reproduction, growth, and development.

Chronic exposure to glucocorticoids within them dexamethasone

has also been found to cause reproductive abnormalities in

rainbow trout, tilapia, carp, and goldfish and can also make

the fish more aggressive (Dunlap et al., 2002).

5.4.2 Toxicity to terrestrial organisms
Different environments such as soils are reservoirs for

probably thousands of emerging contaminants, including

dexamethasone released along with treated/untreated

wastewater, and despite extensive studies on dexamethasone

in surface water and wastewater, other environmental

compartments remain to be thoroughly investigated (Biswas

et al., 2022). Soil characteristics, including pH, organic matter

content, clay content, and redox potential, may influence the

transport and fate of this compound (Nag et al., 2022). In the

search on this topic, it was found that there is little information

on dexamethasone in environments such as sediments, so

comprehensive reviews of the evidence on environmental

health risks in terrestrial environments are lacking.

5.4.3 Human toxicity of dexamethasone
The use of antiviral drugs and related therapeutic agents

increases exponentially during pandemics; considering the global

spread, the assessment of the environmental impact of treatment

drugs for COVID-19 is very relevant (Tarazona et al., 2021). In

humans, dexamethasone has an elimination half-life ranging

from 1 to 5 h, although the biological half-life can last up to

days, where its biological effects on anti-inflammatory activity

are known to continue for 36–72 h after dosing (Becker, 2013).

Excessive levels of dexamethasone negatively feedback the

hypothalamus, resulting in reduced production of

corticotropin-releasing hormone and adrenocorticotropic

hormone (Cain and Cidlowski 2015). Non-specific

administration of dexamethasone can cause several side

effects, such as obesity, diabetes, immunosuppression,

hypertension, and osteoporosis, making it difficult to use in

long-term therapy (Numpilai et al., 2017).

Therefore, due to the constant detection of this compound in

surface waters and the potential toxicity to humans and animals,

the efficient removal of dexamethasone from drinking water is a

relevant environmental concern.

5.5 Antivirals (favipiravir, lopinavir,
ribavirin, remdesivir)

5.5.1 Toxicity to aquatic organisms
Considering their negative impact on: algae, Daphnia and

fish, antiviral drugs were reported to be the most dangerous

and toxic pharmaceuticals (Zhou et al., 2015). Studies
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reported that the administered drugs are not completely

metabolized in the human body, generating residues and

metabolites. The drug residue and metabolite are

discharged to the environment through wastewater, which

generates peaks of antiviral drugs in wastewater and

environmental waters (Race et al., 2020), where studies

report that Ritonavir shows the highest chronic toxicity to

aquatic organisms (2.9 ng/L), followed by lopinavir (5.9 ng/L),

and Ritonavir (20 ng/L) (Kuroda et al., 2021). Also, due to the

ionic structure of antiviral drugs, a high bioaccumulation

factor of Ritonavir and lopinavir in fish was estimated,

implying that hydrophobic or lipophilic chemicals

bioaccumulate favourably in fish tissues (Kumari and

Kumar, 2021). (Kuroda et al., 2021) conclude that water

treated through urban water treatment plants could contain

high concentrations of these drugs and their metabolites

(4,231 ng/L Favipiravir, 730 ng/L Lopinavir, 7,402 ng/L

Ribavirin and 319 ng/L Remdesivir).

5.5.2 Toxicity of antivirals to humans
If several pharmaceuticals that have a similar mode of action

are present in environmental waters, whether surface or

subsurface, then the toxicity of this mixture is greater than

that of any one pharmaceutical present; this could result in an

underestimation of risk, as typical exposure to multicomponent

chemicals would be an unacceptable risk to habitats and human

health (Oliver et al., 2015). One of these, Ritonavir, is the primary

drug responsible for risk to human health through consuming

food (in the form of fish) grown in pharmaceutically

contaminated waters (Kumari and Kumar, 2021). Much

research has been conducted on SARS-COV-2, the causative

agent of COVID-19, but none of the reported studies has

addressed the ecological-human risk aspects with actual

concentrations (Kumari and Kumar, 2021).

Furthermore, concerning toxicological studies, more were

performed with ivermectin. This could be because there are more

studies on antibiotics to detect their presence and the generation

of bacterial resistance, which is the most significant risk for the

environment and human beings (Martinez, 2009). At the same

time, ivermectin stands out for its toxicological effect on the

environment and human beings, such as Folsomia candida

(Guimarães et al., 2019) and its effects during the pregnancy

period (Nicolas et al., 2020), which is why it has so many

toxicological studies. Furthermore, concerning

hydroxychloroquine, it is a drug used specifically for some

diseases, i.e., used in smaller proportions, so it is understood

that it has less interest in studies of residues in the environment;

also, concerning its toxicological effects, the studies that have

been found, highlight toxic effects for humans mainly during

prolonged use (Mititelu et al., 2013).

However, in this context of the pandemic caused by COVID

19, the use of drugs has increased, so further studies are needed

on their presence in the environment, and the toxic effects on

living beings, mainly hydroxychloroquine, since its

physicochemical characteristics indicate that it can be found

in soil and water, depending on the pH. Therefore, it is

necessary to carry out further studies on its presence in the

environment and its toxicity to prevent future environmental and

human health damage.

6 Potential entry of ivermectin,
azithromycin and
hydroxychloroquine into a trophic
chain

Many antibiotics have been detected in the environment

due to their wide use (Díaz-Cruz and Barceló, 2007). In

TABLE 4 Reported treatment technologies for the elimination of pharmaceutical compounds used in COVID-19 therapies.

Compounds Type of treatment Drug
concentration

Results obtained References

Ivermectin Adsorption with kaolinite - pineapple seed 75 μg/L Elimination efficiency 75% Olu-Owolabi et al.
(2021)

Ivermectin Adsorption with feldspar-biochar 75 μg/L Elimination efficiency 64% Diagboya et al. (2022)

Ivermectin photocatalytic UV/TiO2 10 mg/L photodegradation del 90% Havlíková et al. (2016)

Azithromycin Photodegradation UV/H2O2 1,000 μg/L Elimination efficiency 98% Cano et al. (2020)

Azithromycin biodegradation with Chlorella vulgaris and
Haematococcus pluvialis

20, 50 and100 μg/L percentage of removal was 92.77 and 78%,
respectively

Kiki et al. (2019)

hidroxicloroquine Adsorption with kaolin 50 mg/L Adsorption capacity: 51 mg/L Bendjeffal et al. (2021)

hidroxicloroquine electrochemical advanced oxidation processes 250 mg/L Elimination efficiency: 99% Bensalah et al. (2020)

Dexamethasone Photocatalytic degradation, TiO2 5–30 mg/L Elimination efficiency: 83% Pazoki et al. (2016)

Dexamethasone Adsorption with clinoptilolite zeolite 40 mg/L Elimination efficiency: 78% Mohseni et al. (2016)

Favipiravir Photodegradation 100 μg/L Elimination efficiency: 40% Azuma et al. (2017)

Chloroquine Electro-Fenton oxidation 125 mg/L Elimination efficiency 99% Midassi et al. (2020)
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addition to being used for human therapy (azithromycin,

hydroxychloroquine), pharmaceuticals are widely used in

livestock (ivermectin) and agriculture (Martinez, 2009).

These veterinary and pharmacological drugs enter the

environment and can affect living organisms, including

plants (Syslová et al., 2019). Antibiotic build-up in soil

and plants is a growing problem in agriculture and is

receiving increasing attention (Sun et al., 2021); antibiotics

and other pharmaceuticals are the most abundant in sludge

and compost (Ezzariai et al., 2018). In this context, plants,

mainly those of agricultural interest, will be exposed to these

compounds when they are present in the soil or irrigated with

contaminated water (Sun et al., 2021).

Pharmaceuticals often contaminate agricultural products

and enter the food chain through absorption by plants (Khan

et al., 2021). The research detected 16 of the 28 antibiotics,

erythromycin, in plant tissue samples. These 16 antibiotics

were detected in root samples, eleven in stem samples, and

nine in leaf samples (Chen et al., 2020). Environmental

contamination by antibiotics may worsen in the future in

the context of global change, with population growth,

agricultural and industrial activity intensification, and

water shortages in vulnerable areas (Rodriguez-Mozaz

et al., 2020). If ivermectin is widely used to suppress the

spread of COVID-19, high amounts of ivermectin will likely

be deposited in the sea (Essid et al., 2020), directly affecting

the food chain (Bai and Ogbourne, 2016). These wastes

directly affect primary producers, such as algae, which

form part of the base of the food chain (Li et al., 2020).

Moreover, they reach humans through foodstuffs such as fish

(Yang et al., 2020), causing severe health problems.

Therefore, exhaustive studies are needed to evaluate the

effects of these compounds on the trophic chain of the

various terrestrial and aquatic ecosystems to know the

environmental risks and take mitigation measures.

7 Treatment technologies for the
pharmaceuticals studied

The increased presence of drugs in the environment is a

severe potential hazard due to their toxicity and persistence,

as studied in the review. Unfortunately, conventional

treatment techniques, such as those used in wastewater

treatment plants are ineffective for treating wastewater

containing antibiotics. Recently, some technologies for

removing these compounds have been discovered, and one

of them is based on algae, a sustainable and promising

technique for its removal (Li et al., 2022). Adsorption and

photodegradation are two ideal methods for antibiotic

treatment in water because they are: inexpensive, easy to

operate and reusable, while metal-organic structures are

excellent adsorbents and photocatalysts due to their high

porosity, adaptability and good crystalline form (Du et al.,

2021), likewise ozonation, Fenton/photo-Fenton and

semiconductor photocatalysis are the most proven and

efficient methodologies (Homem and Santos, 2011) as well

as a variety of graphene-based nanomaterials and advanced

oxidation processes efficiently remove antibiotics (Wang

et al., 2019; Rasheed et al., 2021). A new family of 2D-

MXenes materials has immense potential as adsorbents for

the removal of compounds, and adsorption is one of the most

promising purification approaches due to its excellent

removal efficiency, simplicity and low cost under ambient

conditions (Rasheed et al., 2022).

On the other hand, the confinement and non-use of the

vehicle fleet during the pandemic had positive impacts on the

environment, particularly in the context of air quality due to

the reduction in concentrations of particulate matter (PM),

NO2 and CO in significant cities around the world; thus the

COVID-19 pandemic disaster lockdown strategies offer an

important message to all countries of the world to restore

environmental quality and the stability of the natural

ecosystem (Bhat et al., 2021a). In addition to the primary

sources of contamination, such as the antibiotics studied in

the present review, the use of different products in the

pandemic, such as the use of disinfectants, requires an

immediate evaluation of the environmental effect in order

to reduce the adverse effects on people and the environment,

whether in water, soil or air (Bhat et al., 2021b). Table 4 below

shows the leading antibiotic treatment technologies studied in

this review article.

8 Conclusion

According to the review of articles on the detection,

presence and environmental implications of the primary

drugs tested for the treatment of COVID-19, data have

been analyzed showing that these pharmaceutical products

are present in different environmental matrices, especially in

surface water, sediments, wastewater treatment plants and

domestic water, which has generated an incipient concern

about the environmental impact. However, it has been seen

that there is little information on the subject, mainly

regarding antiviral residues in the soil and ecotoxicity of

fauna, which makes it a challenge to know the magnitude of

the risk faced by living beings in general. Given the increase

in the consumption of these pharmaceutical products by

COVID-19, it is innovative to propose technological

alternatives that allow the elimination of these

contaminants in an efficient and economically viable

manner. Combined processes seem to be the best solution

for treating effluent-containing antibiotics, especially those
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using renewable energies and derived materials, such as

adsorption, advanced oxidation processes,

photodegradation, photo-Fenton, UV photodegradation,

algae treatment and photocatalysis.
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